THE DETECTION OF UNEXECUTABLE PROGRAM PATHS
THROUGH STATIC DATA FLOW ANALYSIS*

Leon J. Osterweil
Department of Computer Science**
University of Colorado at Boulder
Boulder, Colorado 80309

and

Boeing Computer Services***
Seattle, Washington 98124

#CU-CS-110-77 May, 1977

* Work supported by NSF Grant #DCR 75-09972 and NASA Contract
NAS9-14853

** Address through June 16, 1977
*** Address beginning June 30, 1977

ABSTRACT

An unfortunate characteristic of current static analysis algo-
rithms is their apparent inability to distinguish between executable
and unexecutable program paths. The definitive determination of
executability of a given path has long been known to be unachievable.
This paper presents some heuristics for detecting certain classes of
unexecutable paths and preliminary findings tending to indicate that
the heuristics can be expected to be rather effective. The heuristics
are based upon the application of existing static data flow analysis
algorithms and hence offer hope of coexisting with and guiding diag-
nostic and optimization scans which also use data flow analysis.

I. INTRODUCTION

Static program analysis is a term which describes the process of
examining the source text of a program for the purpose of inferring
characteristics of the execution behavior of the program specified by
the text. Compilers perform static analysis (e.g. the lexical and
syntactic scans) as a necessary prelude to the process of generating
the object code which effects the specified execution behavior. Object
code optimizers, viewed in this Tight, are seen to be phases of the
compilation process which perform more sophisticated static analysis
in attempting to draw deeper inferences aimed at the production of more
efficient object code. This optimization has typically been aimed at
speed and space efficiences [1,2], but more recently has also been
focussed on gaining efficiency by recognizing and exploiting parallelism
[3].

‘Static analysis is also used to detect errors in programs. Indeed,
some error detection derives quite naturally from the compilation pro-
cess, as source text which is unrecognizable by the compiler is by
definition thereby found to be in error. As might be suspected, how-
ever, more powerful error detection capabilities are obtainable as the
result of applying more powerful static analysis techniques.

Recently [4]it has been demonstrated that the static analysis
techniques used in the most powerful program optimizers also can be
used to effect powerful error detection. These techniques are based
upon a methodology known as data flow analysis. 1In data flow analysis
the flow of values into and out of program variables is examined as
program execution is hypothesized through sequences of statements. Pro-
gram optimizers use data flow analysis to search for repetitious, redun-
dant, or wasteful data creation and usage sequences, in hopes of being
abTe to synthesize object programs whose input/output behavior replicates
that defined by the original source program, but which execute more
efficiently than object programs which would be produced by a more
mechanical translation of the source text. Error detection and valida-
tion systems use data flow analysis to search for erroneous, illegal or
suspicious patterns of value creation and usage [5].

Data flow analysis entails the analysis of the program flow graph,
a Tabelled directed graph derived from the program's source text. Each

_2-

node of the flow graph represents a different execution unit of the
program (e.g. a statement or basic block [6]) and is labelled with
information about the variables referred to in the execution unit and
the ways in which these variables are used. A directed edge (Vi’vj)
appears in the flow graph if and only if examination of the program
source text indicates that execution unit vj can be executed immediately
after execution of unit Vs Hence it is readily seen that paths through
the program flow graph correspond to sequences of execution units, and

the corresponding sequences of variable usages. Hence the effects of

all possible program executions can be modelled and analyzed by propa-
gating the labels on the program flow graph nodes along paths through

the graph to all other graph nodes bearing related Tabelings. This is

the essence of data flow analysis.

From the preceding, it can be seen that data flow analysis operates
only on a graph model of the program, and not on the program itself.
Often the model can be constructed to represent only a narrow range of
program characteristics, pinpointing, for example, a specific but impor-
tant family of programming errors. In such cases the model generally
occupies Tess space than the program it represents, and the analysis of
the model can be completed more rapidly than an execution of the program.
These storage and speed efficiencies are often cited as important advan-
tages of data flow analysis (and all static analysis approaches 1in
general). Another important advantage derives from the fact that data
flow analysis algorithms examine all possible execution paths through
a program. Thus they can either certify that a particular data usage
pattern cannot occur during any program execution or they can identify
specific paths along which the pattern will occur. These characteristics,
crucial to the process of object code optimization, also serve to make
data flow analysis a particularly attractive error detection and valida-
tion methodology.

Data flow analysis is not without its weaknesses, however. Because
its algorithms operate on a model of the program, the validity and effi-
ciency of its results depend upon the accuracy and parsimony of the
model. Unfortunately it has been found that some characteristics of
program execution behavior (such as the functioning of many real arith-
metic units) are difficult to model accurately and efficiently. The
process of modelling many important classes of program errors as data

-3-

flow anomalies, moreover, is just now being systematically pursued
[7,8] and seems to have some significant Timitations.

A more fundamental weakness of current data flow anlaysis
methodologies, however, is that current algorithms are unable to
detect and compensate for the presence of paths through program flow
graphs which correspond to unexecutable program sequences. The prob-
Tem arises because each of the edges of a program flow graph represents
a local condition, namely a pair of nodes one of which is reachable from
the other. A path through the graph, however, specifies a sequence of
these edges, and hence a more complex global condition. In order for
any given edge to be traversed during execution of the program, a
certain condition, specified by the source text, must be satisfied. It
is possible for the conditions specified for two program edges to be
mutually incompatible, however. In such a case, the two edges could
not be traversed in sequence as part of a single program execution.
Hence a path through the flow graph containing these two edges in
sequence could not correspond to a possible program execution. Such a
path is called an unexecutable path. It should be clear that any pro-
cedure which studies all paths through a flow graph of a given program
will, for some programs, thus be studying some unexecutable paths. It
is possible that erroneous or inefficient situations may be detected
along such paths, in which case errors which cannot occur would be
reported or effort would be wasted in trying to make unexecutable code
more efficient. It is also possible that optimization attempts might
be thwarted by needless concern over troublesome aspects of unexecutable
program sequences. In one recent study [9], it was observed that
approximately 15% of the error messages generated by the DAVE static error
detection system [5] reported errors occurring on unexecutable paths.
Hence it appears that the usefulness and credibility of static analysis
might be increased if unexecutable paths could be detected and removed
from consideration by the static analyzer. This paper describes a
method for approaching this problem.

