NOTES ON
A MAP MICROPROCESSOR
IMPLEMENTATION*

by

Gary J. Nutt .
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

#CU-CS-102-77 January, 1977

* The work described here was funded by the National Science
Foundation under grant number MCS74-08328 AOT.

TABLE OF CONTENTS

I. Overview of the Architecture

A. MAP Components

B. A Typical Instruction Execution Trace

C. Observations on the Overall Architecture

IT. Control Unit Organization

ITI. Processing Element Organization

IV. Distribution Switch Organization

V. Process Intercommunication

A. Intercommunication Instructions

B. CUPI Organization

VI. Main Memory and the I/0 Subsystem

Tables

Figures

Appendix: A Sample Instruction Set

I. Overview of the Architecture

This is a working paper intended to describe certain facets of
implementing a parallel processor as a collection of conventional bit
slice microprocessor components. The ideas expressed in the paper
are subject to revision as the implementation is refined. Comments
and criticisms on the work are invited by the author.

The Multi Associative Processor (MAP) computer system is an ar-
ray processor capable of simultaneously executing up to eight programs,
where each program has a single-instruction-stream multiple-data-
stream organization. The architecture includes eight control units

(CUs) to execute the instruction streams and 1024 processing elements,
(PEs) that may be dynamically allocated to the CUs. Each PE has a
private PE memory (PEM) to contain a data stream. The machine makes

no provision for the inclusion of a host processor to handle compila-
tion and operating system tasks; instead, the language processors,
utilities, operating system programs, etc., are expected to execute
on one or more of the identical CUs in conjunction with one or more
PEs, as required by the given program. The PEs are identical and are
allocated to the CUs from a common pool, the number allocated depend-
ing on the requirements of the process currently executing on the CU.

MAP has been called an associative processor (AP) because of the
nature of the mechanism used by a single CU in activating and deacti-
vating the subset of PEs currently allocated to it. This content
addressability feature and PE organization differ substantially from
other associative processors such as the Goodyear STARAN computer.

In the remainder of this introductory section, the basic com-
ponents of MAP will be introduced with more detailed discussions fol-
lowing in later sections. To provide a global view of the machine's
operation, the remainder of this section includes a trace of a typical
instruction execution.

The discussion of the MAP architecture given in this report dif-
fers from that given in Technical Report CU-CS-070-75 in that the
design now takes bit slice microprocessor technology as a possible
implementation mechanism.

A. MAP Components

Figure 1 shows a conceptual block diagram of the MAP computer
system. The I/0 subsystem consists of all mass storage, peripheral
equipment and data channels to establish a data path between the main
memory of the machine and the external environment. Although no de-
tailed design of this subsystem currently exists, it is assumed that
this component is similar to a conventional I/0 system on a conven-
tional architecture.

The Main Memory system, (MM), is used for three purposes:

- An I/0 buffering mechanism,

- Instruction storage for all processes that execute on

the eight CUs,

- Storage for global data used by a single CU and multi-

ple PEs.

Details of the main memory organization are provided in section
VI.

The eight control units each fetch and decode a single instruction
stream on multiple PEs. The conceptual view of a CU relies on the unit
to be able to manipulate index registers, form main memory addresses
using indirection and pre-indexing, maintain a program counter, communi-
cate with (processes on) other CUs, and broadcast data and instructions
to the set of PEs currently allocated to the given CU. The Control Unit
Processor Interface, (CUPI) is a special unit to execute instructions

that apply to more than one control unit, e.g. control unit synchroniza-
tion operations. CUPI operation is discussed at more length in section V.

The distribution switch is used to handle instruction and data
routing from CUs to PEs, to route data from PEs to CUs, and to route
data from PE to PE. The distribution switch employs bus sharing in a
crosshar switch, allowing any CU-PE combination for routing. This
switch is discussed in Section IV.

The processing elements perform arithmetic and logical operations
on data stored in their own PEM or on a datum that has been broadcast
from the owning CU. Some features worth noting include:

- There are no direct data paths between individual PEs.

A1l data communication is performed via common buses run-
ning to all PEs.

