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ABSTRACT

Counting languages are the languages of the form

{a§an a : t > 2,n > 1} where aj,...,a,_ are letters no

g ey i 2 €
two consecutive of which are identical. They possess a
"clean structure"” in the sense that if an arbitrary word
from such a language is cut in t subwords of equal length
then no two consecutive subwords contain an occurrence of
the same letter. It is shown that whenever an FPOL system G
is such that its language contains a "dense enough” subset -
of a counting language then the whole language of G cannot

have such a clean structure.






I. INTRODUCTION

One of the important research areas in formal lan-
guage theory is the search for results describing the
structure of a single language within a given language
family. The classical example of such a result is the
"pumping lemma" for context free languages. It says
that if certain words are in a context free language then
(infinitely many) other words must be also in this lan-
guage. Such results clearly shed some light on the
generating abilities (restrictions) of grammars or
machines) defining the given class of languages.

In this paper we establish a result in this direction
for the class of languages generated by 0L systems with-
out erasing productions and with finite axiom sets
(called FPOL systems). One of the most popular type of
languages (serving as examples of strict inclusions of
some classes of languages in others) in formal language
theory are t-counting languages. These are languages of

the form’{azan n t > 2,n > 1} where ayr...,a, are

27 3¢ t
letters no two consecutive of which are identical. They
possess a "clean structure" in the sense that if an arbi-
trary word from such a language is cut into t subwords of
equal length then no two consecutive subwords share an
occurrence of a common letter. We demonstrate that if

an FPOL system G is such that its language contains a

"dense enough" subset of a counting language, then

the whole language cannot have such a clean structure
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(or even a structure"approximating™it!). Thus again a
result in this line: if certain words are in the lan-
guage from the given class, then other words must also
be in the same language.

Certainly there are very few results like this for
the class of FPOL languages and we believe that this
result together with its proof shed some new light on the
structure of derivations in FPOL systems.

Perhaps it is also worthwhile to mention that results
like this are especially valuable in the theory of L forms
where one is really interested in the structure of "all
sentential forms" that a given system can generate. 1In

particular our result is used in [4].



II. PRELIMINARIES

We assume the reader to be familiar with rudiments of
formal language theory and in particular with the rudi-
ments of the theory of L systems (see, e.g. [1]). We use
a rather standard terminology and perhaps only the follow-
ing notation requires an explanation.

1) N,N+ and N(t) denote the set of nonnegative integers,
positive integers and positive integers larger than t,
respectively.

2) For a finite set Z, #Z denotes its cardinality and for
an integer x, || x|| denotes its absolute value.

3) If o is a word over ¥ then alph(o) denotes the set
of all letters from ¥ that occur in «a, ggggkux)denotes
the prefix of o of the length k and §E£k(a) denotes the
suffix of o of the length k. |a| denotes the length of a
and a/x, o\x denote the word resulting by deleting the
prefix x from o and the word resulting by deleting the
suffix x from a, respectively. #a(u) denotes the number
of occurrences of the letter a in a.

4) 1If k is a language then alph(K) = k‘wj alph(o) and
o€ M

l§§§q(K) = #{ |a| : ¢ € K and |a]| < q}.
5) In our notation we often identify a singleton set with
its element.

To establish the basic notation for this paper concern-
ing L systems we recall now the definition of an FPOL

system.



Definition 1.

1) An FPOL systém is a construct G = (Z,P,A) where
I is a finite nonempty alphabet,

P is a finite set of productions, each of the form
a»o with a € 2,0 ¢ 5t satisfying the condition
(Va)z(ﬂa)z+[a+a is in P],

A is a finite nonempty set (of axioms), A ¢ Z+,

2) Given words X,y € Z+ we say that x directly derives

y in G if x = a,...a

1 £ 1Y = Opevedt where

t

<al,a >r...<a_,0,.> € P. We write then x => vy.

1 t't G

3) For a positive integer m we say that x derives y in
m steps if there exist Xyveear X such that
X E> Xyr Xq §> XoreworX, 4 E> xm5ﬂmixm =y, We denote

it by x %> y. If x =y or there exists anm such that

X %> y then we say that x derives y in G and denote it

by x

*

g Y-

4) The language of G, denoted as L(G), is defined by

L) = {ae " ¢ (aw),lw s all.

il

Definition 2. Let G (2,P,A) be an FPOL system.

1) Let a ¢ Z+. Then Ga = (%,P,a).

