ALL ARGUMENT SELECTION
MAY BE DONE FIRST*

David B. Benson**
Department of Computer Science:

University of Colorado at Boulder
Boulder, Colorado 80309

#CU-CS-108-77 May, 1977

* Research supported in part by NSF grant MCS 73-03497A01.

** Visiting from Washington State University, Pullman, Washington, 99164.

Running Head:

Select Arguments First

Mailing Address: 6 Jun 77 - 20 Aug 77

Mathematics
University of Denver
Denver, Colorado 802710

20 Aug 77 onwards

Computer Science
Washington State University
Pullman, Washington 99164

List of Symbols:

T, Set, etc.

< >y

bold-face

pointed brackets. There are no less-than or greater-
than signs in the paper.

arrow with open arrow-head.

barred arrow.

open centered bu]]et.‘

small capital letters.

special letter N that looks Tike that.
Greek lower case letters.

Script capital X

Greek capital letters.

ABSTRACT

There are many presentations of a function in terms of its
‘primitive’ components. These may involve the selection, permuta-
tion and duplication of partial results. We show that all argument
selection and rearrangement may precede the calculation of the 'pure'

function, wherein no argument rearrangement occurs.

INTRODUCTION

View each function computation as requiring its arguments in a
particular order, as is true of programming languages and computer
hardware. Given a collection of 'primitive' functions, one dupli-
cates, selects and permutes the partial results in order to compute
any of the possible functions which may be built out of the primitive
collection. In this note we show that all duplication, selection and
permutation may be done first; thereafter the computation is pure,
requiring no further rearrangement. This result is folklore to some
but not all, and is certainly used in certain computational settings.
The point here is to place this fact in its most general setting.

Perhaps the best intuition about this fact is in pipeline
computer architectures. The arguments are selected from memory and
placed on the proper combination of lines to be fed into the ALU.
There is no further control of the partial results.

Here is a small example. Let m(i) denote projection to the ith
coordinate. Let the natural numbers denote the number and ordering
of the arguments required for each function. A program to compute x+x
may then be written as

<'ﬂ'0 ,’n'0> +

PO: 1 > P >]

where <mg,mg>:1—>2 is the program statement to duplicate the argument
and +:2—>1 is the program statement for addition.

- To compute the pair of results <x+x, x+x>, the following program
uses only one addition.

<mg My > + o ST .Tp>

P1: 1 > 2 > 1] > 2

P1 computes x+x and then duplicates the result. However, on a

parallel processor, program P2 may result in less elapsed time.

<TQsTQs Tgs M= (+,+)
p2: 1 > 4 - > 2

where (+,+) is two copies of + running in parallel. Program P2 is in
the canonical form as all the projections occur before any of the

“actual" computations.

One may view this fact in programming language terms. Consider

the code segment

X = F(Y);
. G(X,Z)

IF X=0 THEN ...

where the second and third occurrences of X contain the value of F(Y).
The second and third lines of code use argument-selection functions
to obtain the value of X each time it is used. The result here shows

that indeed the code segment may be rewritten as
Comment X = = F(Y); Endcomment
AVt o NARARAANN Y
.. G(F(Y),2)

IF F(Y)=0 THEN ...

with the function recomputed at each use. Obviously these considera-

tions are closely related to the call-by-name mechanism of ALGOL 60.

To place the result in its proper theoretical setting requires
the use of algebraic theories. The plan is: After introducing the
notation and defining algebraic theories, concrete free theories are
defined. We show that indeed concrete free theories are algebraic
theories and note that the arrows (morphisms) of a concrete free
theory are almost in the desired form. It is then easy to obtain the
result. Then via standard algebraic methods, every arrow of an
arbitrary algebraic theory has a representation in a concrete free
theory, proving the theorem. Some discourse in aid of intuition is

interwoven.

NOTATION

We are working with categories and a modest familiarity is
assumed. We compose arrows (morphisms) of a category in arrow-
order: The composition of f:a—>b with g:b—>c 1is denoted feog or
fg. A sequence of n arguments, <xo,...,xn_1> is sometimes denoted
just by the natural number n. Let Fg denote the set of natural
numbers.

N is the category with object set Rﬁ and as arrows from m to
n, the functions f:m—n. Let wbp(i):1~—>n denote the function which
has i as value. That is, nOp(i):OF—>i. Then every function f:m—>n

in N is isomorphic to some list <ﬂ°p(i0),...,w0p(i)>:m—>n. The

m-1
individual =°P specify the function value for each individual argu-

ment. We fail to distinguish f:m—>n from its isomorphic representa-

tion as a 1ist.