Before proceeding with a detailed description of the proposed
method, it is important to state some theoretical Timitations and other
approaches, however. First it must be observed that the problem of
determining the executability of a given path through a given program

4=

is unsolvable, being equivalent to the Halting Problem [10]. Specifi-
cally the unsolvability of the Halting Problem indirectly implies that
it is not possible to construct a procedure which will always correctly
determine whether any path through any program is executable. There
are, however, heuristic procedures which are capable of determining
the executability of some paths through some programs. Hence it becomes
important to empirically determine whether heuristics, such as the one
described here, reliably determine executability for a significant class
of paths and programs. Early experiments seem to indicate that the
heuristic described here is effective for significant classes of programs.
The method presented here seems particularly noteworthy because
it utilizes algorithms and methodologies of static data flow analysis
in order to detect and suppress unexecutable paths. Other methods for
determining the executability of a path have been proposed and imple-
mented. The most notable involve attempting to solve systems of predi-
cates as is done in automatic program verification [11] and attempting
to solve systems of inequalities in conjunction with symbolic execution
[12]. These approaches involve the use of more sophisticated, higher
cost methodologies, however, and seem best suited for use as stand-aside
executability checkers. The benefits of the proposed method seem to
derive from its dependence upon existing data flow analysis techniques.
This seems to cause the method to be relatively fast and cheap and
raises the possibility of imbedding it as an integral part of existing
static error detection and optimization analyzers.

IT. AN INTRODUCTION TO DATA FLOW ANALYSIS

As observed earlier, data flow analysis is a term which is used
to describe a class of techniques which can determine the extent and
nature of the interactions of the various Tocal data manipulations
within a program. These techniques generally operate by propagating
descriptions about data usage from the nodes at which each usage occurs
along paths in the program flow graph to all graph nodes which could
conceivably be affected by such a data usage. Data flow anlaysis
algorithms are usually used to scan the patterns of data usage along
all paths through a program, searching for some specific patterns. In

-5-

program optimization, for example, certain patterns of usage indicate
the existence of superfluous computations, which can be removed. An
example of this is a dead variable -- i.e., a variable which has been
assigned a value at a program node, and which is subsequently not
referenced at any program node prior to a redefinition or termination

of the program. The computations involved in producing the value used
to define the variable represent a waste of effort and need not be per-
formed by the program object code. It is important to note that this
determination of wasted effort is a conclusion about the overall pattern
of usages of a particular variable, and that this global conclusion has
been reached through a consideration of the effects of propagating local
information about data usage. Further elaboration about the use of data
flow analysis in global program optimization can be found in [1].

In program testing and validation, certain patterns of variable
reference and definition are considered to be outright errors or symptoms
of errors. For example, a reference to a variable which is not preceded
by a definition of the variable is regarded to be an outright error,
which may, moreover, also be symptomatic of a more subtle underlying
error such as a misspelling. Similarly, two consecutive definitions of
a variable which are not separated by a reference along any intervening
path are regarded as a 1likely symptom of error. Here too, it is seen
that the error and anomaly conditions are detected by studying the
effects of propagating information about local data usage to other graph
nodes which are impacted by that usage. A more detailed and mathematical
treatment of the application of data flow analysis to error and anomaly
detection can be found in [4].

Two data flow analysis procedures which will be useful in unexecut-
able path detection will now be introduced. These two procedures, LIVE
and AVAIL, both recognize the existence of only two distinct types of
data operations at a given node. The two operations are usually denoted
by gen and kill. The following notational conventions will be used in
this paper.

If the data object, d, is used in a gen operation at node n, this
will be indicated by assigning one as the value of the function gen(n,d).
If d is not used in a gen operation at n, the value of gen(n,d) will be
zero.

-6-

Similarly, if the data object, d, is used in a kill operation at
node n, this will be indicated by assigning one as the value of the
function kill(n,d). If d is not used in a kill operation at n, the
value of kill(n,d) will be zero.

Now suppose that a given program contains D data objects indexed
from 1 to D. It is useful to define the following Boolean vector
valued functions defined on the nodes of the program flow graph:

GEN(n) is the Boolean D-vector whose 1Eh-component is

given by gen(n,d), where d is the data object indexed
by the integer i.

KILL(n) is the Boolean D-vector whose ith component is
given by kil1(n,d) where d is the data object indexed
by the integer i.

The two Boolean D-vector valued functions GEN(n) and KILL(n) are
taken as inputs to the LIVE and AVAIL procedures. Procedure LIVE pro-
duces as its output a Boolean D-vector valued function, LIVE(n); pro-
cedure AVAIL produces as its output a Boolean D-vector valued function
AVAIL(n).

The i3h~component‘of LIVE(n) will be denoted by Tive(n,i), and
will be one if and only if there exists a path through the flow gréph, P,

p = (n, Nys Nos ot s nf)

such that kill(n;,i) = 0, for all 1 < j < f, and such that gen(ng,i) = 1.
In this case it is said that the data object, d, corresponding to this
bit position i, is 1ive at node n. If no such path (and pattern of
gen's and kill's) exists then Tive(n,i) will have the value zero and d
will be said to be not 1ive or dead at n.