4

el all

2) Let n ¢ NT.  Then L(n,G) = {a e L(G) : (ﬁw)A[w
and L(n,a,G) = L(n,Ga). |

3) Inf(G) & I where a ¢ Inf (G) if and only if

{a € L(G) : a e alph(a)} is infinite; elements of Inf(G)

are called infinite letters (in G).

4) Fin(G) = INInf(G); elements of Fin(G) are called

finite letters (in G).
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5) Mult(G) € Inf(G) where a € Mult(G) if and only if
(Vn)N+(iHoc)L(G) [#,(a) > nl;

elements of Mult(G) are called multiple letters (in G).

6) Copy(G) = {m e N* : (&) 4[0™ e L(G)]}.

7) The growth function of G, denoted as fG’ is a func-

tion from N+ into finite subsets of Nt defined by
fo(n) = {]a| : o e L(n,G)}.
7.1) If there exists a polynomial ¢ such that

(¥n) oy (W) [m < ¢ (n)]

fén)

then we say that fG is of polynomial type;

otherwise £, is exponential.

G
.2) If there exists a constant C such

7
then we say that fG is constant.
7.3) If (Vn)N+[#fG(n) = 1]

then we say that fG is deterministic.




ITI. AUXILIARY RESULTS

In this section we investigate certain aspects of
derivations in FPOL systems in general and in the so
called t-balanced FPOL systems in particular.

Lemma 1. Let G be an FPOL system such that
1. fG is deterministic, and
2. Copy (G) is an infinite set.

Then fG is exponential.

Proof.

Let G = (Z,P,A).
Let H = (Z,R,A) where R is a deterministic subset of G,
i.e. R € P and R contains precisely one production for
each letter of 1.
‘Obviously fG = fH’

If £, is exponential then the result holds.

H

But now we will show that fH cannot be of polynomial
type.

Assume otherwise i.e. that fH is of polynomial type.
(i) From [2] it follows that there exist positive

integers n,,n, and polynomials Y,,«..,§ such that, for
01 1r°- ny

n.+l < r < n +nl and for every £ z 0,

0 = 0
fG(r+£‘nl) = ¢r(£).
(1ii) Note that

(vm) n )+ (¥n) o+ [if n > n then m divides £ (n)l.

Copy(G)(H

To prove it, given m ¢ Copy(G) choose n. to be such that



o ¢ L(nm,G) for a word o in Z+.

(iii) Let r ¢ {n0+l,..,,n nl} and let

0+

_ k k-1
¢r(£) = akﬂ +a lﬂ +m@.+al£+a

K- 0
|- ey D) L0 < <ok

Let m > max{ Hai

Let 7 = {¢r(m-d+l) : d 2 1},
Z, = {¢r(m~d+2) :d > 1},
Tpe1 = {¢r(m-d+k+l) :d 2 1}.

We will demonstrate now that at least one of the
above Zi is such that none of its elements is divisible
by m.

. N .t
Since (md+i) ~ = aim+1 for some a, .,
¢r(md+1) = sim+¢r(l) for some S, -
But for i ¢ {1,...,k+1}, H¢r(i)I[< m and so m divides

elements of Zionlyif ¢r(i) = (0,

But if all ¢r(i) 0 for all 1 < i £ (k+1) then the

following set of equations would have to have a non-zero

soclution:

k k-1 _
akl +ak_ll Pt ennen ‘......+all+a0 = 0,
k k-1 ‘ -
ak2 +ak_12 S ....+al1+ao = 0,

- .
° -
. .

k k-1
ak(k+l) +ak_l(k+D +..,+al(k+l)+a

0 0.

Since the determinant of this system is a Vandermonde

determinant it never equals zero and so the above system
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does not have a solution. Consequently ¢r(i) # 0 for at
least one i € {1,...,k+1} which implies that m does not
divide any element of Ziw

(iv) This however contradicts (ii) and consequently fH

cannot be of polynomial type.

Definition 3.

(i) Let a ¢ hl and let t be a positive integer, t > 2. A

t-disjoint decomposition of o is a vector <ul,,».,at>

such that
1. OprecerOy € Z+ and Opes0y = 0O, and
2. for every 1 < i < t-1, glgg(ai) ~ g;gg(ui+l) =g@.
(ii) Let K _ Z+ and let t be a positive integer, t 2 2.
We say that K is t-balanced if there exist positive

t

rational numbers cl,..,,ct with \k~/} ci = 1 and a
i=1

positive integer d such that for every a in K there exists

a t-disjoint decomposition <al,...,ut> such that for

every 1 £ 1 < t,

|

c,lal-a i

IA

< ci(u[+d.