- There are no physical characteristics of individual PEs which

~distinguish-one from another. .

- External I/0 is centralized via the I/0 subsystem pro-
cessor. A1l I/0 is buffered through central memory, and
individual PEs have no direct I/0 channels.

B. A Typical Instruction Execution Trace

For the following discussion, assume that a given CU has previous-
ly been allocated a subset of n; PEs, and that all of the PEs are
active, i.e., any command broadcast by the control unit, CUi’ is to
be executed by all of the allocated PEs. The following hypothetical

instructions are to be executed:

LPAD 3,%20,2 Load each PE's register 3 from
the effective PEM address computed
using single Tevel indirect addres-
sing (*), pre-indexed by the con-
tents of each PE's register 2 with a
base address of 20. Note that the
index register offset may vary from
PE to PE.

GLOBAL LOAD 3,%20,2 Load each PE's register 3 from the
effective main memory address using
single Tevel indirect addressing,
pre-indexed using the CU's register
2, with a base address of 20. Each
active PE receives the same main
memory location content.

SELECT POSITIVE 3 Deactivate all PEs whose register 3
contain a negative value.

SIGNAL Pass a signal from the executing CU
to a CU pointed to by a register in
the executing CU.

Each instruction is first fetched from the main memory Tocation
specified by the program counter of the control unit. The CU inspects
an 8-bit operation code and chooses an execution unit based on the 3
most significant bits of the operation code. An instruction may be
executed by the control unit processor interface (e.g., the SIGNAL in-
struction); by the control unit itself (e.g. a branch instruction); a

set of processing elements (e.g. the LOAD dinstruction); or a combina-
tion of the control unit and the processing element subset, (e.g. the
GLOBAL LOAD instruction).

The decode unit recognizes the LOAD instruction as being execut-
able by the PEs; therefore, it broadcasts the instruction word to the
set of active PEs (over the distribution switch). The CU idles for the
amount of time required for the instruction execution, while the PEs
compute their respective effective addresses and load their respective
registers. The CU is then ready to fetch the next instruction word.

The GLOBAL LOAD instruction causes the CU to decode the instruc-
tion, to recognize that it is partially executed by the CU and partially
by the PE subset, and to broadcast the instruction to the PE subset.
The PE decodes the instruction and then waits for data to be broadcast
by the CU. Meanwhile, the CU computes the effective address, fetches
an operand from main memory, and broadcasts the operand to the PE sub-
set. The PEs receive the data and load their respective registers.

SELECT POSITIVE 1is executed as an associative instruction within

each PE. A1l active PEs test their respective registers for a positive
result; if the result is negative, the PE deactivates itself. (Another
selection instruction can be used to activate previously inactive PEs).
SELECT-type instructions allow the programmer to process data streams
on the basis of previous computations within that data stream.

SIGNAL is executed by the control unit processor interface, CUPI.
The CUPI determines if the CU attempting to execute the SIGNAL is en-
titled to do so; if privilege is present the CUPI determines the receiv-
ing CU and "attaches" the signal to it, (more details of this operation
appear in Section V).

C. Observations on the Overall Architecture

The MAP architecture provides a mechanism for exploiting parallelism
at two different levels. The first level is the SIMD parallelism, allow-
ing multiple data streams to be simultaneously handled by one instruc-
tion stream. The second level of parallelism is between control units,
i.e. parallel instruction streams can exist in the system. The advan-
tages of each level of parallelism have been argued at length by SIMD
proponents and by MIMD proponents and are not repeated here. However,
MAP provides the generality of both methods. Combining the two methods

allows an operating system to make efficient use of the PE resource,
as well as Main Memory. Whenever a process executing on a particular
CU is interrupted, the entire PE subset is not dormant; instead, only
those PEs currently allocated to the (process on the) CU are dormant.*
The remaining PEs can be used by other CUs. Thus multiple control
units tend to increase overall PE utilization.