The ith component of AVAIL(n) will be denoted by avail(n,i) and
will have the value one if and only if for all paths, p, through the flow

graph which start at no, the unique program start node, and lead up to n,

p = (no, Nys Moy oot s N, n,

there exists a j, 0 < j < f, such that gen(nj,i) = 1 and ki]](nk,i) =0
for all k, j < k < f. In this case, the data object, d, corresponding
to bit position i is said to be avail at n. If there exists a path, p,
for which the above pattern of gen's and kill's does not exist, then
avail(n,i) will have the value zero and d will be said to be not avail
at node n.

-7-

It is not the purpose of this paper to survey the literature des-
cribing algorithms for carrying out the LIVE and AVAIL procedures. There
has been considerable effort in this area recently, and the interested
reader is encouraged to see [1,4,13,14,15,16] for a representative sur-
vey of this effort.

It does seem worthwhile, however, to present here an example
algorithm for each of the two procedures to illustrate how they can be
carried out and as an aid to a deeper intuitive understanding. The
algorithms presented here are perhaps the oldest and most straightfor-
ward. They have assumed new importance recently, however, with the
finding [15] that the nodes of most program graphs can readily be
ordered in such a way as to assure that the algorithms terminate
rapidly (generally in O(V) time where V is the number of graph nodes).

Both algorithms assume that kill and gen information is available
in the form of the functions KILL(n) and GEN(n), already introduced,
and that live and avail information is computed in the form of the
functions LIVE(n) and AVAIL(n). Further, it is assumed that the graph
nodes are numbered from 1, the start node, to V, the stop node. In the

algorithms, moreover, S(j) is used to denote the set of nodes which are
successors to node j, and P(j) is used to denote the set of nodes which
are predecessors to node j. The D-vector consisting of all zeros is
denoted by 0 and the D-vector of all ones is denoted by T.

Proofs of the correctness of both algorithms can be found in [15],
along with discussions of their efficiency.

It is quite important to note that the LIVE and AVAIL procedures
compile information about the patterns of gen's and kill's on the nodes
of paths leading into and out of fixed flow graph nodes without regard
to the rule used in determining how the values of gen and kill are
initially obtained. By creating different rules for intializing the
gen and kill values and by placing different interpretations on the

resulting live and avail values, different data flow analysis problems
are created and solved.

PROCEDURE: LIVE

FOR j =1 T0V;
LIVE(J) <« 0;
END
CHANGE <« TRUE;
WHILE CHANGE = TRUE DO
CHANGE < FALSE;
FOR j =1 T0 Vs
PREVIOUS < LIVE(]);
FOR a1l successor nodes of j, S‘,k
LIVE(j) < LIVE(J) v ((LIVE(Sj,k) n (1¢KILL(Sj,k))) U GEN(Sj,k) :
END
IF PREVIOUS # LIVE(J)
THEN CHANGE <« TRUE;
END

e - - " T 7 " vu - MM W - - o " " - " - " -t "

PROCEDURE: AVAIL
AVAIL(1) <« 0;
FOR j =2 T0 V;
AVAIL(J) < 1
END
CHANGE <« TRUE;
WHILE CHANGE = TRUE DO
CHANGE <« FALSE;
FOR j =2 T0 V;
PREVIOUS <« AVAIL(j);
FOR a1l predecessor nodes of j, Pj
AVAIL(J) < AVAIL(j) n ((AVAIL(P
END
IF PREVIOUS # AVAIL(j);
THEN CHANGE < TRUE;
END
END
END
END: AVATI

oK

J,k) n (l’KILL(PJ’k)) U GEN(P-,k)Q

J

-9-

For example, in [4] it is shown that references to uninitialized
variables can be detected by judicious application of the LIVE and
AVAIL algorithms. Suppose that, for all nodes n, which reference the
variable indexed by i, gen(n,i) is set to 1, and that for all nodes n
which define a value for the variable indexed by i, kill(n,i) is set to
1. Suppose that all other values of gen(n,i) and kill(n,i) are set to
zero and LIVE is run. Then if 1 is the program start node and LIVE(1,1)
is 1, there exists a path through the program flow graph which, if
executed, will cause the variable indexed by i to be referenced before
definition.

Further, suppose that instead of the above labelling, the follow-
ing Tabelling were employed: gen(1,i) is set to 1 for all i, 1 < i < D,
and kill(n,i) is set to 1 for all nodes, n, at which the variable in-
dexed by i is defined. Now, if all other values of gen(n,i) and
kil1(n,i) are set to zero and AVAIL is executed, then if avail(n,i)
is found to be 1, then whenever node n is executed for the first time
the variable indexed by i will be referenced and found to uninitialized.
It is important to emphasize that these algorithms are highly parallel,
enabling the simultaneous detection of uninitialized references to any
variable at any node with only a single execution of LIVE or AVAIL.

Yet the worst case time bound on these executions is 0(V2), with O(V)
being the ordinary expectation (see [4,13 1)

Related problems concerning uninitialized variable reference and
superfluous variable definition can readily be posed in terms of gen's
and kill's and solved by the use of LIVE and AVAIL also. The interested
reader is referred to [17]. Moreover gen's, kill's, live's, and

avail's also seem useful in modeling and detecting other error and
validation phenomena such as zero divisor checks, out of bounds
subscript checks, and writing to unopened files (see [7,8]).

