ON k-STABLE FUNCTIONS

bу

Andrzej Ehrenfeucht Department of Computer Science University of Colorado at Boulder Boulder, Colorado 80309

Jan Mycielski Department of Mathematics University of Colorado at Boulder Boulder, Colorado 80309

#CU-CS-111-77

August, 1977

Abstract

We prove that a k-continuous or a k-stable function cannot depend on more than $\,\,k4^{k-1}\,\,$ variables and related facts.

A function $f: \{0,1\}^n \to \mathbb{R}$, where \mathbb{R} is any set is called k-continuous iff for every $x = (x_1, \dots, x_n) \in \{0,1\}^n$ there exists a sequence $1 \le i_1 < \dots < i_p \le n$, where $p \le k$, such that for every $y = (y_1, \dots, y_n) \in \{0,1\}^n$ if $(y_i, \dots, y_i) = (x_i, \dots, x_i)$ then f(y) = f(x). This property was studied in [1,2,3,5].

Now we will study a larger class of functions $f: \{0,1\}^n \to \mathbb{R}$ called k-stable. To explain this property, for every $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \{0,1\}^n$ and every \mathbf{i} with $1 \le \mathbf{i} \le n$ we put

$$x^{i} = (x_{1}, \dots, x_{i-1}, 1-x_{i}, x_{i+1}, \dots, x_{n})$$
.

Now f is called k-stable iff for every $x = (x_1, ..., x_n) \in \{0,1\}^n$ there exist $1 \le i_1 < ... < i_p \le n$, where $p \le k$, such that for every $i \notin \{i_1, ..., i_p\}$, $1 \le i \le n$, we have $f(x^i) = f(x)$. Thus, of course, k-continuity implies k-stability.

Examples. 1. The function $f: \{0,1\}^4 \rightarrow \{0,1\}$ defined by f(x) = 0 if $x \in \{(0,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (1,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,1)\}$, and f(x) = 1 otherwise, is 2-continuous.

2. The function f: $\{0,1\}^{10} \rightarrow \{0,1\}$ defined by $f(x_1,\ldots,x_{10}) = x_1 \quad \text{if} \quad x_1 = x_2 \quad , \quad f(x_1,\ldots,x_{10}) = 0 \quad \text{if} \quad x_1 = x_3 = x_4 = 0$ or $x_1 = x_5 = x_6 = 0$ or $x_2 = x_7 = x_8 = 0$ or $x_2 = x_9 = x_{10} = 0$, and

 $f(x_1,...,x_{10}) = 1$ otherwise, is 3-continuous (see fig. 1). For other examples of k-continuous Boolean functions see [2], Notes 3, 4, and 5, and [3].

3. The function $f: \{0,1\}^4 \rightarrow \{0,1\}$ defined by f(x) = 0 if $x \in \{(0,0,0,0), (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1), (0,1,1,1)\}$, and f(x) = 1 otherwise, is 2-stable but not 2-continuous. (see fig. 2)

Fig 2.

A function $f: \{0,1\}^n \to \mathbb{R}$ is said to <u>depend</u> on the variable x_i iff there exists a sequence $y = (y_1, \dots, y_n) \in \{0,1\}^n$ such that $f(y) \neq f(y^i)$. And a function $f: \{0,1\}^n \to \mathbb{R}$ is called <u>Boolean</u> iff $\mathbb{R} \subseteq \{0,1\}$.

E.g.: the functions of Examples 1 and 3 depend on 4 variables and the function of Example 2 depends on 10 variables, and all are Boolean.

In [2] we have studied the maximum number of variables on which a k-continuous Boolean function can depend. It turns out that such

a maximum exists and we will denote it here (unlike in [2]) by $\,\phi_2^{}(k)$. The following problem is still unsolved

 $(P_1) \ \ \text{Does there exist for every} \ \ n < \phi_2(k) \ \ \text{a k-continuous}$ Boolean function which depends just on $\ n \ \ \text{variables?}$

It is not hard to prove that $\phi_2(1)=1$ and $\phi_2(2)=4$ (see Example 1). By Example 2 we have $\phi_2(3)\geq 10$. It seems that $\phi_2(3)=10$.

We shall also study functions $f\colon X\to R$, where X can be a proper subset of $\left\{0,1\right\}^n$. We shall say that f is \underline{total} if $X=\left\{0,1\right\}^n$ and $\underline{partial}$ if $X\neq\left\{0,1\right\}^n$. For a partial f we shall say that f $\underline{depends}$ on the variable x_i if there exists a $y\in X$ such that $y^i\in X$ and $f(y)\neq f(y^i)$. Also f is called $\underline{Boolean}$ if $R\subseteq\left\{0,1\right\}$. It is called k- $\underline{continuous}$ if for every $x\in X$ there exists $1\leq i_1<\dots< i_p\leq n$ such that $p\leq k$ and for every $y\in\left\{0,1\right\}^n$ if $(y_1,\dots,y_i)=(x_1,\dots,x_i)$ then $y\in X$ and f(y)=f(x). (In [2] this property was called regular k- $\underline{continuity}$.) f is called k- \underline{stable} if for every $x\in X$ there exists $1\leq i_1<\dots< i_p\leq n$ such that $p\leq k$ and for all $i\notin\left\{i_1,\dots,i_p\right\}$, $1\leq i\leq n$, we have $x^i\in X$ and $f(x^i)=f(x)$.