In such a case we also say that K is (v,d)-balanced

and that <ul,...,at> is a (v,d)-balanced decomposition of a,
where v = <cl,...,ct>.

(iii) An FPOL G is t-balanced if L(G) is t-balanced.

Lemma 2. Let G = (I,P,A) be a t-balanced FPOL system

with t 2 3. Then
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(Fky) (Va) o (¥n) [#£, (n) < k..

G
a

Proof.

Clearly it suffices to show that

(%a) 5 (3k,) (¥n) g [#£5 () < K]

Let v = <cl,...,c > and d be such that L(G) is

t
(v,d)-balanced. Let Cin = mln{cl,...,ct}.

(i) Let a e Inf(G).

We will prove the result by contradiction. So let us

assume to the contrary that

it is not true that (Eka)(vn)N[#fGa(n) < ka].,.(*)

) (Hn,) 4 (dr) (i

[ Te~ oy )
N(#z)‘3“1'°"'“r'L(no,a,G) Y{1,...,t}
e, |wy |+3d]

Proof of (i.l).

Clearly it suffices to show (i.l) with c; replaced by

C_._ .

min

Let us take an arbitrary n and let fG (n) = {xl,.ﬁ.,xs}
a

where elements Xyre-.rX, are arranged in the increasing
order. Let xil,...,xir be the longest subsequence of
Xl""’Xs defined as follows:
X, =X and
1

for 1 £ j < r-1, i

l’

J+1 is the smallest index with the

property that X5 -X, > .

i+l 15 c_

If r < #7 then s < #Z'—ég- Since n was arbitrary, if we

min.
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set ka = (%% °~%§ )+1 then we get that
min
(Vn)N+[#fGa(n) < k.1

which contradicts (*).
Thus r must be larger than #I and so if we set

Wi T Xy .. W = X, the statement (i.l) holds.
i, r i

(i.2) Let o be a word containing a, so ¢ = @laaz, which

is long enough, i.e.,

(Vl){l,..,t}”alci > 2(lwr|+3d)]

where Wyre e W is a sequence (in the order of increasing
length) from (i.l).

Let

Bl = OLlWlOCZ € L(nopOClG)l

Br = 0qW 0, € L(no,a,G),

where
a, € L(no,al,G) and a, € L(no,uz,G).

Let for each 15 i g r,u; = <Bi(l),...,8i(t)> be a

<v,d>-balanced decomposition of Bi.

Since [B;| 2 |a | and t 2 3 either w, is contained in
i .

Bi/(Bi(l))(preflwr[+2d(8i(2)))) or w, is contained in

Bi\((ggﬁ ‘+2d(8i(t—l)))(8i(t))); because these two cases

o,

are symmetric we assume the first one.
Note that Bi+l(l) results from Bi(l) by catenating to

Bi(l) a prefix of Bi(Z). Moreover

B0 (D =B (1] 2 ey (]8,[+2% )-a)-(c |8, |+d) =
min
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il
Qs

= ¢c,— =2d 2 3d-24d
ic_,
min

and so each Bi (1) results from Bi(l) by catenating

+1
to Bi(l) a nonempty prefix of Bi(2).
Also

]Br(l)[—lﬁl(l)l < (cl(]&lazl+}wr})+d)~(cl([&152]+!wl[)—d =

= ¢y (Jw.|=lwy[)+2a < |w_[+24

and so in constructing consecutively 82(1),83(1),...,6r(l)
we use nonempty subwords of a prefix of 81(2) (and we never
reach wl).

But r > #I and so at least two of the nonempty prefixes
used to construct Bi+l(l) from Si(l) contain an occur-
rence of the same letter, which implies that for a

j in {2,...,r-1}, glgg(sj(l))r\ glgg(sj(Z)) # #; a contra-
diction with the fact that Bj has a (v,d)-balanced decom-
position.

(i,3) Thus (i.l) and (i.2) imply that (*) is not true,

or in other words that, indeed,

(Va) (@k,) (vn) ([#£, (n) < k_].

Inf (G) 5

ii) Let a € Fin(G).
Let Za be the set of all words a such that
alph(a) & Inf(G) and there exists a word B such that

B ﬁfafand alph(8) m Fin(G) # #.

Note that Za is a finite set and so if we set

s = max{|a| : o e 2},

r = #{ a e Fin(G) : alph(a) ~ {a} # #§ and

k

Il

maX{ka : a e Inf(G)}
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then

(¥n)  [#£, (n) < 1+r+k57 .

a
Lemma 3. Let G be an FPOL system and let a & MULT(G).