ITI. DETECTION OF UNEXECUTABLE PATHS USING DATA FLOW ANALYSIS

The previous section has shown that data flow analysis algorithms
can be useful in detecting the existence of flow graph paths along
which various error or anomaly conditions may arise. These algorithms,
employed in more classical optimization applications, are used to
identify classes of paths along which wasteful and inefficient computa-
tions occur. In all cases, however, the paths studied are flow graph

-10-

paths. Hence some of the identified error and waste phenomena may
occur on unexecutable paths and are thus ephermeral and not worthy

of further consideration. In this section we present some heuristics
for detecting some classes of these unexecutable paths which appear to
be significant. These heuristics rely upon the use of the LIVE and
AVAIL algorithms.

AT1 of the heuristics entail a search of the flow graph for
edges which are rendered unexecutable by the execution of other parts
of the flow graph. This can be viewed as an elaboration of the work on
impossible pairs, first advanced in [18]. The notions of path-
wise impossible pairs (PIP's) of edges, unconditionally impossible
pairs (UIP's) of edges, and always unexecutable edges (AUE's) shall be
advanced as elaborations here.

It is important to precede this discussion by noting that each
edge in a program flow graph represents a transition from one execution
unit to another which could be made under certain conditions. Hence
each edge may be tagged by the condition which, when met upon exit
from its tail node, will necessarily cause the traversal of the edge
and subsequent execution of its head node. This condition can be ex-
pressed as a predicate, i.e., a Boolean function mapping some subset of
the set of program variables onto either of the values true or false.

For a given edge, e, this function will be denoted by R(e). Further,
S(e) will be used to denote the subset of the set of program variables
upon which R(e) is explicitly defined. Some examples of how these
R(e) and S(e) are evolved are the following:
1. For an edge, e, representing a GO TO or a simple sequence
between consecutive code units

R(e) = true; S(e) = @

2. For the edge, e, representing the true exit from a FORTRAN
Togical IF statement represented by

IF(B)X; where B is a Boolean expression
R(e) = B; S(e) = {variables explicitly named in B}

3. For the edge, e, representing the false exit from the above
logical IF, R(e) = ~™B; S(e) = {variables explicitly
named in B.}

-11-

4. For e, the fall-through edge out of a DO Toop begun by the
statement

pOoLP=1,,1 if I,>1)

'l! 23 I3 ; (3
R(e) =P > I2 + 13 ; S(e) = {P}

5. For e, the fall-through edge out of a DO Toop begun by the
statement

DOLP=1,, 1,5 R(e) = (P=1,) ; S(e) = {P}

It is readily seen that, in an ordinary program, there exist pairs
of predicates R(e]); R(ez) such that R(e])'/\R(ez) = false. Such a pair
of predicates will be referred to as a mutually inconsistent pair. The
knowledge of which pairs of predicates are mutually inconsistent will be
most important.

It is now possible to explain the notion of a pathwise impossible
pair of edges. A pathwise impossible pair of edges (PIP) is defined to
be a pair of edges (ei,ej) of a program flow graph for which there
exists a path p from the head of e; to the tail of ej such that the
sequence of execution units along the path ei,p,ej cannot be executed
in sequence under any circumstances. A PIP, (ei,e.) would be present
in a program, for example, in which R(ei)/\ R(ej) = false and no node
of some path p between ei's head and ej's tail resets any of the vari-
ables in S(ei) or S(ej). In this case, the conditions which caused
the execution of edge e; would still be in existence after traversing
p to preclude the execution of ej. An example of a program displaying
such a PIP is shown in Figure 1. 1In a subsequent section, it shall be
shown that such PIP's are detectable by suitable labelling of the flow
graph, application of the LIVE algorithm, and interpretation of the
results.

The detection of PIP's seems important because, as Figure 1
illustrates, only some paths between e, and ej may be executable, and
only some may exhibit error or waste phenomena. In general a correla-
tion between the anomalous and unexecutable paths should not be ex-
pected. As Figure 1 shows, however, an error condition may exist on
some detectably unexecutable paths, as well as on some paths which
appear exectuable. In such a case, once this has been determined
(through identification of PIP's) the error pheonomenon should

-12-

SUBROUTINE SUB1(X,S1,S2)
IF(X.GT.0) S1 = ST + 1
IF(MOD(S1,2).EQ.0) X = =X
IF(X.LE.0) S2 = S2 + 1
TOT = TOT + 1
RETURN
END
Figure 1a) A FORTRAN subroutine having a data flow anomaly (TOT

is referenced before definition) and pathwise impos-
sible pairs of edges (PIP's).

SUBROUTINE SUB1(X,S1,S2)

IF(X.GT.0) = ST +]
IF(MOD(S1,2).EQ.0) -X
IF(X.LE.O) = S2+]
TOT = TOT + 1

RETURN

Figure 1b) The flow graph of the subroutine in Figure la). The
edge pairs (e,,eq) and (eg,eq) are PIP's. The undefined

variable reference occurs on the unexecutable path
ee5 €cey and on the executable paths €18,8,8c803

e] 926495879861 0

-13-

preferably be reported and related to a path which is not detectably
unexecutable. Analogously, if wasteful computation sequences are ob-
served only on unexecutable paths, optimization should not be attempted.

An unconditionally impossible pair of edges (UIP) is defined to
be a pair of edges (ei,ej) of a program flow graph such that the execu-
tion of edge ej is not possible if the most recent execution of ei's
head resulted in the traversal of e It should be noted that all
UIP's are also PIP's. A UIP, (ei,ej) would be present in a program,
for example, in which R(ej) AN R(ej) = false and no node on any path
between ei's head and ej‘s tail resets any of the variables in S(ei)
or S(ej). In this case it is seen that the conditions which caused
the execution of edge e; must necessarily still be in existence when
ej's tail is encountered, precluding the possibility of executing ej.
An example of a program displaying such a UIP is shown in Figure 2.