- (P_2) For which k, n, ℓ is it true that k-stability of $f: \{0,1\}^n \to \{0,1\}$ implies ℓ -continuity of f? (For $k = \ell = n-1$ it is so.)
- (P_3) What is the maximum height (see [3]) of a total k-stable function? (The maximum height of a total k-continuous function is k^2 as proven in [3].)

Let now $\phi(\textbf{k})$, $\phi^{\bigstar}(\textbf{k})$, or $\phi_{2}^{\bigstar}(\textbf{k})$, denote the maximum number

of variables on which a k-continuous function which is total, partial or partial Boolean, respectively, can depend. Also let $\psi(k)$, or $\psi^*(k)$, denote the maximum number of variables on which a k-stable function which is total, or partial, respectively, can depend.

We shall prove that all these maxima exist. We have of course

$$\begin{split} \phi_2^{}(\mathbf{k}) &\leq \phi_2^{\star}(\mathbf{k}) \leq \phi^{\star}(\mathbf{k}) \leq \psi^{\star}(\mathbf{k}) \ , \\ \phi_2^{}(\mathbf{k}) &\leq \phi(\mathbf{k}) \leq \psi(\mathbf{k}) \leq \psi^{\star}(\mathbf{k}) \ \ \text{and} \ \ \phi(\mathbf{k}) \leq \phi^{\star}(\mathbf{k}) \ . \end{split}$$

The main result of this paper is that $\psi^*(k) \le k4^{k-1}$.

 (P_4) Is any of the above inequalities sharp for large enough k? In [2] (Theorem 17A and Note 6) we have proven that

$$2(k-2) + 4 \binom{2(k-2)}{k-2} \le \varphi_2(k) \le \varphi_2^*(k) \le (2k-1) \binom{2(k-1)}{k-1}$$
,

and we gave (Theorem 23) a different combinatorial interpretation of the quantity $\phi_2^{\star}(k)$ (see also [4]). Again it is easy to prove that $\phi_2^{\star}(1) = 1 \quad \text{and} \quad \phi_2^{\star}(2) = 4 \quad \text{and it seems that} \quad \phi_2^{\star}(3) = 10 \; . \quad \text{The analogs of problem } (P_1) \; \text{for} \quad \phi_2^{\star} \; , \; \phi \; , \; \phi^{\star} \; , \; \psi \; \text{ and } \; \psi^{\star} \; \text{ are also open.}$

Now we will prove that $\psi^*(1) = 1$. (Concerning $\psi(2)$ and $\psi^*(2)$ we know only that $4 \le \psi(2) \le \psi^*(2) \le 8$ (by Example 3 and the general fact $\psi^*(k) \le k4^{k-1}$ proved below)). First we need an auxiliary proposition. Let I be the interval [0,1].

<u>Proposition</u>. If H is a nonempty set of edges of the n-cube $\mathbf{I}^{\mathbf{n}}$ such that every vertex of the graph H has valency not less than n-1 , then either the union UH is connected or H consists of all the edges of two disjoint (n-1)-faces of $\mathbf{I}^{\mathbf{n}}$.

Proof. We proceed by induction on n. For n = 1 the Proposition is obvious. Suppose that it is true for n-1 . If is connected we are done, thus suppose that it is disconnected. Let F_0 and F_1 be two disjoint (n-1)-faces of I^n . Let $A_0 = F_0 \cap \cup H$ and $A_1 = F_1 \cap \cup H$. If A_0 is connected and A_1 is connected then all vertices of ${\rm A}_0$ which are of valency ${\rm n\text{--}2}$ must be connected in $\ensuremath{\mathsf{U}}\xspace\,\ensuremath{\mathsf{H}}$ to some vertices in $\ensuremath{\mathsf{F}}_1$. Those are in $\ensuremath{\mathsf{A}}_1$ and hence \cup H is connected contrary to our assumption. Thus A_{Ω} no vertices of valency n-2 and hence it is the union of all the edges of F_0 . Similarly A_1 must be the union of all the edges of F_1 and the conclusion of the Proposition follows. Now suppose that A_{Ω} is connected but $\,{\rm A}_{1}\,\,$ is not. Then, by the inductive assumption, $\,{\rm A}_{1}\,\,$ is a union of all the edges of two disjoint (n-2)-faces of F_1 . Then every vertex of A_1 must be connected in $\cup\, H$ to a vertex of \mathbf{F}_0 . It follows that $\,\,\cup\,\,\mathbf{H}\,\,$ is connected, contrary to our assumption. By symmetry, there remains only the case when both $\,{\rm A}_{0}\,\,$ and $\,{\rm A}_{1}\,\,$ are disconnected. Then, by the inductive assumption both are unions of all the edges of two disjoint (n-2)-faces of F_0 and F_1 respectively and every edge from F_0 to F_1 is in H . Thus again H consists of all the edges of two disjoint (n-1)-faces of I^n .

