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Our life is frittered away by detail ... simplify, simplify.

WALDEN, Book 2.



ABSTRACT

The notion of a simplification of a homomorphism is introduced
and investigated. Its usefulness is demonstrated in providing rather
short proofs of the following results:

(1) Given an arbitrary homomorphism h and arbitrary words x,y it is
decidable whether or not there exists an integer n such that

h(x) = h"(y).

(i1)  Given an arbitrary homomorphism h and arbitrary words x,y it is
decidable whether or not there exists integers n and r such that

h'(x) = h"(y).

(i11) Given an arbitrary DOL system G and an arbitrary integer d it
is decidable whether or not G is locally caternative of depth not
larger than d.

(iv)  The equivalence problem for elementary polynomially bounded DOL

systems is decidable.






I. INTRODUCTION

The notion of a homomorphism on a free monoid is one of the basic
notions of formal language theory. It is definitely a very central
notion in the theory of L systems (see, e.g., [2] and [6]) and it is
the basic tool to define the sequences of words (DOL sequences) in this
theory. However there is no doubt that our knowledge about the proper-
ties of homomorphisms is very limited which is very well demonstrated
by the fact that most questions about basic properties of DOL sequences
remain without an answer. Even if a particu]ar problem is solved then
it mostly involves a rather complicated solution mostly based on
"invented on 1ine" (ad hoc) techniques. Hence looking for some systematic
proof techniques to deal with homomorphisms is a central {and quite -
challenging) topic in the theory of L systems in particular and in the
formal language theory in general.

In this paper we propose such a technique and demonstrate its
use in providing rather simple solutions toa number of quite basic
problems about DOL sequences. The underlying idea is the following.
Very often one gets the feeling that a given homomorphism "involves too
many letters". We show that this is indeed true whenever homomorphism
is not injective. Then one can consider another homomorphism which is
defined on an alphabet of smaller cardinality and which preserves essen-
tial properties of the original homomorphism. Such "simplications" turn
out to be especially useful for proofs by induction on the number of
letters involved in the considered alphabet. Also this leads us natur-
ally to consider elementary homomorphisms i.e. homomorphisms that cannot be
simplified any more. They form a proper subclass of the class of injec-

tive homomorphisms.
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Since a homomorphism is a basic component in a DOL system we
extend this concept to DOL systems and consider simplifications of DOL
systems. It turns out that this step provides an additional insight
into DOL systems and moreover provides a useful proof technique to deal
with a number of problems concerning DOL sequences.

We assume the reader to be familiar with rudiments of formal
language theory (see, e.g., [8]) and with the rudiments of the theory
of DOL systems (see, e.g., [31). Perhaps the only unusual notation
that we use is alph x to denote the set of all letters occurring in the
word x. We use the notation G = <X,h,w> for a DOL system and

E(G) = Wy st s e - s for its sequence.



IT. SIMPLIFICATIONS OF HOMOMORPHISMS

In this section we will present certain conditions under which
in considering a homomorphism one can shift the attention to a homo-
morphism which is simplified in the sense that it is defined on a
smaller number of Tetters.

The following result is obvious.

Lemma 1. Let I be a finite alphabet with #2 = m and let h be a
homomorphism on I*. If h is not injective on I, then there exists t <m

and words Upseersly such that for every a in I, h(a) « {ul,...,ut}.

Now we will show that the analogous result holds if h happens to
"glue together" two words (not necessary letters!) over I.

Theorem 1. Let I be a finite alphabet with #Z = m and let h be
a homomorphism on £*. If h is not injective on £* then there exist
t < m and nonempty words Upanensly such that, for every a in Z,
h(a) « {ul,...ut}*.

Proof

(i) If h is an erasing homomorphism then the result obviously
holds (take U = {h(a):aeZ and h(a) # A}, then indeed, for every a in
z, h(a) ¢ U*).

(i1) Let us assume that h is a A-free homomorphism.
Let CONTR be the set of all counterexamples to the statement of this
result, that is CONTR is the set of all 4-tuples (Z,wl,wz,h) where wy,w,
are words over an alphabet & of m letters, Wy 7 Wo, h(wl) = h(wz) and h
is a A-free homomorphism on Z* such that there do not exist t < m and

words Upseonsly such that, for every a in I, h(a) ¢ {ul,mn.,ut}*.