Then fG is deterministic.
a

Proof

Let G = <Z,P,A>

Clearly there exists a letter b in I which for any
m can derive a word Bm such that #a(Bm) > m. So let kO
be a constant from the statement of Lemma 2 and let B
be a word such that b derives B (in some e steps) and
#a(B) > ko’

We will show now that if the lemma is not true, then
we get a contradiction.

If the lemma is not true then

(Any) g+ (Hog y05) sy laq,0y € Ling,a,6) and |ay| # |o,|l1.

But then the number of words of different length that B

can derive in ng steps is larger than k, and consequently

0

#f . (e+n,) > k., which contradicts Lemma 2.
Gb 0 0
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IV. THE MAIN RESULT

In this section we prove the main result of this
paper. First we recall a definition and a technical
result needed later on.

Definition 4.

1) Let G = (Z£,P,A) be an FPOL system and let m be a

positive integer. An m-decomposition of G is a set of

systems G = {Gl,.,.,Gm} such that for every

l1 <izgm G.

i = (Z,R,Ai) where

Ai = {a : a e L(i-1,G)} for i 2 2 and Al = A,
R = {a»a : a %> al.

2) We say that G is well-sliced if

(1) (¥a) ; (Ya) o4 [ (Hm) oy [a l“é:> a] if and only if

T ;.

(Ea)z+{(a '—6— u.) and {alph(u) = a.l.g.u(u))]],

(ii) (Va)z[if L(n,a,G) is finite then

nz1l
{u o a E‘"> @} = E\ZJIL(H'a’G)]

3) An m-decomposition G of G is called well-sliced if

each element of it is well~sliced.

m

Note that L(G) = \\’) L(G;) where G = {Gy,...,G_}
i=1

is an m~decomposition of G.
The following result was proved in [1].
Lemma 4. For every FPOL system there exists a

well-sliced decomposition.
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Our main result will be concerned with the generating
of counting languages by FPOL systems. These counting

languages are defined formally now.

-

Definition 5. Let t be a positive integer, t 2 2.

A language M over I is called a t-counting language if

_ n_n n .
M = {alaz..,at :n 2 1} where for 1 § i < t, a; € I and
a. a. for 1 < j £ t-1. We also say that a. is a

5 7% 354 J Y j

neighbour in M with aj+l’

Theorem 1. Let t 2 3, M be a t-counting language,
G be a t-balanced FPOL system and K = M A L(G). Then

there exists a constant C such that

(Hq)N+[less K < C-loggll.
Proof
Let G = (Z,P,A) and alph(M) = A.

By Lemma 4, there exists a well-sliced decomposition
of G and since it suffices to prove the theorem for a
single component of such a decomposition let us assume
that G is well-sliced.
(1) If K is finite then the result trivially holds.
(ii) Assume that K is infinite.
(ii.1) (da)

+
Mult (G) (AP) p (F0) pyela => al.
Proof of (ii.l).

Obvious (otherwise K could not be infinite).
(ii.2) If a € Mult(G), b e A,a e {b} and a & o then

1) fG is either constant or exponential,
a
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2) fG is either constant or exponential, and
b
3) £ is constant if and only if £ is constant.

Ga Gb

Proof of (ii.2)

1) By Lemma 3, f is deterministic and since G is

G
a
well~sliced
(Vn)N+[£ € fG (n) if'and only if bg e L{(n,a,G)].
a
i, i
Let T = ¢ 7,0 ",... be such that i, = £, (j).

If v is infinite then Ga satisfies the assumptions of

Lemma 1 and so fG is exponential.
a

If 1 is finite then, because G is well sliced, fG is
a constant function. ?
2) and 3) follow from 1), a derives strings through b
and so both must have the same type of growth.
(ii.3) Either (Vb)A[be is a constant function]

or (Vb)A[be is exponentiall].

Proof of (ii.3).

From (ii.l) and (ii.2) it follows that
‘(HC)A[fG is either constant or exponentiall]
c
Now let a be a neighbour of ¢ in M. Then if we take a

L. (or symmetrically

word o from K of the form ...a
,..cnan...) and will derive in G words from it in such a
way that each occurrence of ¢ in o will produce the same

subtrees then if c is not of the same type as a then we

will obtain a word B that is not t-balanced, a contradiction.
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Hence any two neighbours in M must have the same type
of growth.