Remark: Recently James Fickett refined the above Proposition proving that if all vertices of UH have at least n-k edges then UH has at least 2^{n-k} vertices and hence at most 2^k connected components and related results (to appear).

Corollary. $\psi^*(1)$ = 1 , i.e., a 1-stable function f: X \rightarrow R depends on one variable at most.

<u>Proof.</u> If f is a constant function the conclusion is trivially true. Thus let us assume that u and v are two different values of f. Let H_0 be the set of all edges of I^n with both vertices in $f^{-1}(u)$ and H_1 the set of all edges of I^n with both vertices in $f^{-1}(v)$. Then let $H = H_0 \cup H_1$. Of course $\cup H$ is disconnected. Since f is 1-stable H satisfies the assumption of Proposition, and the Corollary follows from the Proposition.

Now we shall prove the main result of this paper.

Theorem 1.
$$\psi^*(k) \le k4^{k-1}$$
.

<u>Proof.</u> Let $X \subseteq \{0,1\}^n$ and $f: X \to R$ be k-stable. For each i , $1 \le i \le n$, we put

$$A_i = \{x \in X: x^i \in X \text{ and } f(x^i) \neq f(x)\}$$
,

and, for $j \neq i$, $1 \leq j \leq n$ and $b \in \{0,1\}$,

$$A_{ijb} = \{x \in A_i : x_j = b\}$$
.

We shall prove by induction on n the following lemma.

$$(L_1)$$
 If $n \ge 2k$ and $|A_i| > 0$ then $|A_i| \ge 2^{n-2k+2}$

Step I. n = 2k. Let $x \in A_i$. Since f is k-stable there exist $1 \le i_1 < \ldots < i_k \le n$ such that $x^j \in X$ and $f(x^j) = f(x)$ for every $j \notin \{i_1, \ldots, i_k\}$. Hence $i \in \{i_1, \ldots, i_k\}$. Also there exist $1 \le j_1 < \ldots < j_k \le n$ such that $(x^i)^j \in X$ and $f((x^i)^j) = f(x^i)$ for every $j \notin \{j_1, \ldots, j_k\}$. Hence $i \in \{j_1, \ldots, j_k\}$. Thus $|\{i_1, \ldots, i_k, j_1, \ldots, j_k\}| < 2k$, and, since $n \ge 2k$, there exists some $s \notin \{i_1, \ldots, i_k, j_1, \ldots, j_k\}$, $1 \le s \le n$. Hence $x, x^i, x^s, (x^i)^s \in A_i$

and $|A_i| \ge 4$ follows.

Step II. n > 2k and (L₁) is valid for n-1. Choose s as in the proof of Step I. Then $|A_i \cap A_{isb}| > 0$ for b = 0,1. Hence, by the inductive supposition, $|A_i \cap A_{isb}| \ge 2^{n-1-2k+2}$ for b = 0,1. Therefore, since $A_{is0} \cap A_{is1} = \emptyset$, we have $|A_i| \ge 2^{n-2k+2}$ as required in (L₁).

Now we can conclude the proof of Theorem 1. By the Corollary we can assume without loss of generality that k>1 and also that f depends on all its f n variables and f let f be the probability that f let f let f let f be the probability that f let f

(1)
$$p_i \ge 4^{-k+1}$$
.

Notice that

(2)
$$\sum_{i=1}^{n} p_{i} = \frac{1}{|X|} \sum_{x \in X} |\{i : x \in A_{i}\}|,$$

and, since f is k-stable,

$$|\{i: x \in A_i\}| \le k$$

for all $x \in X$. Hence, by (1) and (2),

$$n4^{-k+1} \le \sum_{i=1}^{n} p_{i} \le k$$

which implies $n \le k4^{k-1}$, and Theorem 1 follows.

Let $\delta(r)$ be the minimal number n such that there exists a function f: $\{0,1\}^n \to R$, where |R|=r, which has the following

property

(*) f depends on all its n variables, but for every function g: $R \to S$, where |S| < r , g of depends on less than n variables.

For any real number ξ we let $^r\xi^{\mbox{\scriptsize 7}}$ be the least integer not less than ξ .

