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Abstract

We prove that a k-continuous or a k-stable function cannot

depend on more than kAk_l variables and related facts.

A function f: {O,l}n > R , where R 1is any set is called
k-continuous iff for every .x = (xl,...,xn) € {O,I}n there exists
a sequence 1 < i1 < ... < ip £ n , where p = k , such that for

- n _ ‘
every y = (yla°-°’yn) E{O’l} if (Yil,---s}’ip) (Xil’...’xip)
then f£(y) = f(x) . This property was studied in [1,2,3,5].

Now we will study a larger class of functions £: {O,l}n - R
called k-stable. To explain this property, for every x = (Xl""’xn)

€ {0,1}" and every i with 1< i < n we put
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Now f 1is called k-stable iff for every x = (xl,...,xn) € {O,l}n
there exist 1 = il < ... < ip £n , where p =< k , such that for
every i ¢ {il,...,ip} , 1l<i=<n, we have f(xl) = f(x) . Thus,

of course, k-continuity implies k-stability.

Examples. 1. The function £: {0,1}4 - {0,1} defined by
f(x) =0 if x € {(0,0,0,0), (0,1,0,0), (0,0,1,0) , (0,0,0,1) , (1,0,0,0) ,
(1,1,0,0) , (1,0,1,0) , (1,0,0,1)} , and £(x) = 1 otherwise, is
2~-continuous.

2. The function £: {0,1}10 - {0,1} defined by

f(xl,...,xlo) =x if X =%, f(xl,...,xlo) =0 if x1==x3==x4==0
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f(xl,...,xlo) = 1 otherwise, is 3-continuous (see fig. 1). For
other examples of k-continuous Boolean functions see [2], Notes 3,
4, and 5, and [3].
3. The function £: {0,1}4~» {0,1} defined by £(x) =0 if
x € {(0,0,0,0) , (1,0,0,0) , (1,1,0,0) , (1,1,1,0) , (1,1,1,1) , (0,1,1,1) ,
(0,0,1,1) , (0,0,0,1)}, and £(x) = 1 otherwise,is 2-stable but not

2-continuous. (see fig. 2)

Fig. 1 v Fig 2.

A function f£: {O,l}n - R 1is said to depend on the variable
Xy iff there exists a sequence y = (yl,...,ynj € {0,1}n such that
f(y) # f(yi) . And a function f: {0,1}n - R is called Boolean
iff Rc {0,1} .

E.g.: the functions of Examples 1 and 3 depend on 4 variables
and the function of Example 2 depends on 10 variables, and all are
Boolean.

In [2] we have studied the maximum number of variables on which

a k-continuous Boolean function can depend. It turns out that such



a maximum exists and we will denote it here (unlike in [2]) by qb(k)

The following problem is still unsolved

(Pl) Does there exist for every =n < wz(k) a k-continuous
Boolean function which depends just on n variables?

It is not hard to prove that wz(l) =1 and @2(2) =4 (see
Example 1). By Example 2 we have @2(3) =z 10 . It seems that
@2(3) = 10 .

We'shall also study functions f: X - R , where X can be a
proper subset of {0,l}n . We shall say that f is total if X = fO,l}n
and partial if X # {O,l}n . For a partial f we shall say that f£
depends on the variable X, if there exists a y € X such that
yi € X and f(y) # f(yi) . Also f 1is called Boolean if RS {0,1} .
It is called k-~continuous if for every x € X there exists

1

if (yi

lgi, < ...< ip <n such that p < k and for every y € {0,1}"
yeeesV. ) = (X, ,...,%, ) then y € X and £(y) = £(x) .
i i i
1 P 1 P
(In [2] this property was called regular k-continuity.) £ is called
k-stable if for every x € X there exists 1 < il < ... < ip £ n such
that p < k and for all i ¢ {il,...,ip} , 1 <is<n, we have

xi € X and f(xi) = f(x)

(PZ) For which k,n ,4 1is it true that k-stability of
£: {0,13" -» {0,1} implies Z-continuity of £ ? (For k =¢ = n-1

it is so.)

(P3) What is the maximum height (see [3]) of a total k-stable
function? (The maximum height of a total k-continuous function is
k2 as proven in [3].)

B *
Let now ®&k) , @c(k) , Or @z(k) , denote the maximum number



of variables on which a k-continuous function which is total, partial
or partial Boolean, respectively, can depend. Also let {(k) , or
W*(k) , denote the maximum‘number of variables on which a k-gstable
function which is total, or partial, respectively, can depend.

