A Good Algorithm for Smallest Spanning Trees
With a Degree Constraint

Harold N. Gabow

CU-CS-105-77 June 1977

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A GOOD ALGORITHM FOR SMALLEST SPANNING
TREES WITH A DEGREE CONSTRAINT

by

Harold N. Gabow
Department of Computer Science
University of Colorado at Boulder
Boulder, Colorado 80309

June, 1977

Abstract

Given a connected graph with edge costs, we seek a spanning
tree having a specified degree at one vertex r, with cost as small
as possible. A previous algorithm, using edge exchanges, has run
time 0(V2); we improve this to O(E log log V+V log V). Here V and
E are the number of vertices and edges. The algorithm uses edge
exchanges ordered efficiently on a reduced graph; it also uses
efficient algorithms for minimum spanning trees and priority
queues.

1. Introduction

Mahy variations of the minimum spanning tree problem occur in
communication networks and computer networks ([H,P]). These problems
are often intractable ([G,P]). In contrast, the problem we discuss
enjoys an efficient solution.

We are given a connected undirected graph G, a vertex r, and
a positive integer b. Each edge e in G has a real-valued cost c(e).
If T is a spanning tree, then d(r) denotes the degree of r in T;
the cost of T is c(T) = X c(e). The problem is to find a spanning
tree T with d(r) = b, hav?;g smallest cost among all such trees.

In an application, r might represent a central computing site;
the other vertices are terminals which must be linked to r by cable
paths. The degree constraint guarantees the computer's load is
spread over a given number of ports. The smallest cost property
guarantees as Tittle cable as possible is used.

This problem was first discussed by Glover and Klingman [GK].
They sketch an algorithm that can be implemented in O(V2) time. We
improve this to O(E Tog log V+V log V). Here V and E are the number
of vertices and edges. Our algorithm is based on Glover and Klingman's
technique of "admissible edge exchanges", coupled with a method for
pruning the graph and efficiently ordering the exchanges. It also uses
efficient algorithms for minimum spanning trees [CT,Y] and priority
queues [AHU]. Section 2 derives some useful properties of spanning
trees. Section 3 gives the algorithm and extends it to > and < degree

constraints. Section 4 gives concluding remarks.

2. Optimal Edge Exchanges

The basic step of the algorithm is to make an edge exchange on
a tree, i.e., starting with a spanning tree T, we replace an edge eeT
by an edge f#T, obtaining a new tree T-e+f. This section describes
how to choose the exchanges optimally. The results are implicit or
actually stated in [GK]. Our development is self-contained and more
direct.

Let R be the set of all edges incident to r in G. Let Tk be the
set of all spanning trees T with d(r)=|TNR|=k. We seek a tree in Ty
with smallest cost possible. For example, Figure 1(a) shows a graph,
where an edge label both identifies the edge and specifies its cost.
Figure 1(b) indicates a smallest tree Tk in each Tk.

Note in general, for some u>1, T, D exactly when u<k<|R|. For
if T is a spanning tree with d(r)=u, any k-u edges incident to r can
be added (and other edges deleted) to get a tree with d(r)=k. Note
further, it is possible that u>1, if G-r is not connected.

In Figure 1, Tk and Tk+1 are related by an edge exchange, e.g.,

T2=T1—4+2. We now prove this is true in general.

Theorem 1: Let T be a smallest tree in Ty Then

(a) If T, _1#P, there are edges ecTNR, f¢TUR, such that
T-e+f is a smallest tree in T, .3
(b) if Tk+]#9, there are edges eeT-R, feR-T such that T-e+f

is a smallest tree 1in Tk+1’

Proof: We prove (a) only, since (b) is analogous. Let S be a
smallest tree in Tk-1 containing as many edges of T as possible. We

will find edges e, f so S=T-e+f.

Choose f to be an edge in S-R-T. Note f exists, since
|S-R|>|T-R|. To choose e, note there is a path in T joining the
ends of f. Let e be an edge in this path that joins the two connected
components of S-f. Thus both T-e+f and S-f+e are trees.

Suppose e¢R. Then T-e+feT,, so c(e)sc(f), and S-freeT, ;,
so c(f)<c(e). We conclude c(e)=c(f). Thus S-f+e is a smallest tree
in Tk—1 containing more edges of T than S does. This contradicts the
definition of S, and shows eeR.

Thus T—e+feTk_1, so c(T-e+f)>c(S), and S-fteeT, , so c(S-f+e)>c(T).