Multiple control units also allow higher utilization of PEs in
terms of the number of allocated PEs. SIMD tasks frequently have
"natural" solutions requiring specific numbers of PEs; e.g. in air
traffic control, the number of PEs required corresponds to the number
of objects on track. When the number of PEs required for the natural
solution exceeds the number actually available, alternate solutions
are still possible at a cost in program clarity and efficiency. With
multiple CUs, the number of PEs in the system may be large enough to
handle more demanding problems according to their "natural" solutions.
At the same time, the operating system can take advantage of a batch
Jjob mix and multiprocessing to maintain overall utilization while
running smaller problems. These advantages are typical of advantages
motivating any shared resource system.

A principle advantage of a multi control unit system is that PEs
become a shared system resource. Dynamic allocation of PEs requires
that individual PEs be indistinguishable to the CUs using them, except
in terms of their data contents. This is also desirable in terms of
system reliability, but it rules out the use of "hard" parallel PE to
PE data communication paths of the type employed in ILLIAC IV to achieve
high inter-PE data communication bandwidths. The ILLIAC IV scheme re-
quires a correspondence between the physical location of the PE within
the array of PEs and its logical function within a program.

Dynamic allocation of PEs also tends to rule out simple, bit
serial PEs of the type used in the STARAN computer. There is a certain
amount of overhead involved in providing for the switching of PEs from
one control unit to another, and individual PEs must be sufficiently
powerful to justify this overhead. Moreover, a major part of the justi-
fication for bit serial PEs is lost in a MAP system. In a single control
unit parallel processor, each PE may have its own external I/0 channel,
and a bit-serial PE is well matched to the bit-serial I/0 from one track
of a head-per-track parallel I/0 device. 1In a MAP system, this type of

* Multiprogrammed CUs may not leave PEs idle.

parallel I/0 becomes unattractive. Because of the uncertainty of
which PEs will be available for a particular execution of a job,
parallel I/0 direct to the PEMs would require a very large switching
matrix, allowing any channel to connect to any PE. This problem does
not arise in a single CU parallel processor, since the entire pool of
PEs is available for each job.

The lack of direct parallel I/0 to the PEs in a MAP system is
not necessarily the handicap it might at first appear. Comparable I/0
bandwidths for loading and unloading PE memories can be achieved
through the use of a single high speed, word parallel bus operating
between a central memory buffer and an interleaved set of PEs. Assum-
ing an 80 ns cycle time for the bus and a width of 32 bits, the band-
width is 4 x 108 bps, or the equivalent of 4000 one-bit channels
operating at the 10° bps (typical for direct channels to mass storage
devices). However, MAP requires that the data be loaded into central
memory before it can be transmitted to the PEs.

IT. Control Unit Organization

The purpose of a control unit is to provide a mechanism to imple-
ment the software notion of a process, where the process itself is com-
posed of parallel tasks, i.e., each control unit must manage control
and data flow for a particular SIMD program. To implement this function,
each CU must:

- Fetch instructions stored in MM,

- Form MM global operand addresses,

- Determine the flow of control of the program,

- At Teast partially decode instructions to be executed by

CUPI and the PE subset,

- Broadcast instructions, addresses and/or operands to PEs,

- Coordinate its:operation with other control units via CUPI.

Figure 2 is a conceptual diagram of a control unit as it might be
implemented with bit slice microprocessor components. The interface
to CUPI and MM consists of the two registers CUMAR and CUMDR. CUMAR
is a 22 bit MM address register, and CUMDR is a 32 bit data/instruction
register. CUPI is treated as a memory location in MM space by the con-

trol unit, i.e. the CU communicates with CUPI by storing information
into a MM address corresponding to CUPI. CUMDR could be replaced by

a more elaborate buffer to reduce memory conflicts among the CUs, and
to logically match the speeds of MM access and the CU cycle time. For
the current version of MAP, buffering is not used since memory tech-
nology provides memories that have lower access time than current bit
slice microprocessor cycle times.