We shall prove that all these maxima exist. We have of course

9, () £ 9 () 89 () =y (),
9,00) £ 90 < 40 < ¢ ) and 90 £ 9 (W)

The main result of this paper is that § (k) < el

(P Is any of the above inequalities sharp for large enough k ?

5
In [2] (Theorem 17A and Note 6) we have proven that

2 (k-2) . [ 20-1)
2(k-2) + 4 < 9, (k) < 9,(k) = (2k-1) )
k-2 k-1

and we gave (Theorem 23) a different combinatorial interpretation of
the quantity wz(k) (see also [4]). Again it is easy to prove that
* % *

¢£(1) =1 and W2(2) = 4 and it seems that ¢2(3) =10 . The

X % %
analogs of problem (Pl) for m; y @, 9 , % and ¢ are also open.

% k *
Now we will prove that ¥ (1) 1 . (Concerning ¢(2) and § (2)
A
we know only that 4 < §(2) < ¢¢(2) £ 8 (by Example 3 and the general
* -
fact § (k) < k4k 1 proved below)). First we need an auxiliary

proposition. Let I be the interval [o,1].

Proposition. If H is a nonempty set of edges of the n-cube
1" such that every vertex of the graph H has valency not less than
n-1 , then either the union UH is connected or H consists of all

the edges of two disjoint (n-1)-faces of .



Proof. We proceed by induction on n . For n = 1 the
Proposition is obvious. Suppose that it isg true for n - 1 . If
UH 1is connected we are done, thus suppose that it is disconnected.

Let FO and F1 be two disjoint (n-1)-faces of 17 L Tet

AO = FO NUH and A1 = Fl nua . 1If AO is connected and A1 is

connected then all vertices of AO which are of valency n-2 must be

connected in UH to some vertices in Fl . Those are in A1 and

hence UH 1is connected contrary to our assumption. Thus AO has

no vertices of valency n-2 and hence it is the union of all the edges

of F, . Similarly A1 must be the union of all the edges of F

0 1
and the conclusion of the Proposition follows. Now suppose that AO
is connected but A1 is not. Then, by the inductive assumption, A1

is a union of all the edges of two disjoint (n-2)-faces of Fl .
Then every vertex of A1 must be connected in UH to a vertex of
F., . It follows that UH 1is connected, contrary to our assumption.

0

By symmetry, there remains only the case when both AO and A1 are
disconnected. Then, by the inductive assumption both are unions of all
the edges of two disjoint (n-2)-faces of FO and Fl respectively

and every edge from FO to Fl is in H . Thus again H consists

of all the edges of two disjoint (n-1)-faces of In .

Remark: Recently James Fickett refined the above Proposition
proving that if all vertices of UH have at least n-k edges then
UH has at least 2n_k vertices and hence at most 2k connected

components and related results (to appear).

Corollary. wx(l) =1, i.e., a l-stable function f: X = R

depends on one variable at most.



Proof. If f 1is a constant function the conclusion is trivially
true. Thus let us assume that u and v are two different values
of £ . Ilet HO be the set of all edges of 1" with both vertices
in f-l(u) and H1 the set of all edges of In with both vertices
in f—l(v) . Then let H = HO U Hl . Of course UH is disconnected.
Since f 1is l-stable H satisfies the assumption of Proposition,

and the Corollary follows from the Proposition.

Now we shall prove the main result of this paper.

Theorem 1. 1§ (k) < VAR

Proof. Let X ¢ {O,l}n and f: X- R be k-stable. For each

i , l1<isn, we put

A, = {x € X: x" € X and f(x') # £x)} ,
and, for j#1i , 1< j<n and b€ {0,1} ,

Aijb ={x € A g = b} .

We shall prove by induction on n the following lemma.

n-~2k+2

(L,) If n=22k and [A,| >0 then |A | 22 .
1 1

1)
Step I. n =2k . Let x € Ai . Since f 1is k-stable there

exist 1 < il < ... < ik £ n such that %7 € X and f(xJ) = f(x)

for every j ¢ {il,...,ik} . Hence 1i € {il,...,ik} . Also there

exist 1% j; < ... < j

< n such that (xi)J € X and f((xl)J) = f(xl)
for every j ¢ {jl,...,jk} . Hence 1i € {jl,...,jk} . Thus
l{il,...,ik ,jl,...,jk}l < 2k , and, since n = 2k , there exists

. . . . i s is
some s ¢ {11,...,1k ,31,...,Jk} , 1 <s<n. Hence x,x ,x ,x) € Ai



and ] Ail 2z 4 follows.