Fop is the category N with all the arrows reversed. In N/Qp we

have arrows =(i):n—=>1 which are the reversals of the wOP(i) available

in N. The =(i) in NOp are called projections. The reason for this
name follows: Let F:NOp*~>§g& be a functor such that F(1)=A and all
categorical products are preserved. Then F(n)=A" for all neN , and
F(w(i):n———ﬂ):An——?A1 is the projection function from AN ko ATEA
along the ith coordinate. Thus NOP may be viewed as the collection
of all possible program statements for argument selection, replication
and permutation. Every arrow in Nbp is a list of projections and is
called a base arrow. We sometimes use the notation RATRISTEIERELS

1 Th-1
)>.

for <w(10),ﬂ(11),...,w(1n_1

ALGEBRAIC THEORIES

An algebraic theory is a category [such that:gé is the object
set of T, NOp is a subcategory of T, and the projections of Nbp
are projections in T. Specifically, this last statement means that
every arrow fim—>n in T is isomorphic to a Tist <f1,...,fn>:m—~>n
such that foﬂ(1)=fi.

As before, consider a functor F:T—>set such that F(1)=A and
categorical products are preserved. Each arrow f:m—>n transforms
to a function F(f):Am—wvAn, so the arrow f:m—>n may be viewed as a
highly abstract program statement for computing an n-1ist of results
from m arguments. For additional information on algebraic theories,
consult [1,2,3,4,5,6,7].

We construct a particular algebraic theory, the concrete free
theory, taken with minor modifications from [1]. The basic idea is
that Tists of trees with variables are the arrows of the concrete
free theory. The arrows here will point from the variables at the

leaves to the root, while ADJ runs them the other way.

An operator domain is a function Q:R§~—>§g§§, Each Q(n) is to
be thought of as the set of n-ary operators. To view Q as a ranked
alphabet <z,n>, let z= Yy Q(n) and let r:z——>RJ be the relation such
that <w,n>er iff w@ﬂ(n)r.]E Let x:kﬁ-——>x be an infinite sequence of
"variables", XgoXyaXyseoo such that Xpna(n)=pg for all nekg. For
each n, let X(n)={x0,x1,...,xn_l}. We now define trees over the
operation domain @ and variables x using the standard linear notation
for trees.

Let T(n) be the smallest set such that

(i) X(n)cT(n)

(11) 1f oea(p) and <t ,...t _ > (T(n)"

>
p-1

) e Tin).

then ogto,...,tp_1~

Note that as (T(n))g = {< >}, o() € T(n) for all oen(0).
DEFINITION. The concrete free theory over Q and x is the category QC
withsﬂ as the set of objects and arrows t:m—>n where t is an n-1list

of trees in T(m), t=<t0,t§,,..,t > with each tieT(m). The composi-

n-i1
tion in @C is the substitution of trees for variables: For

t=<tO,--.,tm_l>:k——>m and t'=<t6,...,t' >:im—>n,

n-1

tot'=<t8,...,tg-l>:k"—>n

where each t? is the result of simultaneously replacing each occurrence
of Xj in t; by tj for all jem. The identities of aC are
Td =< aX 5w X >

As the composition in a concrete free theory is associative, [1],
and the identities act as categorical identities, e.g.,

Tpseeent 1 ZoXgsee X ><t,. et (>, @ concrete free theory is a

category. There is a map

o F—-> ocho,...,xn_lz , oaef(n),

imbedding each operation of @ into QC as a tree of height one.

To show that QC is an algebraic theory, it suffices to demon-
strate a faithful functor F:N°p~—>QC which is bijective on objects
and preserves products. Product preservation guarantees that the
projections of @Op act as projections in @C. To this end, let F be
the identity map on objects. Recall that an arrow of N is a function
f:n—>m. Corresponding to f is a sequence of variables <xf(0),xf(1),

o Xp(pag) Define F(f°p:m-—>n)=<xf(o),xf(l),...,xf(n_l)>:m——>n.
A11 that we have done is change the notation from functions on finite
cardinals (equivalently, lists of selection functions Wop) to base
arrows written as 1ists of variables. F:N°P—sqC is faithful since

each function f:n—>m determines a unique 1ist of variables.

PROPOSITION. F:N°P—0aC preserves products.

Proof: Let

. e >
+n-1
m < m+n mrn > n

be a product in NOp. Then F(Gm)=<x0,...,xm_1>:m+n——>m and
F(Sn)=<xn+l,...,xm+n_1>:m+n——>n. Let t=<t0,...,tm_1>:k->m and

t'= té,...,ta_l>:k——>n be any pair of arrows in QC over k variables.
The arrow

t"=<to’t1""’tm—l’té’ti""’t$—1>:k__>m+n

clearly satisfies t”oF(am)=t and t”oF(én)=t' and is the unique arrow

with these properties.

The conclusion is that QC is an algebraic theory.

SELECTING ARGUMENTS FIRST

Each n-1ist of trees in @C is almost in the desired form. The
argument selection occurs at the frontiers of the trees as described
by the particular Xj at the leaves. The interiors of the trees
specify the computation to be performed. However, we want the argu-
ment selection to be represented as a first step, to be followed by

a "pure" representation of trees.