The microprogrammed decode unit is implemented as a bit slice
microprocessor control unit such as the Intel 3001 or a set of AMD 2909
chips. The unit also includes a control store of appropriate width‘and
a pipeline register to allow the decode unit to overlap control store
fetch and microinstruction execution. The 3 most significant bits of
the MAP op code (stored in CUMDR during the instruction fetch phase)
determine the instruction type. Type O instructions are those that
affect the operation of another CU, and are passed, via CUMDR, to CUPI.
Type 1-3 instructions are to be executed (primarily) by the CU itself,
and are gated into the decode unit for processing. Type 4-7 instruc-
tions are executed by the PE subset. One feature of the microprocessor
implementation is that the MAP instruction set is implemented in micro-
programs, and is relatively easy to modify and expand; a sample instruc-
tion set is included in the Appendix, and further description of the
architecture will use that set as an example to further explain system
operation.

After the decode unit recognizes the instruction type, it will
route the instruction as appropriate. The decode unit must be respon-
sible for the timing of all instructions, and either of two methods
can be used to accomplish synchronization among the CU, CUPI, and PE
subset. Type 0 instructions are written to a predetermined MM loca-
tion, which will invoke CUPI to execute the instruction. The decode
unit then enters a microprogram loop to await an interrupt from the
CUPI to indicate that it has finished processing the instruction.

Since the PE subset allocated to a CU is variable with respect to
physical PE identities, the interrupt method for indicating instruc-
tion completion is untenable. Instead, the decode unit employs a
synchronous mechanism where the (maximum) PE instruction execution
time is determined by the decode unit when it allocates work to the
PE subset. This requires that indirect addressing within PEs be

limited to a single level. Global operations, such as the Global
Load discussed earlier, tend to complicate this method but do not
obviate it; the decode unit recognizes a global instruction and
immediately broadcasts it to the allocated PE subset. The decode
unit then performs the CU portion of the instruction, synchronizes
with the PE subset by a bus signal, and performs the information
exchange.

The Control Unit Instruction processor is implemented as a 32 bit
microprocessor chip set such as the Intel 3002 or the AMD 2901 chips.
Each of these ALU sets incorporate internal registers, and hardware to
perform elementary arithmetic-and Togical operations. The internal
registers are used to implement MAP programmable registers required
to perform loop counts, to index MM, and to allow operand testing that
influences the flow of program control. These registers are designated
as CAC[0]-CAC[3] in Figure 2. Additionally, the program counter, PC,
is implemented as an internal microprocessor register. A typical set
of instructions to be executed, at least in part, by the CU Instruc-
tion Processor is shown as Type 1-3 instructions in the Appendix. They
include CAC Tload and store operations, CAC addition and subtraction,
and a variety of branch instructions based either on CAC contents or
other conditions that might exist in the machine.

The remaining three registers shown in Figure 2 are external to
the microprocessor ALU chips. The broadcast register, DBR, and the ID
register are the interface between the CU and the Distribution Switch.
DBR is a 32 bit register used to broadcast instruction words and oper-
ands to allocated PEs, and to receive operands from the PEs. ID is an
8-bit register containing an identifier unique to (the process execut-
ing on) the CU; it is used by the Distribution Switch to route DBR
contents to/from PEs allocated to the CU. SIG is an 8-bit register
used to point to another (process on another) CU during inter CU com-
munication. Although ID and SIG are conceptually a part of the CU,
both are implemented in CUPI.

The ALU microprocessor chips that implement the CU instruction
processor require 5 internal registers; the remaining registers, (6
in the case of Intel 3001, 11 in the case of AMD 2901), are used by the
microprograms.

The entire operation of the CU depends heavily on the Distribution
Switch to rapidly route data and instructions to the PE subset. There-
fore, the bus system used to route information is a multiplexed cross-
bar switch, although the conflict resolution hardware at the cross con-
nections is eliminated by establishing the information flow path at PE
allocation time, i.e., once a PE is allocated to a CU, it cannot be
shared with another CU. These conventions make the crossbar switch
for instruction broadcasting plausible.