In a subsequent section it shall be shown that UIP's are detectable by
suitable labelling of the flow graph and applications of LIVE and
AVAIL algorithms.

The detection of UIP's seems important because through identifi-
cation of UIP's whole classes of flow graph paths can be ruled out as
execution possibilities. Hence, for example if the first edge of a
UIP is associated with an error phenomenon, then an example path
exhibiting this phenomenon must be constrained to omit the second edge
of the UIP. It may be possible to demonstrate that all example paths
necessitate the second edge. In such a case, the error pheonomenon is
shown to be unexecutable, and reports of the error to the user should
be suppressed.

An always unexecutable edge (AUE) 1is defined to be an edge of a
program flow graph which can never be traversed. An AUE, e, would be
present in a flow graph in which there existed another edge e' such
that R(e)/\ R(e') = false, e' Ties on all paths from the start node of
the program to e (e' is then said to dominate e) and no node on any
path from e' to e resets the value of any variable in S(e) or S(e').

In this case the tail node of e cannot be reached unless e' has been tra-
versed, but that assures that conditions precluding the traversal of

e are in effect when the tail of e is reached. An unexecutable fall-
through edge out of a FORTRAN DO-loop provides an example of an AUE (see
Figure 3). In a subsequent section it shall be shown that AUE's can

be detected through the use of the AVAIL procedure.

-14-

SUBROUTINE SUB2(X,S2)
IF(X.GT.0) S1 =1

IF(X.LE.0) S1 =0
S2 = Sl
END

Figure 2a) A FORTRAN subroutine having two data flow anomalies
(ST is defined twice without an intervening reference
on some path; and S1 is referenced before definition
on some path) and unconditionally impossible paths (UIP's)

SUBROUTINE SUBZ2(X,S2) '

IF(X.GT.0)

fl
—

IF(X.LE.O)

i
(e

RETURN

Figure 2b) The flow graph of the subroutine in Figure 2a). The
edge pairs (ez,eS) and (e3,e6) are UIP's. The double

definition error occurs on the path e ,e,e,ece 8o and

the undefined variable reference error occurs on the
path e 85880, Both errors are seen to be unexecutable

because of their dependence on UIP's, and hence they
should not be pursued or reported to the user.

-15-

SUBROUTINE SUB3(X,LOC)
DIMENSION X(100)
DO 10 I =1, 100
IF(X(I).EQ.0) GO TO 20
IF(I.LT.100) GO TO 10
LOC = 0
GO TO 30

10 CONTINUE

20 LOC =1

30 RETURN
END

Figure 3a) A FORTRAN subroutine having an apparent data flow anomaly
(I is referenced after becoming undefined on the fall-

through edge out of the DO-Toop) and an always un-
executdble.edge (AUE).

SUBROUTINE SUB3(X,LOC)

DO 10 I = 1,100

IF(X(I).EQ.0)

IF(I.LT.100)

LOC = 0

10 CONTINUE

20 LOC =1

30 RETURN

Figure 3b) The flow graph of the subroutine in Figure 3a). Edge
eq is an AUE. The undefined variable reference cannot

occur unless €q is traversed. Hence no error message
should be transmitted to the user.

-16-

The detection of AUE's seems most important because all AUE's
can and should be removed from the flow graph before any diagnostic or
optimization scans begin. In this way the scans are prevented from
ever considering large classes of unexecutable paths. PIP's and UIP's
seem useful in censoring out unexecutable paths presented for
consideration by diagnostic or optimization procedures. AUE's can
be used to assure that these procedures do not consider, and hence
cannot present, certain of these paths.

IV. PROCEDURES FOR DETECTING PIP's, UIP's AND AUE's.

In this section procedures employing LIVE and AVAIL to detect
certain classes of PIP's, UIP's and AUE's will be presented. These
procedures all require the hypothesis of gen and kill functions, but
also require that information about mutually inconsistent edge pre-
dicates be available. Hence the following definitions are made:
Assume that the edges of the flow graph are indexed from 1 to E.
Define inc(i,j) to be one if and only if R(ei)/\ R(ej) = false where
e, is the edge whose index is i and ej is the edge whose index is
js inc(i,j) is defined to be zero otherwise.

Define INC(i) to be the Boolean E-vector whose jth component
is given by inc(i,j).

Hence INC(i) is a Boolean vector which indicates those edges
whose predicates are mutually inconsistent with the predicate on
edge i by having a one set as the value of those components of
INC(i) which correspond to those edges having inconsistent predicates.

It is important to stress that the determination of the values of
the E-vectors INC(i) is not a trivial matter; being ultimately an
unsolvable problem. Approaches to studying that problem will not be
dealt with here, but can be found in [19,20]. It should be noted,
however, that most programs in common use seem to have rather simple
predicates on the predominant majority of their edges [21,22].
For pairs of such predicates, the determination of the correct value
for inc(i,j) can usually be made quite easily. For other pairs where
the determination is harder, it shall be seen that the safe course is
to set the value of inc(i,j) to zero. Fortunately, the results in
[21,22] indicate that difficulty in determining the correct value
of inc(i,j) should not arise frequently.

-17-

It is now possible to state a procedure for detecting PIP's. Sup-
pose that, for a given program, the set of data objects is the set of
all predicates on the E edges of the program flow graph. Suppose that
the flow graph is annotated by creating an E-vector, GEN(e), for each
of the E edges of the graph and an E-vector, KILL(n), for each node of
the N nodes of the graph by means of the following procedure:

PROCEDURE "INIT PIP
FOR e = 1 T0 E DO
GEN(e) < O
gen(e,e) « 1
END
FOR n =1 TO N DO
KILL(n) < O
T(n) <« {variables reset at n}
FOR e = 170 E DO
IF T(n) n S(e) # @ THEN kill(n,e) < 1
END
END
END INIT PIP

Then execute:

PROCEDURE PIP
CALL INIT PIP
CALL LIVET*
FOR e =170 E DO
PIP(e) < LIVE(e) A INC(e)
END
END PIP

Now, if the jth bit of PIP(ei) is 1 then it has been shown that
(ei,ej) is a PIP.