DEFINITION. The x-frontier of an arrow t:m—>1 in QC is defined by:

fro(x;) = x; , JEN

LN J
(! V) = ces
frx‘gltO""’tn-li’ frx(to) frx(tn_l)
frx(o()) = A, the null string

DEFINITION. An arrow t:n—>1 in QC is pure if frx(t) = XXX

A pure arrow is a tree in the traditional sense: No argument
selection is implied at the leaves of the tree. Consider an arrow
t:k—>1 with x-frontier X3 X3 «eeXy

01 m-1
place-holders, there is a base arrow <m(j,),...,n(J

Since the variables are just

m_1)>:k——->m and a

pure tree t':m—>1 such that t=<w(jo),...,n(jm_1)>°t'. In variable

notation, the base arrow is <X. ,..,X.: .

The above gives the decomposition for arrows of the form k—>1.

>

To extend to arbitrary arrows of QC requires additional apparatus.

Define the parallel combination of arrows t:m—>n and t':m'—n' as

(t,t') = <6mot,6m.ot'>:m+m'~—>n+n'

n

where . <m(0),...,m(m=1)>:m+m'—>m

and 8 ' = <u(m),...,v(mtm'-1)>:mtm'—>m'.

For further details, see [3,p.110] and [5,p.191]. The parallel combina-
tion of t:m—>n and t':m'—>n' may be visualized as the computations of
t and t' proceeding in parallel on disjoint sets of variables. Recall
the example in the introduction.

Rewriting [5,(2.5.16)], we have
<bo°to’b1°t1> = <bo,b1>0(t0,t1)

t >m—>n

cike—em,, toim.——>n., i=0,1. =<t ,...
for byrky—m,, tymme—>n,, i=0,1. Now any arrow t = <t ,...,t _,

in aC has a decomposition <b t;,....b t. .> where each b, is a base
arrow and each t% is pure. Applying the above result on parallel com-

binations, which obviously extends to any number of components,

1]
>o(t0,...,tn_1)

demonstrating that all argument selection may precede the parallel com-
bination of pure trees.

It now remains to extend this result to an arbitrary algebraic
theory. 1In [1] it is proved that each concrete free theory is a
free algebraic theory generated by an operator domain. It is a general
result of universal algebra that every algebraic theory is an epimorphic
image of a free theory. If T is an arbitrary algebraic theory with a
production preserving epifunctor QC——>I, then each arrow of I is an
equivalence class of arrows in QC. Pick any representative, t, of
the equivalence class and apply the above argument to obtain the decom-
position. As the equivalence relation induced by the epifunctor is a
congruence for composition, the decomposition exists in T. That is,

using the notation from before,

t]: = o[(t! !
[t]:m—sn [<bo"“’bn-1>] [(to""’t)]

and as parallel combinations and 1ists commute with the congruence,

we have proved the

THEOREM. Let QC be a concrete free theory and T an algebraic theory
equipped with a product-preserving epifunctor QC—T. For each arrow
[t]:m—>n of T there are base arrows bi and pure arrows ti in QC such

that

[£] = <[b,To-.oulb,_ To(lt,1oe.slt, D).

n-1

CONCLUSION

It is difficult to conceive of a model of computation which
cannot be cast into the form of an algebraic theory. Even models for
interation [5] and recursion [2] fit the mold. Therefore the theorem
gives a canonical form for computations, irrespective of the model.
This canonical form is implicitly used in studies of code generation,
[8], to guarantee expression trees rather than dags, and the form may
be of use in the study of parallel processing. It is also of value in
the study of nondeterministic programs, as will be demonstrated in a
subsequent paper. Further study of the consequences of the form in

terms of [2,5] may be enlightening.

-10-

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

ADJ {J. A. Goguen, J. W. Thatcher, E. G. Wagner, J. B. Wright},
An introduction to categories, algebraic theories and a1gebras,
IBM Research, RC 5369, 1975.

——, Rational Algebraic theories and fixed-point solutions,
Proc. 17th Symp. Foundations Comp. Sci., IEEE, 1976, 147-158.

D. B. Benson, Semantic preserving translations, Math. Sys. Theory

8:2 (1974), 105-126.
S. Eilenberg and J. B. Wright, Automata in general algebras,

Inform. and Control 11:4 (1967).

C. C. Elgot, Monadic computation and iterative algebraic theories,
in Logic Colloquium '73 (Rose and Sheperdson, Eds.), American
Elsevier Publ. Co., New York, 1975, 175-230.

F. W. Lawvere, Functorial semantics of algebraic theories,

Proc. Nat. Acad. Sci. 50:5 (1963), 869-872.

B. Pareigis, Categories and functors, Academic Press, New York,
1970.
R. Sethi and J. D. Ullman, The generation of optimal code for

arithmetic expressions, J. Assoc. Comp. Mach. 17:4 (1970),

715-728.