(ii.4) It is not true that (Va)A[fG is constant]
a

Proof of (ii.4).

We prove it by showing that if indeed,(Va)A[fG is constant]
then‘K must be finite; a contradiction. :
So assume that K is infinite. Then we can choose o in K
which is arbitrarily long, e.g., so long that each deri-
vation tree (or rather forest) in G for o is such that on
each path of it there exists a label that appears at
least twice.
In a derivation forest from w in A to a we choose a path
p = eo,el,.,. as follows:
€o is an occurrence in ( such that no other occurrence in
w contributes a longer subword to «,

e is a direct descendant of e such that no other direct

i+l
descendant of e, contributes a longer subword to o.

Now on p choose the first (from eo) label ¢ that repeats
itself at least twice on p. Then take the first repe-
tition of ¢ on p.

The situation is the best explained by the following

picture:
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/>¥— the path p

%

i

i

{

i
i
i
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1) BB # A.

We prove it by contradiction. Suppose BB = A.

1.1) Then every label p on p which repeats itself must
be such that p %> S§pS implies 88 = A.

This is seen as follows.

n., be such that

Let nO,nl, 2

n n
o =—_.-g~> g, p z1> (SDS, o m2'> Lpc.

Let n = n ‘n

0 M1 M2
Then
4, ...
n n v n, . (n) = (n)
o => g0 > Y1PYy > ¥y T6pdyy
...
n . n n v
g => (o] > g > Ylel
3 ...
(1) =(1) S(i) g(i) o

for some words Yl’?l""’Yl ’Yl yoeee
Hence if 88 # A, then there exists a positive integer £

such that #fG (£-n) > k which contradicts Lemma 2.
o

0 H

But if 1.1) holds then o would have to be not longer than
Vs

a fixed a priori constant; a contradiction to the fact K

is infinite and so we could have choosen o arbitrarily

long.

Thus indeed BB # A.
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] M1
2)  Let my,m; be such that ¢ == B0B and 0 ==> 7

where m ¢ AT (so f is constant). Let m = m,.-m

Gﬂ 01

Then
o B B (D m, (2 m, ),

m - om (1) =) m () (1)=(2) m
o => YlUYl > Yl WYl > Yl m Yl > aes

m = m (1) = =) m (2) (1) _=(1)=(2) m
O T YPOYy TP OYUTYRO0Y YT T oYy Y ™YY T
where all the yl,§l,...,yél) ?{l),..;,ﬂ,...,ﬂ(l),... are

nonempty words.

Since fG is constant, this implies that there exists a
m

(£-n) > k
Gy

contradicts Lemma 2. Consequently if

positive integer £ such that #£ which

07

(Ya) [fG is constant]
a

then K must be finite; a contradiction.

Thus (ii.4) holds.

(ii.5) (Vb)A[f is exponentiall
°p

Proof of (ii.5)

It follows directly from (ii.3) and (ii.4).
(ii.6) There exists a positive integer constant Sy such
that in every derivation without repetitions of a word

from K in G, already after s, steps an intermediate word

0

contains an occurrence of a multiple letter a for which

there exists b in A and o in {b}+ such that a &> o,
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Proof of (ii.6).

Obvious (otherwise all intermediate words would have
to be of the length & priori bounded which contradicts
the fact that K is infinite).

(ii.7) Now we complete the proof of the theorem as
follows.

1 -2
Ul are all the words from K of length not larger than g

less K = U,+U.,, where
—q

that are obtained by a derivation without a repetition
which does not take more that T, steps, and

U2 are all the words from K of length not larger that g
that are obtained by a derivation without a repetition
which takes more than Ty steps.

The following graphic represents the situation:
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P AP | QR

where r is the number of steps (in derivations without

repetitions) required to derive a word in K and £ is the
length of a word in K (so the point (i,j) is on the
graphic if in i steps one can derive a word from K of

length j).
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From (ii.6), (ii.2) and (ii.5) it follows that all the
points (i,j) for i > sy are above the exponential line
ut for some constant u.

But then Lemma 2 implies that there exists a constant

h0 such that (note that rq logaq)

]

less K = U1+U2 < hoso+horq hoso+hologuq.

logzq
log2a

However 1ogaq = and so

1092q
s,th < Clogzq,for a suitable constant C.

less K < hO 0 O—W»-

As a direct application of our main theorem we get for
example the following result (which is used in [41]).

Corollary 1. Let G be an FPOL system such that L(G)

contains {a"b™™ : n > 1}. Then for no finite language F,

L(G) % F is 3-balanced.
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