ITI. Processing Element Organization

The purpose of each processing element is to carry out single data
stream operations as they are required by the control unit. The opera-
tion of a PE is complicated by the need to selectively activate and de-
activate the unit for certain instruction sequences as specified by the
program, i.e. the program may wish to deactivate a PE based on condi-
tions that exist locally in the PE. The Tist of functions to be imple-
mented in each PE include:

- Receipt of the PE instruction,

- Execution of arithmetic and logical instructions,

- PE memory address formation and access,

- Receiving and sending data from/to a CU,

- Determining the activity state of the PE.

Figure 3 is a conceptual diagram of a processing element as it
might be implemented using bit slice microprocessors. The overall
operation of a PE is simpler than that of a CU, since the PE need not
include Togic to handle instruction fetching. On the other hand, the
PE must provide an interface to the Distribution Switch as indicated
in the upper portion of Figure 3. The 8-bit OWNER register is set
when the PE is allocated to a CU so that its content matches the con-
tent of the ID register of the corresponding control unit. Whenever
information is placed on the data bus of the Distribution Switch and
the ID bus matches the OWNER content, the data is gated onto the PE
data bus. Data can also be gated back onto the Distribution Switch
if the ID and OWNER tags match.

10

If the PE is waiting for an instruction from the CU, the PE data
bus content will be routed to the microprogrammed decode unit. This
unit is similar to the CU decode unit discussed earlier, and is im-
plemented as a bit slice microprocessor control unit. The decode
unit need only handle 7 bit op codes, since only Type 4-7 instructions
will be received by the PE. Most of the action to be taken by the
decode unit are straight forward, with the exception of the way PE
activity is handled. If a PE is currently inactive, the microprogram
enters a loop that decodes the instruction but does not execute it
(unless the instruction causes the PE to change its activity). Thus,
the decode unit in a PE is always active whether or not computations
are to be carried out in the PE.

The PE Instruction Processor is similar in construction to the
CU Instruction Processor, i.e. it is a 32 bit‘microprocessor chip set
incorporating an ALU and a set of 32 bit registers. The internal
registers are used to provide a set of eight general purpose MAP regis-
ters, denoted AC[0]-AC[7], i.e., these registers are used by the MAP
assembly Tanguage programmer to perform arithmetic/logical operations,
and as index registers. The remaining registers are used by the micro-
programs and implement the SELECT register.

The SELECT register shown in Figure 2 is the mechanism used to
save the results of up to eight conditions in the PE. Any MAP instruc-
tion set should include a set of associative instructions similar to

the type 4 instructions (codes 4 01 through 4 12) shown in the Appen-
dix. Each associative instruction includes an 8 bit Key field and

an 8 bit Mask field. The "SELECT" instruction (code 4 00) activates
all PEs such that

(C(SELECT)=Key) A Mask

results in all eight bits being set. Thus, the SELECT instruction com-
putes the activity of all PEs as a function of the contents of the
SELECT register, Key field, and Mask field. 1In the Appendix, the
instruction "SELECT,R" is used to restrict the domain of selection to
the currently active PE subset. The "COMSEL" instruction performs the
same function as SELECT, except that it complements the activity state
of the PEs after performing the normal SELECT. The remaining Type 4
associative instructions are used to set/reset bits in the SELECT regis-

11

ter, depending on conditions that exist in the PE at the time of
their execution. For example, "SETPL" is used with a Key and a Mask
field to manipulate the contents of the SELECT register as follows:
If a designated AC is greater than or equal to zero, then the SELECT
register is changed by

SELECT « SELECT A — MASK
SELECT <« SELECT Vv KEY .

Thus, the Mask field specifies one or more bits that should be set or
reset if the AC is nonnegative, and the Key field determines their
settings.

The associative instructions are implemented in firmware, with
the SELECT register being implemented as one of the ALU registers.
The decode unit is responsible for both testing and setting the
activity, flag for the PE. Since associative instructions are im-
plemented almost entirely by microprograms, the associative instruc-
tion repertoire is as flexible and generé1 as experience dictates
that it should be; the hardware organization does not fix the selec-
tion strategy. The SELECT register can be loaded and stored just as
any accumulator. This feature allows an almost unlimited number of
selection conditions to be saved with the PE.