* Tt is actually not possible to run LIVE on the graph annotated exactly
as above, because the GEN information is attached to edges rather than
nodes. Some thought, however, should persuade the reader that only
minor adjustments to the LIVE procedure are necessary in
order to create LIVET, its ana1og for graphs annotated as in INIT PIP.
One possible 1ine of reasoning might be to create one new, synthetic
node to be inserted onto each edge, and to consider that each such node
has as its sole function the task of bearing the GEN information pre-
viously associated with the edge on which the node has been placed.

-18-

The procedure for detecting UIP's operates by determining which
PIP's are UIP's as well. For each PIP, the procedure attempts to
find a path from the head of the first edge of the PIP to the tail of
the second edge of the PIP which goes through a node which resets the
value of a variable in a predicate on one of the edges of the PIP.
Hence this procedure manipulates P-vectors, where P is the number of
PIP's discovered by procedure PIP.

The procedure has three main preparatory phases: 1) the nodes
which can potentially destroy the UIP property, by altering a varia-
ble in a PIP are identified by creating a function, KILLERS; 2) a
variant of LIVE, LIVE2*, is used to determine which nodes of the flow-
graph are at the start of paths to second?edges of which PIP's;

3) a variant of AVAIL, AVAIL2*, is used to determine which nodes can
never be reached subsequent to traversal of first-edges of which PIP's.
At each node this information is examined to see for which PIP's

there is a KILLER node at the end of a path from the PIP's first-edge
and which is at the head of a path to the PIP's second-edge. A1l

such PIP's cannot be relied upon to be UIP's; the other PIP's, however,
must be UIP's.

PROCEDURE UIP
CALL PIP
COMMENT: First phase - determine KILLERS
P<«0
FOR e =1 T0 E DO
FOR f =170 E DO
IF bit f of PIP(e) = 1 THEN P < P +]
A(P) < e
B(P) « f
END
END
END
FOR n =170 N DO
T(n) <« {variables reset at n}
KILLERS(n) < 0
FOR p =1 7T0 P DO
IF R(n) n (S(A(p))) U S(B(p))) # P THEN KILLERS (n,p) <« 1
END
END

-19-

COMMENT second phase - set up and execute LIVE?
FOR e =1 T0 E DO
GEN(E) < O
KILL(E) < O
END
FORp=1T0P QQ
GEN(B(p).p) <
KILL(A(p),p) <« 1
END
CALL LIVE2*
COMMENT: LIVE2(n,p) is now one if node n "sees" B(p) before A(p)
COMMENT: third phase - set up and execute AVAIL2*
FOR e = 1 T0 E DO
KILL(e) « 0
END
FOR p = 170 P DO
KILL(A(p),p) < 1
END
COMMENT: assume the start node has index 1
FOR n = 2 T0 N DO
GEN(n) < O
END
CALL AVAIL2*
COMMENT: AVAIL2(n,p) is now zero if node n is reachable
from A(p)
COMMENT: now use the above to compute NIP, a function iden-
tifying nonunconditionally impossible pairs, and UIP
AND < O
FORn =1 TO N DO
NIP(n) < (AYAIL2(n) A\ KILLERS(n)) A LIVE2(n)
AND <« AND A NIP(n)
END
UIP < 1 A ~7AND
COMMENT: if the p
is a UIP.

th bit of UIP is one, then (A(p), B(p))

END UIP

* Here too LIVE and AVAIL, as described in an earlier section cannot
be used directly here because some labels are attached to edges.
As in the case of LIVET, the necessary modifications are not diffi-
cult to envision.

-20-

The procedure for detecting AUE's involves only a rather straight-
forward application of the AVAIL procedure. The procedure is initial-
ized by first executing INIT _ PIP.

PROCEDURE AUE
CALL INIT _ PIP
CALL AVAIL1*
AUE <« 0
FOR e =1 T0 E DO
IF (AVAIL1(e) A INC(e)) # @ THEN
COMMENT e 1is AUE;
bit e of AUE « 1;
END
END
END AUE

Procedure AUE could be made more powerful if the gen and kill

vectors were initialized somewhat differently. Suppose that the set
of data objects used by AUE was chosen to be the set of different
predicates in the program (AUE currently considers each edge to bear
a different predicate - hence no use is made of the fact that a pro-
gram flowgraph may have the same predicate on more than one edge).
GEN(e) would still contain exactly one bit set to one, but now bit i
of GEN(e) would be set to one for all edges e bearing predicate i.
As before KILL(n) would have a one in every position corresponding
to a predicate having a variable which was reset at node n. After
rdnhing AUE with this initialization, additional edges might be
found to be unexecutable. Specifically an edge e might be unreach-
able without prior traversal of e' or e", where R(e') = R(e"),

R(e') A R(e) = false, and no variable in S(e) Y S(e')U S(e") is
reset at any node on any path either from the head of e' to the

tail of e or from the head of e" to the tail of e. In this case e
is clearly an AUE. The original AUE procedure would not detect this
because neither e' nor e" dominates e. The improved AUE procedure
would correctly determine that e is an AUE.