Theorem 2.
$$\delta(r) = {r \choose 2} + \log_2 {r \choose 2}$$
.

Proof. We put $s = {r \choose 2}$ and $t = \log_2 {r \choose 2}$. First we show that

$$\delta(r) \ge s + t .$$

(This inequality was conjectured by Mycielski and proved first by Ralph McKenzie.) Let f have the property (*). Then for every pair $u,v\in R \ , \ u\neq v \ \text{there exists} \ 1\leq i\{u,v\}\leq n \ \text{such that} \ g\circ f \ \text{does}$ not depend on the variable $x_{i\{u,v\}}$ whenever g(u)=g(v). Clearly, if $u',v'\in R$, $u'\neq v'$ and $\{u',v'\}\neq \{u,v\}$ then $i\{u',v'\}\neq i\{u,v\}$. (This already proves that $\delta(r)\geq s$.) Let $I=\{i\{u,v\}: u,v\in R$, $u\neq v\}$. Hence

$$|I| = s.$$

We need the following lemma.

 (L_2) If $f(x^{i\{u,v\}}) \neq f(x)$, then, for every $y \in \{0,1\}^n$ such that $y_j = x_j$ for $j \notin I$ and for $j = i\{u,v\}$, we have f(y) = f(x).

To prove this we put $\tilde{x}=x^{i\{u,v\}}$. It is enough to check that for all $j\in I-\{i\{u,v\}\}$ we have $f(x^j)=f(x)$; in fact, by symmetry,

the same will then be true about \widetilde{x} and hence the point x^j will also satisfy the supposition of (L_2) and (L_2) follows. Then suppose to the contrary that $f(x^j) \neq f(x)$. By our choice of j we have $j = i\{u',v'\}$ for some $u',v' \in R$, $u' \neq v'$, $\{u',v'\} \neq \{u,v\}$. Thus $f(x) \in \{u',v'\}$ and we can assume without loss of generality that f(x) = u' = u and $f(x^j) = v' \notin \{u,v\}$. Hence $f(\widetilde{x}^j) = v'$ and $f(\widetilde{x}^j) \in \{u,v'\}$. But $f(\widetilde{x}^j) = f(\widetilde{x}) = v \notin \{u,v'\}$. This contradiction completes the proof of (L_2) .

Now, by (L_2) , for every pair $u,v\in R$, $u\neq v$ there exists an $x\in\{0,1\}^n$ such that $x_i=0$ for all $i\in I$ and $\{f(x),f(x^{i\{u,v\}})\}=\{u,v\}$. Then by (4) there are at least s elements $x\in\{0,1\}^n$ with $x_i=0$ for all $i\in I$. Thus $2^{n-s}\geq s$, i.e., $n\geq s+t$ and (3) follows.

Now we prove the converse inequality

$$\delta(r) \leq s + t$$
.

It is enough to define some $f: \{0,1\}^n \to R$ with n = s+t, |R| = r and the property (*). Let $P = \{\{i,j\}: i,j \in \{1,\ldots,r\} \ , \ i \neq j\}$. Thus |P| = s. Let $h: P \to \{0,1\}^t$ be one-to-one and $\iota: P \to \{1,\ldots,s\}$ be one-to-one. For any sequences $x \in \{0,1\}^s$ and $y \in \{0,1\}^t$ we put $xy = (x_1,\ldots,x_s,y_1,\ldots,y_t)$. It is clear that there exists an $f: \{0,1\}^{s+t} \to \{1,\ldots,r\}$ such that $\{f(xh(p)), f(x^{\iota(p)}h(p))\} = p$ for all $x \in \{0,1\}^s$ and $p \in P$ and f(xy) = 1 if $x \in \{0,1\}^s$ and $y \in \{0,1\}^t$ - range(h). It is easy to check that all such f have the required properties.

 (P_5) What are the analogs of Theorem 2 if we restrict f's to be k-continuous or k-stable functions?

References

- [1] A. Ehrenfeucht, Practical decidability, Journal of Computer and System Sciences 11 (1975), 392-396.
- [2] A. Ehrenfeucht and J. Mycielski, Interpolation of functions over a measure space and conjectures about memory, The Journal of Approximation Theory 9 (1973), 218-236.
- [3] A. Ehrenfeucht and J. Mycielski, Learnable functions, Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, London, Ontario, 1975 (to appear).
- [4] A. Ehrenfeucht and J. Mycielski, On families of intersecting sets, Journal of Combinatorial Theory 17 (1974), 259-260.
- [5] R. McKenzie, J. Mycielski and D. Thompson, On Boolean functions and connected sets, Mathematical Systems Theory 5 (1971), 259-270.

Acknowledgment. We are indebted to Ralph McKenzie for a part of the proof of Theorem 2.