The associative instructions with codes 4 0D through 4 10 imply
some form of comparison and selection across PEs. This can be done
in one of two ways: Incorporate additional hardware as suggested in
Technical Report No. CU-CS-070-76, (pages 16-18); or to implement the
test within the CU such that each active PE's designated register is
sequentially tested for maximum (or minimum) by the CU. The first
method requires extensive hardware, and the second method is ineffici-
ent at program execution time; for simplicity, the latter method is
assumed.

IV. Distribution Switch Organization

The Distribution Switch must allow any control unit to pass/
receive information to/from any subset of processing elements in the
system. This requires a switching mechanism logically equivalent to

12

an 8 x 1024 crossbar switch in one extreme; or a single, common multi-
plexed bus in the opposite extreme. The full crossbar organization
minimizes bus conflicts at the expense of complex hardware, while the
shared bus minimizes hardware complexity at the expense of expected

bus transfer time. Each machine instruction (PE or CU) requires multi-
ple microcycles to carry out execution; for bit slice microprocessors,
each microcycle is in the range of 100-200 ns and preliminary estimates
indicate that the average microprogram length exceeds 10 microinstruc-
tions. The bus can be constructed to transfer information in 80-100 ns;
hence, it is possible to share data paths between the CUs and the PEs.
The mechanism used in MAP, shown in Figure 4, is composed of an 8 x 16
crossbar switch where each CU has a dedicated crossbar, and sets of 64
PEs share an orthogonal crossbar. Each crossbar shared by PEs is re-
ferred to as a bus sector.

A control unit broadcasts information to its PEs by causing cross-
point connections at its crossbar and all sector crossbars where the
sector contains PEs currently allocated to the CU. If two CUs have no
PEs allocated within a common sector, then they can simultaneously
transmit data to their PEs; otherwise a transmission conflict arises,
and hardware is provided to arbitrate the conflict. The Bus Sector
Allocation unit is the conflict arbiter, and is discussed later in
this section. Since PEs share crossbars, any operating system imple-
mented on MAP must pay particular attention to the physical location
of PEs allocated to a given control unit. Although PEs-are logically
identical to user programs-executing on CUs, they must be treated as
individuals by the operating system.

Since the bus is shared, data to be broadcast are placed on the
bus only when the bus is allocated and the PEs have been set up to
receive data using the input control register (ICTL) and the output
control register (OCTL), shown in Figure 3.

The ICTL and OCTL registers work in a similar manner. A register
is intially loaded with a value representing a delay time. For each
cycle to which the CU controlling the operation is not blocked from
the data bus, the register is decremented by one. When the register
reaches zero, a signal is generated which, in the case of the ICTL
register, causes a word to be gated from the PE data bus to the PE In-
struction Processor. For the OCTL register, the signal causes the data

13

to be gated to the PE data bus from the PE processor. Generally the
initial contents of the ICTL or OCTL register will be different for
each individual PE. The result is that each PE reads or writes one
word from a stream of words on the data bus. It is, however, entirely
possible for two or more PEs to have the same starting value. If a
set of PEs share a common ICTL value, for instance, then each element
of that set will accept the same word from the data stream on the bus.

Data streams need not always originate from or terminate to cen-
tral memory. The CU may cause the contents of the bus to be fed back
to the bus, so that PEs may act simultaneously as source and destina-
tion of the data stream. This allows exchange of data among PEs in
arbitrary patterns, according to the initial values loaded into the
ICTL and OCTL registers. One PE may pass data to any other PE in a
direct manner, but all PEs cannot simultaneously shift data to
"adjacent" PEs.

The Bus Sector Allocation unit is a critical unit of the Distri-
bution Switch which provides the following functions:

Establish data routes through the switch,

Resolve conflicting transmission requests,

EnabTe the ICTL/OCTL countdown clocks whenever an own-
ing CU is not blocked by transmission conflict.