—_— e
* Here too LIVE and AVATIL,

be used direct] i
Y because s cti

the case of LIVET, the oo ome 1abels.afe attached to edgesn cannot

to envision. i

-21-

In closing, it is important to discuss the execution time bounds
of these algorithms. It has already been noted that LIVE, LIVET, LIVEZ,
AVAIL, AVAIL1 and AVAIL2 are all O(VZ) algorithms in the worst case,
where bit-vector operations are considered to take unit time [4,15].
For ordinary program flow graphs, moreover, a time bound of 0(V) should
be expected. Examination of algorithms PIP, UIP, and AUE seems to in-
dicate that the process of creating the bit vectors used by LIVE, AVAIL
and their variants is the important factor in computing execution time
bounds for PIP, UIP and AUE.

Procedure INIT PIP shows that creating the KILL vectors may take
O(E*V) time in the worst case, although methods exploiting the far Tess
difficult usual cases can easily be devised. Hence, nevertheless, PIP
must be considered an 0(E*V) algorithm in the worst case.

The initialization phases of UIP show that an 0(E2) loop may be
needed to build all P PIP's. In the expectation that P<<EZ, a more
efficient procedure for building A and B, the P-vectors needed by UIP,
can readily be devised, reducing this to an O(P) process. Nevertheless,
in the worst case construction of A and B is O0(EZ). Hence, in the
worst case construction of A and B is 0(E2). Hence, in the worst case
construction of KILLERS must correspondingly be 0(V*E2). This is the
longest process in UIP, hence UIP's worst case execution time is
0(V*E2).,

Analysis of procedure AUE is similar to the analysis of procedure
PIP, showing that the worst case execution time for AUE is O(V*E).

Finally, it should be stressed that a single execution of each of
these algorithms is sufficient to determine not one, but all PIP's,
UIP's and AUE's which are detectable by these algorithms. Hence the
time bounds just stated are sufficient for the parallel production of
all PIP's, UIP's and AUE's to which the methods described in this paper
apply.

V. EVALUATION OF THESE ALGORITHMS AND FUTURE WORK

As noted earlier the algorithms proposed here are heuristics,
and hence their ultimate value can best be determined by implementation,
experimentation and observation. Preliminary studies, mostly based on
hand simulation of the algorithms, have shown that approximately 15%

-22-

of the error and anomaly messages produced by DAVE [4,5] for a broadly
selected set of subprograms were tied by DAVE to unexecutable paths.

In virtually all of these cases, the unexecutabilities were due to PIP's
which would have been detected by the algorithms described here. The
hand simulations further indicated that the analytic results produced

by the algorithms described here could have been used to produce
executable paths displaying the detected errors and anomalies in nearly
all cases. Algorithms for using the results of the PIP algorithm for
detecting the unexecutability of example paths and guiding the selection
of executable counterparts appear in [9]. More efficient versions of
these algorithms are currently being sought and studied.

The hand simulations seemed sufficiently encouraging that the
implementation of the algorithms described here has been undertaken.
These implementations are being incorporated into the DAVE system to
enable experimentation and the gathering of statistics. Statistics
about the relative numbers of PIP's, UIP's, and AUE's detected will be
important measures of the significance of these algorithms and will be
reported in [9].

The accurate and efficient determination of the INC vectors,
embodying information about mutually inconsistentpairs, seems to be of
crucial importance to the viability of these proposed algorithms. As
already noted, it is not possible to write a procedure for infallibly
determining when two predicates are mutually inconsistent. Hence the
INC vectors cannot be expected to always be totally correct.* Moreover,
because these are E INC vectors each of length E, the initialization of
these vectors requires at lTeast O(EZ) time. Hence, comparing this with
the time bounds stated at the end of section IV, it becomes clear that
any test for mutual inconsistency must be quite straightforward, lest
this phase of initialization become the dominant factor in the execution
times of procedures PIP, UIP and AUE. Fortunately, the hand simulations
carried out bore out the results to be expected from [21,22], namely

* A consequence of this is that PIP, UIP, and AUE cannot be expected to
always accurately determine the executability of all paths in all
programs. This is in agreement with the already-stated implications
of the Halting Problem.

-23-

that mutually inconsistent predicates found in actual code usually
involved no more than one variable, one constant, and one relational
operator.

Because of these considerations a number of heuristics seem
indicated in determining mutual incompatibility. First, two predicates
cannot be mutually incompatible unless they are defined on identical
sets of variables. Hence this test, easily made by comparing set-
membership bit vectors, seems to be the indicated first step. If
both predicates are defined in terms of the same single variable, they
might then be cast into a canonical form, simplified, and compared.

The comparison in such a situation could be done by consideration of a
small, but exhaustive set of special cases dictated by the relational
operators used in the two predicates in canonical form. Predicate

pairs not conforming to these criteria would be declared not-incompatible.
It is important to note, however, that although this might be an errone-
ous conclusion at times, it always errs on the safe side. This is be-
cause refusing to declare predicate pairs mutually incompatible unless
that is certainly the case, assures that pairs will never be declared
PIP's and UIP's incorrectly, and edges will never be declared AUE's
incorrectly. PIP's, UIP's and AUE's may be missed because of these
heuristics, but successively more will be correctly identified as suc-
cessively stronger heuristics are brought to bear. Determination of
appropriately powerful heuristics is another important goal of the
experimental implementation currently in progress.