We will prove the lemma by demonstrating that CONTR is the empty
set.
This in turn is proved by contradiction.

Thus let (Z,w h) ¢ CONTR where I = {xl,...,xm}, Let

1°"2°
Q(Z,wl,wz,h) = |h(W1)1-
1) 2(Z,wy.wy,h) # 1. Otherwise {h(wl)[ = |[h(w,)| =1 and so
lwi| = |w,| = 1. Consequently h is not injective on I and by Lemma 1
(Z,wq.Wy,h) is not in CONTR.
2) We will show now that if Q(Z,wl,wz,h) = n = 2 then CONTR

must contain an element z with 2(z) < n. However, by 1) this yields a

contradiction.

il

So let Wy
[hCwy) | = Th(w,) |

relations between w, and W, (clearly, k,r = 2).

Xil...Xik,w2 = le...Xjr,w1 # WZ’h(Wl) = h(wz) and
n = 2. We have the following possibilities of inter-

i

1
2.1) X. = X..
1N
Then if we set Wy = Xiz...Xik, Wy = ij...Xjr we have Wy #”wz and
h(w1)~n h(Wzl Thus (Z,Wl,wl,h) is an element of CONTR with Q(Z,Wl,wz,h) <.
Note that the case of X. #X. and h(X. )=h(X. ) cannot happen
1 1 ' 1
because then h is not injective on » and so, by Lemma 1, (2,w]9w2,h) is

not a counter-example.

2.2) X, # X, and h(X. ) # h(X. ).
11 | J1
Now either h(Xj ) is a strict prefix of h(Xi ) or h(Xi ) is a strict
, 1 1 1
prefix of h(Xj ). Because these cases are symmetric let us assume that
1

h(Xi ) = h(Xj )z for a nonempty word z. Let Y be a new symbol,

o 1 _ _

L= VX, } u {Y} and let h be a A-free homomorphism on * such that

- 1 .

h(Y) = z and h(b) = h(b) for b in DX }. (Note that #r = # = m).
1



Let f be a A-free homomorphism on I* such that f(Xi ) = Xj Y and
1 1

f(X) = X for X # Xi . Let Wi = f(wi) for i = 1,2. Now we have the

1
following
(i) The first letters in Wl and Wz are the same. This holds

because Xj is the first letter in both Wl and WZ.
1

(i) Wy # W
This holds because the second letter in Wl is Y while the second letter
in QZ is an element of .

(i11) h(w,) = H(wi) for i = 1,2.

This 1is proved as follows.

Let Xr e 5.

If v # iy then (X)) = X and h(X ) = H(xp) = ﬁ(f(Xr)). If r = i, then
- - - h(X. In(Y) = h(X, Y) = h(f(X. )).

FXp) lev and h(X,) h(le)z h(XJ])h( ) = h i ) = h(f( 1]))

= ﬁf(Xr)'and consequently, for i = 1,2,

Hence for every Xr in x, h(Xr)

h(w;) = hf(w,) = h(#,). This proves (iii).
(iv) From (i) through (iii) it follows that (f}wl,ﬂz,h) is an
element of CONTR which falls into the case 2.1).
But 2) follows now from 2.1) and 2.2); and from 1) and 2) it
follows that CONTR is the empty set. Hence the theorem holds also for

A-free homomorphisms.

As a direct application of the previous result we get the
following corollary.

Corollary 1. Let Z,A be alphabets with #IZ=m. Let h be a homo—
morphism from I* into A* which is not injective. Then there exist an
alphabet © with #0 < m and homomorphisms f : 2* - ©*,g: 0* > A* such

that h = gf.

The above corollary leads to the following definition.



Definition 1. Let h be a homomorphism from £* into A*. We say

that h is simplifiable if there exist an alphabet © with #0 < #% and

homomorphisms f : £* >~ ¢*,g: 0% -~ A* such that h = gf. Otherwise h

is called elementary.