The two inequalitites imply c(T-e+f)=c(S), whence T-e+f=S, as desired. [:]

It is easy to characterize the exchanges of Theorem 1. We do
this for part (a); a similar result holds for part (b), but is not

needed here.

Corollary 1: Let T be a smallest tree in Tk' If edges ecTAR,
f¢TWUR are chosen so T-e+f is a tree and c(f)-c(e) is smallest

among such edges, then T-e+f is a smallest tree in Tt]

We can also find a reduced set of edges that contains smallest

trees in all Tk's. For this, recall a spanning forest of a graph

consists of a spanning tree for each connected component.

Corollary 2: Let U be a minimum cost spanning forest of G-r. Then

UUR contains a smallest tree in Tk’ if Tk#¢.

Proof: Any spanning tree of G contains an edge from r to each tree
in U. So u, the number of trees in U, is the Teast k with Tk%ﬂ. A
smallest tree in Tu consists of U and the smallest edge joining r to

each tree. Now proceed by induction on k, using Theorem 1(b). L)

3. The Algorithm

The basic idea is to find a smallest spanning tree containing R;
then execute exchanges as in Corollary 1, until d(r) decreases to b.
To speed up the computation, we first find a minimum spanning forest U
in G-r; then on1y'edges in UUR need be considered, as shown by
Corollary 2.

To find the exchanges specified by Corollary 1, we use a system
of priority queues. Let T be the spanning tree at a given point in
the computation. Consider an edge eeTNR. An exchange that removes
e from T adds an edge f joining the two connected components of T-e.

A priority queue F(e) stores all such edges f. The priority of f is
its cost c(f). Thus the smallest edge f that can replace e is easily
found. A priority queue X stores exchanges (e,f), where for each edge
esT AR, f is the smallest edge that can replace e. The priority of
(e,f) is c(f)-c(e). Thus the smallest exchange of Corollary 1 is
easily found in X.

Now we state the algorithm in Pidgin ALGOL [AHU].

procedure D; begin comment Input to D consists of a graph G, a

vertex r, and an integer b, where bew. Qutput is T, a smallest
spanning tree with d(r)=b;
comment reduce the graph;

1. let U be a minimum spanning forest of graph G-r; let R be the set
of edges of G incident to r;

2. remove all edges from G except those in UUR;

3. let T be a smallest spanning tree containing R;
comment initialize priority queues;

4. make X an empty priority queue;

5. for each edge ecR do

begin
6. let F(e) be a priority queue containing all edges fel that join
components of T-e;

7. if F(e)#@ then begin let f be the smallest edge in F(e);
add (e,f) to X end;

end;
comment reduce r's degree by exchanges;

8. while d(r)>b do

begin
9. remove the smallest exchange (e,f) from X; remove f from F(e);
10. Tet e' be the edge in R-e such that f joins the components of T-e';
11. remove the exchange (e',f') containing e' from X;

remove f from F(e');

12. merge F(e) and F(e') into a new priority queue F(e');
13. if F(e')#P then begin let f' be the smallest edge in F(e');
add (e',f') to X end;
14. T<T-e+f}
end;
end;

For Figure 1, dn lines 1-3, U={3,4},R=T={1,2,6}=T3. The first
exchange, (6,3), changes T to T,; then exchange (2,4) changes T to T].
Figure 1 also shows a "greedy" approach, similar to Kruskal's spanning
tree algorithm [K], does not work for our problem: Suppose we form T
by choosing edges, smallest first, subject to the constraints that T is
acyclic and d(r)<b. If b<2, Tb is found. But for b=3, T2 is found, so

the method fails.

Theorem 2: Procedure D finds a smallest spanning tree with d(r)=b.

The time is O(E log log V+V log V) and the space is O(E+V).

Proof: Correctness of D follows from Section 2, if we show 1ine 9
selects an exchange with smallest possible cost. To do this, consider
any any edge feU-T-R. The path in T joining the ends of f contains
two edges of R, since any cycle in UUR contains two edges of R. So
for exactly two edges esTnR, (e,f) is a valid exchange. By induction,
feF(e) for these two edges e and no others. So the F queues record all
valid exchanges. It follows easily that X contains a smallest cost
exchange, and line 9 works correctly.

Now we analyze the time. The forest U is found (step 1) in
0(E Tog log V) time, by using an efficient minimum spanning tree algo-
rithm [CT,Y]. Tree T is found (step 3) by starting with edges UUR,
contracting R into a single vertex, finding a minimum spanning tree, and
then restoring R. The time is O(V Tog log V). (This can be reduced to
0(V) using the techniques of [PS].).