Other PIP's, UIP's and AUE's are also not detected by these
procedures because mutual incompatibility of predicates is determined
only on the basis of strict lexical incompatibility of the predicates.
Other incompatibilities could be determined by carrying out a simulated
execution of source text segments using the techniques of symbolic execu-
tion, and then using these results to determine the true relationships
of predicate pairs to each other, where predicates would be considered
functions of program input values only. In the extreme case this pro-
cess would be tantamount to complete symbolic execution or verification
of the program. The greater power of these approaches is achieved at
correspondingly greater expenditures of time and money. Ideally these
other methodologies should be considered, along with static analysis,
to be components of an overall Integrated Analysis Strategy such as

-24-

outlTined in [7] in which static analysis is carried to its logical
conclusion, and unresolved questions, such as executability of paths
bearing complicated predicates, are saved for subsequent higher powered
modules such as symbolic executors. In the context of such a more
grandiose scheme it is not unreasonable to consider employing 1imited
amounts of symbolic execution in the determination of unexecutable paths
during static analysis. Here too, however, experimentation should be
used to gquide the decision about how much symbolic execution is reason-
ably incorporated into the essentially static procedures described here.
Finally, work should be done on determining the applicability of
these algorithms and procedures to the detection of unexecutable paths
across procedure boundaries. Work such as [4,16] indicates that inter-
procedural data flow analysis is feasible. Interprocedural analysis
applied to unexecutable path detection also warrants investigation.

VI. ACKNOWLEDGEMENTS

This work is the logical outgrowth of two research activities in
which the author has been involved. The first activity is the work of
the Software Validation Group at the University of Colorado and the
production of the DAVE Static Analysis System. This work was supported
by National Science Foundation Grants GJ-36461 and DCR75-09972. The
second activity was work done for the Network Analysis Techniques Study
carried out by TRW Defense and Space Systems Group at Houston for
NASA/Johnson Space Center under NASA Contract No. NAS9-14853. The
author is indebted to Bob Hoffman of TRW, Houston for his help in
clarifying the Impossible Pairs concept which is central to this work,
and to Lloyd Fosdick for his encouragement, helpful criticism, and per-
ception about the applicability of the data flow analysis approach.
The author 1is also deeply appreciative of the efforts of Lee Bollacker
in asking challenging questions and working through the hand simulations
which provided the impetus for carrying this work forward.

-25-

REFERENCES

[1]
[2]
[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

Schaeffer, M., A Mathematical Theory of Global Program Optimiza-
tion, Prentice-Hall, Englewood C1iffs, N.J., 1973.

Allen, F. E., "Program optimization," Annual Review in Automatic
Programming, Pergamon, New York, 1969, pp. 239-307.

Lamport, L., "The Parallel Execution of DO Loops," CACM 17,
(February 1974) pp. 83-93.

Fosdick, L. D. and Osterweil, L. J., "Data Flow Analysis in Soft-
ware Reliability," ACM Computing Surveys, 8 pp. 305-330, (Septem-
ber 1976).

Osterweil, L. J. and Fosdick, L. D., "DAVE--A Validation, Error
Detection, and Documentation System for FORTRAN Programs,"
Software--Practice and Experience, 6,pp. 473-486 (September 1976).

Allen, F. E., "A basis for program optimization," Proceedings
IFIP Congress 1971, North-Holland Publishing Co., Amsterdam, 1972,
pp. 385-390.

Osterweil, L. J., "A Proposal for an Integrated Testing System for
Computer Programs," University of Colorado Department of Computer
Science Technical Report No. CU-CS-093-76.

Osterweil, L. J., "New Applications of Data Flow Analysis to
Static Error Detection and Validation," University of Colorado
Department of Computer Science Technical Report (to appear, 1977).

Bollacker, L. "Some Experiments in Using Data Flow Analysis to
Detect Unexecutable Paths Through Programs," University of
Colorado Department of Computer Science Masters Thesis (to
appear, 1977).

Hopcroft, J. E. and Ullman, J. D., Formal Languages and Their

Relation to Automata, Addison Wesley, Reading, Mass., 1969,

pp. 108-109.

King, J. C., "Symbolic Execution and Program Testing", CACM 19,
pp. 385-394 (July 1976)

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

-26-

Clarke, L. A., "A System to Generate Test Data and Symbolically
Execute Programs," IEEE Transactions on Software Engineering,
SE-2, pp. 215-222, (September 1976).

UlTman, J. D., "Fast algorithms for the elimination of common
subexpressions,” Acta Informatica 2 (1973) pp. 191-213.

Kennedy, K. W., "Node 1istings applied to data flow analysis,"
Proceedings of 2nd ACM Symposium on Principals of Programming
Languages, Palo Alto, California (January 1975) pp. 10-21.

Hecht, M. S. and Ullman, J. D., "A simple algorithm for global
data flow analysis problems," SIAM J. Computing 4 (December 1975),
pp. 519-532.

F. E. Allen and J. Cocke, "A Program Data Flow Analysis Procedure",
CACM 19 pp. 137-147 (March 1976).

Osterweil, L. J., "Data Flow Analysis in Detection of Uninitialized
Variables and Editing of Impossible Pairs,” TRW Defense and Space
Systems Group, Houston, Texas; Contract #NAS9-14853 (21 January
1977).

Krause, K. A., R. W. Smith and M. A. Goodwin, "Optimal Software
Test Planning Through Automated Network Analysis," 1973 IEEE
Symposium on Computer Software Reliability, IEEE Cat. #73C40741-9CSR
New York, pp. 18-22 (June 1973).

Hoffman, R. H., "ATDG Impossible Pairs Detection Capability Study
Final Report," TRW 77:2511.3-17,(20 January 1977).

Elspas, B., K. N. Levitt, R. J. Waldinger, and A. Waksman, "An
Assessment of Techniques for Proving Program Correctness", ACM
Computing Surveys 4, pp. 97-147 (June 1972).

Knuth, D. E., "An Empirical Study of FORTRAN Programs," Software--
Practice and Experience, 1, pp. 105-135 (1971).

Elshoff, James L., "A Numerical Profile of Commerical PL/I Pro-
grams," Software--Practice and Experience, 6, pp. 505-526,
(October, 1976).