Corollary 1 says that a non-injective homomorphism is not elemen-
tary. However one can have an injective homomorphism that is not
elementary as shown by the following example.

Example 1. Let & = {a,b,c} and h be a homomorphism from %* into
2* defined by h(a) = a, h(b) = bca, h(c) = bcaa. Clearly h is injec-
tive on £*. However if we take © = {x,y} and f : £* > 0*, g : o* - ¥
homomorphisms defined by f(a) = x, f(b) = yx, f(c) = yxx, g(x) = a,

g(y) = bc then indeed h = g¢f.

Both injectiveness and simplifiability are effective notions
which is shown next.

Theorem 2. 1) It is decidable whether an arbitrary homomorphism
is injective. 2) It is decidable whether an arbitrary homomorphism is

elementary.

Proof.

1) This follows directly from the Temma below which we believe
is of interest on its own.

Lemma 2. Given an arbitrary homomorphism h on £* one can
effectively construct a finite automaton Ah such that

L(A = {wez*: (32)2*(2 # wand h(z) = h(w))}.

h)
Proof of Lemma 2.




Let
H = \,) h(a),
del
Eq(h) = {(a,b) ¢ Z x I : a# b and h(a) = h(b)}, and
Neq(h) = {(a,b) ¢ £ x £ : h(a) # h(b)}.

Let Bh = (A,Q,@,an,F) be a finite automaton where
A = (Zu{A}) x (Zu{Arl}) ,
Q= {qin’ AT} v
u {-a : a is a nonempty prefix or a nonempty suffix of a word in H}

u {+o : o is a nonempty prefix or a nonempty suffix of a word in H},

F= {[AJ}
and § is defined as follows:

0) for (a,a) ¢ £ x %, 6( , (a,a))

'{qin},
{qin, [AD},

il

1) for (a,b) e Eq(h), a(qin, (a,b))
| 2)  for (a,b) e« Neq(h)
2.1) if h(a) = h(b)a, then 6(q1n, (a,b))
2.2) if h(b

il

{-al,
= h(a)a, then s(qy,, (a,b)) = {+al,
3) if h(b)B = a, then §(-a, (A,b)) = {-g},

4)  if h(b

i

= af, then §(-a, (A,b)) = {+B},

)
)
) )
5) if h(b) = a, then §(-a, (A,b)) = {[AT, q; },
) )
) Wy
)

6) if h(a)s = a, then &(+a, (a,A)) = {+8},
7)  if h(a) = aB, then &(+a, (a,A)) = {-8},
8) if h(a) = o, then &(+a, (a,p)) = {CA], gnt.

0
(As usual we assume that all nonspecified above transitions lead to a

"dead state").

Now let ¢ be a homomorphism from A* to Z* such that, for every
(x,y) € A, ¥(x,y) = x. Then obviously
W(L(BL)) = {w e 2* ¢ (3z).4(z # wand h(z) = h(w))}.
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But finite automata are (effectively) closed under homomofphic mapﬁings
and so the Temma holds.

Now the point 1) of the theorem follows from the well known fact
that the emptiness for finite automata is decidable.

2) This is rather clear. Given a homomorphism from ¥ into &*
it is enough to check for all the subalphabets © of & whether or not h
"decomposes through 0" in the sense of existence of homomorphisms
f:2*>0%and g : ©%>3*, where g can be assumed A-free, such that

h = gf; obviously this can be effectively checked.

Now in the rest of this paper we will demonstrate the usefulness
of the concept of simplification by applying it to solve some rather
basic problems concerning DOL systems. We assume in the sequel that
DOL systems we deal with generate infinite languages, because otherwise

the problems that we will consider become trivial.