The priority queue operations are adding an element (steps 6, 7,
13), finding and removing a smallest element (steps 7, 9, 13), removing
an arbifrary element (twice in step 11), and merging two queues (step
12). Using 2-3 trees [AHU], a sequence of n such operations can be done
in 0(n Tog n) time. The algorithm does O(|R|)=0(V) such operations,
so the time is 0(V log V). Note to do the remove operations in step
11, we maintain pointers from each edge e to its exchange (e,f) in X,
and from each edge f to its two occurrences in queues F(e). The pointers
for f are also used to do step 10 (once) in 0(Tog V) time.

The time for finding spanning trees and manipulating priority

queues dominates, so the time bound follows. The space bound is

obvious. [:]

The algorithm is easily modified to find a smallest spanning tree
with d(r)zb (or d(r)<b). Suppose the test in Tine 8 is changed to X#p.
Then a smallest tree in every Tk is found. The desired tree is the

smallest in any Tk’ kxb (k<b). This tree is easily remembered.

Corollary 3: A smallest spanning tree with d(r)>b (d(r)<b) can be found

in time O(E log log V+V log V), and space O(E+V). [:]

This approach can be slightly improved by observing how the
cost of a smallest tree in Tk varies with k. In Figure 1, the

minimum occurs in TZ‘ This illustrates the situation in general.

Corollary 4: The cost of a smallest spanning tree in Tk is a concave

function of k.

Proof: Suppose T is a smallest tree in Tk, and the algorithm finds

the exchange (e,f) (in Tine 9) giving a smallest tree in T Note

k=1"
e' (in line 10) has c(e')<c(e) (otherwise, the exchange (e',f) is
chosen instead of (e,f).) An exchange that is valid for T-e+f but
not valid for T has the form (e',g), where (e,g) is valid for T (see
Tine 12). So for any exchange valid for T-e+f, there is a smaller

exchange valid for T. Thus the cost of the exchange found in 1line 9

never decreases as k decreases. [:]

Corollary 4 can be used to reduce the number of iterations of the
Toop in Tines 8-14, when searching for a smallest tree with d(r)>b

(d(r)<b). However the asymptotic time bound does not change.

4. Concluding Remarks

We have presented an algorithm for finding a smallest spanning
tree subject to a constraint of the form d(r)=b, d(r)>b, or d(r)<b.
We pose some related questions:

1. Is there a faster algorithm? In particular, can a smallest
spanning tree with degree constraint be found as fast as a
minimum spanning tree?

2. A minimum spanning tree in a directed graph can be found in
O(E Tog V) time [T]. Can a smallest spanning tree with
degree constraint be found efficiently in a directed graph?

The techniques presented here generalize to handle degree con-

straints'at 0(Tog V) diffefent vertices efficiently; however Q(n€) con-
straints, for any >0, Tead to a problem that is intractable (i.e. NP-

complete). We hope to report on these results and others in a forth-

coming paper.

References

[AHU] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of

[CT]

[G]

[GK]

[H]

[K]

[P]

[sP]

[T]
[vY]

Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

D. Cheriton and R. E. Tarjan, "Finding minimum spanning trees,"
SIAM J. on Computing 5 (1976), pp. 724-741.

H. N. Gabow, "Hu's optimum communication spanning tree problem
is NP-compete," unpublished memo.

F. Glover and D. Klingman, "Finding minimum spanning trees with
a fixed number of links at a node", Report No. 74-5, Research
Report CS #169, Center for Cybernétic Studies, University of
Texas at Austin, Austin, Texas, 1974.

T. C. Hu, "Optimum communication spanning trees," SIAM J. on
Computing 3 (1974), pp. 188-195.
J. B. Kruskal, Jr., "On the shortest spanning subtree of a

graph and the traveling salesman problem," Proc. Amer. Math.
Soc. 7 (1956), pp. 48-50.

C. H. Papadimitriou, "The complexity of the capacitated tree
problem," Tech. Rep. TR-21-76, Center for Research in Comp.
Technology, Harvard U., Cambridge, Mass., 1976.

P. M. Spira and A. Pan, "On finding and updating spanning trees
and shortest paths," SIAM J. on Computing 4 (1975), pp. 375-
380.

R. E. Tarjan, "Finding optimum branchings," Networks, to appear.

A. C. Yao, "An O(|E| Tog log |V|) algorithm for finding minimum
spanning trees," Information Processing Letters 4 (1975), pp.
21-23.

k Tk c(Tk)

1 1,3,4 8

2 1,2,3 6

3 11,2,6 9
(b)

Figure 1: Graph (a) and smallest tree Tk in Tk(b).