Step IT. =n > 2k and (Ll) is valid for n-1 . Choose s
as in the proof of Step I. Then !A. NA, .| >0 for b=0,1.
‘ i isb
n-1-2k+2

Hence, by the inductive supposition, fAi n Aisbl = 2 for

n-2k+2

b = 0,1 . Therefore, since A = ¢ , we have !Ai] = 2

is0 f A181
as required in (Ll) .

Now we can conclude the proof of Theorem 1. By the Coreollary
we can assume without loss of generality that k > 1 and also that £
depends on all its n wvariables and n = 2k . Let P be the
probability that x € Ai , x being uniformly distributed over X ,
i.e. . = A, . Si d d i .
ie., p; ‘Al]/‘X‘ Since £ depends on n variables !All >0

-2k+

for all i . Hence, by (Ll), we have lAil > 2" 2kt2 . Since

]Xl < 2n we get
(1) p, = 4T
Notice that

v . .
(2) }3 p; = Tsa‘}) [{i: x € Ai}l >
and, since £ 1is k-stable,

[{i: xead] sk

for all x € X . Hence, by (1) and (2) ,

n
ne K < Z p; <k
1

which implies n < kék_l , and Theorem 1 follows.
Tet 6(r) be the minimal number n such that there exists

a function f: {O,l}n'+ R , where IRI = r , which has the following



property

(*) £ dependson all its n variables, but for every function
g: R-> S , where |SI <r , gof depends on less than n
variables.

For any real number E we let “g’ be the least integer not

less than §
r 1
Theorem 2. 6(r) = o)+ 1og, [
SLRESERER 2 2 g2\2) °
- r .
Proof. We put s = (;) and t = Ing(;) . First we show that
(3) S5(r) =2 s+t .

(This inequality was conjectured by Mycielski and proved first by .
Ralph McKenzie.) Let £ have the property (*) . Then for every pair
u,v € R , u#v there exists 1< i{u,v} € n such that gof does

not depend on the variable x whenever g(u) = g(v) . Clearly,

i{u,v}
if u',v' €R, u #v’ and {u’,v’'} # {u,v} then ifu’,v’} # i{u,v}
(This already proves that 6(r) =2 s .) Let I = {i{u,v}: u;v €ER ,

u # v} . Hence
(%) T = s .
We need the following lemma.

(L,) 1If f(xl{u’v}) # f(x) , then, for every y € {O,l}n such that

2

yj = xj for j ¢ I and for j = i{u,v}, we have f(y) = £(x) .

~ i{u,v}

To prove this we put x = X It is enough to check that

for all j € I-{i{u,v}} we have f(x?) = £(x) ; in fact, by symmetry,



.

the same will then be true about % and hence the point x7  will

also satisfy the supposition of (LZ) and (LZ) follows. Then suppose

to the contrary that f(xj) # f(x) . By our choice of j we have

j = ifu’,v’} for some u’,v' € R, u’ #v' , {u',v'} # {uv} .

Thus £(x) € {u’,v’} and we can assume without loss of generality

that f(x) = u’ =u and f(xj) =v’ ¢ {u,v} . Hence f(gj) =y’ and
fé;jj) € {u,v’'} . But fgzjj) = f(;) =v ¢ {u,v’} . This contradiction

completes the proof of (L2)

Now, by (Lz), for every pair u,v € R, u # v there exists an
x € {0,137 such that x, = 0 forall i€ 1T and {£(x), ftevlyy -
{u,v} . Then by (&) there are at least s elements x € {O,l}n with

n-s .
2gs, i.e., n2s+t and

xi =0 for all i € I . Thus 2
(3) follows.

Now we prove the converse inequality
6(r) < s+t .

It is enough to define some f: {O,l}n -» R with n = s+t , 'Rf =r
and the property (¥) . TLet P = {{i,j}: i,j € {1,...,x} , i # i} .
Thus —IP[ =s . Let h: P= {O,l}t be one-to-one and z: P - {1,...,s}
be one-to-one. For any sequences X € {O,l}s and y € {O,l}t we

put xy = (xl,...,xs,yl,...,y ) . It‘is clear that there exists an

t

stt {1,...,r} such that {£(xh(p)) , f(XL(p)h(P))} =P

£: {0,1}
for all x € {O,l}s and p € P and f(xy) =1 if x € {0,1}S and
y € {O,l}t - range(h) . It is easy to check that all such f have

the required properties.

(PS) What are the analogs of Theorem 2 if we restrict f's to

be k-continuous or k-stable functions?
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