ITT. APPLICATION 1 (Intersection of two orbits of the same homomorphism)

A quite natural problem in the theory of (iterated) homomor-
phisms is the following one: Let us start to iterate a homomorphism h
on two different words. Do the sequences (orbits) generated by iterat-
ing h on these words ever meet?
We show that using the simplification mechanism one easily shows
that the above problem is decidable.
Theorem 3. Let h be a homomorphism from =* into £* where #& = m.
Let WisWy be words over I. Then there exists an n such that
h"(wy) = h"(w,) if and only if 0™ (w)) = W™ ().
Proof.
By induction on m.
(i) m =1 : obvious.
(i1) Assume that the result is true for #& < m-1.
(iii) Let #r = m.
If Wy = W then the result is obvious.
If Wy # W, then h is not injective and so by Corollary 1 there exist
an alphabet © with #0 < m and homomorphisms f : I* - 0%, g : % » §*

such that h = gf.

Then

(3n) (hn(wl) = n(wz)) if and only if

(fg)n f(wl) = (fg)n f(wz) if and only if (by the inductive assumption)
()" flw) = (£g)™ £(w,) if and only if

f hm_z(wl) = f hm~2(W2) which implies

gf hm'z(wl) = gf hm'z(wz) if and only if

-1
pM (Wl) =
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Now as a direct application of the above result we get the following
result.

Theorem 4. 1) There exists an algorithm which given an arbitrary
homomorphism h on I and arbitrary words WisW, over % decides whether or
not there exists an n such that hn(wl) = hn(wz).

2) There exists an algorithm which given an arbitrary homomorphism h on
% and arbitrary words WisWy over L decides whether or not there exist

n and r such that hn(w = hr(wz).

1)
Proof. |
1) This follows directly from Theorem 2.
2) First let us note that from Theorem 2 it follows that (we let
m= #I):
(an,r)(h"(wy) = h"(w,)) if and only if
(37) (0" (w) = 1" 2(up)) or (3F)(hT(wy) = W™ Ly )).
But given an arbitrary homomorphism h and arbitrary words x and

y it is decidable whether or not y is reachable from x by iterating h.

Hence 2) holds.
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IV. APPLICATION 2 (Locally catenative DOL systems)

One of the rather important areas in the theory of DOL systems
is the theory of locally catenative DOL systems (see, e.g., [37, [5]"
and [71). This theory deals with such DOL systems which generate
sequences in which from some moment on each string is composed by
catenating (in a fixed order) a number of previous strings. In this
section we will demonstrate the use of the simplification technique to
solve one of the open problems in this area.

Let us start by recalling some definitions.

Definition 2. let ¢ = Wy sWys e - be an infinite sequence of words.

1) A shift of ¢ is a sequence Wisiyqs-.. Where i > 0.

2) Let v = <11,...,ik> with k = 2 be a vector of positive integers
(max{il,...,ik} is called the depth of v). We say that ¢ is v-Tocally
catenative if there exists an s such that w, = wr_il...wr_ik for all

r > s.

3) We say that ¢ is locally catenative if there exists a vector v such

that ¢ is v-locally catenative. If the depth of v equals d then we

also say that ¢ is locally catenative of depth d.

The following observation will be needed in the sequel.

Lemma 3. Let ¢ and ¢' be infinite sequences of nonempty words
where words in ¢ are overZ and words in z' are over £'. Let h be a
homomorphism from =* into (£')* such that h(z) is a shift of ¢'. If

¢z is v-locally catenative then so is-¢'.

Proof.

Let ¢ = XgaXqoeos B8 = Yga¥psee and let h(z) = Yy Yyr1s

Let v = <i;,....1 > and let m be such that x_ = Xm—il"‘xm—ik' Then



-12-

= h(x_) = h(x ). h(x

Yutm m m-i, m_ik) = yu+m-i1'°'yu+m—ik’ Consequently,

¢' is v-locally catenative.

Definition 3. A DOL system G is called (v-) locally catenative

(of depth d) if E(G) is (v'-) locally catenative (of depth d).

To investigate locally catenative DOL systems we shall extend
now the notion of a simplification to DOL systems.

Definition 4. Let G = <Z,h,w> and G = <I,h,m> be DOL systems.

We say that G is a simplification of G if 47 < #7 and there exist homo-

morphisms f : * > I*, g : I* > £* such that h = gf, h = fg and

w = f(w). If G has a simplification then it is called simplifiable,

otherwise G is called elementary.

The following diagram illustrates the relationship between E(G)

and E(é) in the case that G is a simplification of G.

E(G) : E(G) :
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Lemma 4. Let G, G be DOL systems such that G is a simplification
of G. Then G is v-locally catenative if and only if G is v-locally

catenative.

Proof.

It follows from Lemma 3 and from the observation that f(E(G))
is a shift of E(G) and g(E(G)) is a shift of E(G), where f,g are as in
Definition 4.

i >

Lemma 5. Let G be an elementary DOL system and let v = <1’1,,..,1k

be of depth d. Then G is v-locally catenative if and only if

Wy = Wy_j +e-wq_q where E(G) = wgwp,....

1 'k
Proof.
let G = <Z,h,w>.

Ifwy=w, . ...0; . then obviously G is v-locally catenative..
d d—11 d—1k
If G is v-Tocally catenative then there exists the minimal n,

say ng, such that wnO = wno'il.‘.w"05ik‘ Ifny> d then we arrive at

contradiction as follows. We have w, _; # w but
0

LW .
n0-1-11 n0—1—1k

h( )

w ) =w. = s ... . = hlw R, .
nO—l U Np=1q n0~1k n0-1—11 n0—1-1k

and so, by Corollary 1,h is simplifiable; a contradiction.

One of the first natural questions posed when locally catenative
DOL systems were introduced was whether it is decidable for an arbitrary
DOL system G and a vector v whether G is v-Tocally catenative. The
following result provides the affirmative answer to even more general
question: 1is it decidable whether an arbitrary DOL system is locally

catenative of depth no larger than a given positive integer?



-14-

Theorem 5. It is decidable for an arbitrary positive integer d
and for an arbitrary DOL system G whether or not G is locally caterna-

tive of depth no greater than d.

Proof.

Let G = <¢,h,w> with E(G) = wysps- . and #I = m.

We claim that G is Tocally caternative of depth d if and only if
W= 1 is a catenation of some previous strings. Clearly it suffices
to prove the only if part of this statement. But this follows from the
fact that to find a simplification of G which is simple we have to make
at most (m-1) consecutive simplifications of G, using pairs of homomor-
phisms (fl,gl),...,(ft,gt) with t < m-1. Then in the resulting system
its d'th element must be a catenation of some previous strings (see-
Lemma 4). However then this sequence is shifted by a homomorphism
91-+-9¢_19% into E(G) in such a way that the i'th element of this
sequence is mapped into (i+t)'th element of £(G). Hence, by Lemma 3,

Wit and consequent?y wd+(m—1) must be locally catenative.
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V. APPLICATION 3 (DOL equivalence problem)

The (sequence) equivalence problem for DOL systems reads as
follows: 1is it decidable whether or not two arbitrary DOL systems
generate the same sequences. Although simply stated it turned out to
be a challenging problem opened for several years; only recently it was
shown in [1] that the problem is indeed decidable. However the proof
turned out to be really complicated. As a matter of fact even for a
simpler case of polynomially bounded DOL systems (see [47) the proof of
decidability of DOL equivalence problem is quite complicated. Hence it
is still a challenging research topic to look for a simple proof of
decidability of DOL equivalence problem for the whole class of DOL
systems or for its nontrivial subclasses.

In this section we show how using the concept of simplification
one can give a short and rather elegant proof that the equivalence for
simple polynomially bounded DOL systems is decidable.

First we need some extra notation. Given two DOL systems
6, = <T.hpa, 6y = <Tuhyuw with E(6;) = u{l), w{l) ... and
E(Gz) = mgl), wgl),... let ¢Gl,62’ wG1=GZ and 561,62 (or simply
¢,¥,E when Gl’GZ are understood) be three set-valued sequences defined
as follows:

for every n = 0,

¢(n) = {wél)} ,

Naat =
—~ —~~
= =
g S
i i
—~ —
= )
. P
N
——
e
=
o
=
Q.
—
—
"

i e (1,21

Now let us describe an algorithm, called the ESP algorithm, which

forms the basis for our next result.
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INPUT: GI’GZ
PROCEDURE: Construct, starting with n = 0 and then
increasing n iteratively by 1 ¢o(n), ¥(n), &(n) (thus getting
the sequence ¢(0), v(0), £(0), o(1), w(1), &(1),...).
STOP CONDITION: Stop at n such that
either 1) ¢(n) # ¥(n),
or 2) the condition 1) does not hold and there exist two

different sequences LPERES FIN FRERN ] such that

Lemma 6. Given arbitrary two elementary polynomially bounded DOL

systems, the ESP algorithm always terminate.

Proof.
e - 5w - 0 ) (1)

Let Gy = <Z,h1,w> and 62 = <% hz,w> with E(G 1) = wp  awy awy s
and E(G,) = w(Z),w(Z)’w(Z),.’. Let k be such that alph (w( ). (1))

2 0 1 2 Px
(clearly without the loss of generality we can assume that such a
k exists). Assume that n > 1 and that for 0 < & < k+n we have
¢(2) = ¢(2). Consider z = wél)wgl)...mﬁl). Then clearly, for

i ,...;‘ s Jaseeesd 2}, h. ...h, =h, ...h, i .
every i, (PPN i € {1,2} hln h1l(z) th th(z) (call it Zn)

The number of all possible parsings of z, with respect to z does not

exceed lzn[lzi and, if P is a polynomial bounding the growth of G,
n+k
this does not exceed [ P(1) lel which is again a polynomial. How-

‘i=n

ever the number of possible sequences of length n from the set {1,2} is
n+k
[kN/P(1 J!Z,. If such a

2" and so there exists an n such that 2"

minimal n is o then the ESP algorithm terminates by the second termi-

nation condition on the néth step.
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Theorem 6. The equivalence problem for simple polynomially
bounded DOL sequences is decidable. Moreover given two simple poly-

nomially bounded DOL systems GI’GZ one can effectively calculate a

- th

)

constant C such that E(Gl) agrees with E(GZ) up to the C

Gy,6,
word if and only if E(Gl) = E(GZ)'

Proof.

In view of Lemma 6 it suffices to prove that if the ESP algorithm
terminates by the second condition then E(Gl) = E(GZ). Thus let us
assume that the ESP algorithm terminates by the second condition on the
n'th step i.e. there exist two different sequences jl,...,jn, 11""1n

such that hin...h].1 = hjn...hjl. Leﬁ g be such that i, =

T 4 T Jnqseees i = j and i_#j.. Let T =nh, ...h. =
n-1 n-1 q+1 g+l q q i g1

n!

h. ...h. s, T1 = h, ...h. and o = h, ...h. .
g+l 1 1q i 2 Jq Jq

Let us assume to the contrary that E(Gl) # E(Gz). Let m be the
(1) _ (2)

minimal integer such that wél) # wéZ)_ Then obviously Yneg = ¥m-g and
) (2),

m-q B TZ(wm—q

(because before we reach W each application of h1

is identical with the app]ication'of hz). However TTq = TTy and so

1)

TTl( (1)) = TTz(w(Z)). On the other hand w( # wéz) but

“m-q m-q m

TTl(w(l (1)) and 1T (w(z)) (2>)

) A _
m_q)-—TT\wm 2lon g T(wm

which yields

T(wél ) = T(wélz)). But this will imply that one of the elementary homo-

morphisms hl’hZ must be non-injective which contradicts Corollary 1.
Thus the algorithm to decide the equivalence of two simple poly-

nomially bounded DOL systems G1 and GZ is as follows:

1. Run the ESP algorithm for Gl’GZ‘

2. If it terminates by condition 1 then E(Gl) = E(GZ)'
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3. If it terminates by condition 2 then E(Gl) = E(GZ).

The termination of this algorithm is guaranteed by Lemma 4.

The second part of the theorem follows from the proof of Lemma 4
and the fact (see [2]) that for a given polynomially bounded DOL system
one can effectively construct a polynomial P which bounds its growth.
Thus to find a constant CGl’GZ it suffices to find an n satisfying the
inequality 2" > R{(n) where R is a given polynomial. Clearly, this can

be effectively done.
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