The inputs to-this unit are the ID register contents, Bus request
signals, and a Sector Mask for each CU. The Sector Mask is a 16 bit
register, maintained by CUPI, which contains a 1 in each bit position
(corresponding to a sector) in which the CU is allocated PEs. An out-
Tine of the Bus Sector Allocator is shown in Figure 5. The Sector
Conflict Test subunit determines if any two CUs share a sector; the
Transmission Conflict unit determines if two CUs are simultaneously
attempting to use the Distribution Switch. If there is no sector con-
flict and no transmission conflict, then the ICTL/OCTL clocks for all
PEs are enabled. In the event of transmission conflict, the Transmis-
sion Conflict Unit arbitrates to select one CU for transmission; the
Route Unit then uses the appropriate Sector Mask to breadcast the ID
and the CU's DBR to the appropriate sectors.

14

V. Process Intercommunication

The process intercommunication scheme and supporting hardware dis-
cussed in this section is rather specific in nature, and it presumes
that a significant portion of the mechanism is fixed by firmware in
the CUPI. The approach illustrates an integration of parts of the
operating system into the firmware and hardware of a machine. More
general intercommunication mechanisms can be supported by the hardware
by altering the microprograms. It is assumed that the operating system
is distributed over all CUs, and that each CU supports 4 levels of
multiprogramming. The scheme is open to revision and refinement as
experience with the system dictates.

A. Intercommunication Instructions

Each process supported by MAP is identified by its ID register
content. Let ID [i,j] denote the kth bit of the ID register for pro-
cess j on control unit i, (0<i<7,0<j<3). If

IDk[i,j] AID[1',3'] =1 for some k (0sks7)

then process j on CUi can cooperatively communicate with process j'
on CUi , and vice versa; otherwise, no communication is possible
between the two processes. If, in addition

IDk[i',j‘] =] m>IDk[i,j] =1 for all k (0<k<7)

then process j has privilege with respect to process j', (no two pro-
cesses may have identical ID contents).

Op codes 0 00 through O 16 implement interprocess communication.
Each process state is partially described by two single bit registers
to aid in communication: ARM[i,j] is set (true) if a privileged inter-
rupt can be accepted by process j; ABLE[i,j] is set (true) if a coopera-
tive interrupt can be accepted by process j. Thus ARM[i,j] and ABLE[1,j]
are binary semaphores to protect critical sections within process j. The
22 bit INTLi,j] register is used for cooperative interrupts by forcing
the interrupted process to branch to the location contained in INT
whenever a cooperative interrupt is received by process j. The 8 bit
SIG[i,j] register identifies a receiver process for an interprocess
communication.

The mechanism described in the preceding two paragraphs allows
privileged and cooperative interrupts to take place (if certain condi-

15

tions are true). Privileged interrupts correspond to the case of a
higher priority process preempting a lower priority process, where
priority (privilege) is determined by the settings of the relevant two
ID registers. Cooperative interrupts, i.e. message passing, are
allowed between two processes whose ID registers satisfy the coopera-
tive communication predicate. The notion of privilege is also used to
control the alteration of critical registers of one process by another.
Since interprocess communication may require that ID, ARM, ABLE, and
certain other registers be tested before communication can take place,
and because these registers exist (logically) in distinct CUs, the
CUPI 1is used to implement process intercommunication. Before discus-
sing CUPI organization, the details of privileged and cooperative com-
munication will be given.

Op codes 0 00 through O OD are privileged instructions that can
be executed by process j with process j' receiving the effect of the
instruction only if process j has privilege with respect to process
Jj'.
criptions shown in the Appendix include the two microprogram sub-
routines ENQUEUE and DEQUEUE used to handle interrupt queuing, (ex-
plained later in this section).

The PREEMPT instruction (op code 0 01) can take place if the
preempted process is not in a critical section (i.e., ARM[i,j'] is
true). If ARM[i',j'] is false, then the interrupt is queued and the
preempting process is released; otherwise, ARM[i',j‘] is reset, the

Each instruction is executed as a CUPI microprogram, and the des-

instruction counter for process j' is saved, a parameter is passed

via CAC[0] in each process, and the preempted process is started at

an effective address specified by the preempting process. Setting

and resetting the ARM flag is a privileged instruction, but processes .
have privilege with respect to themselves. The CLEAR instruction

(op code 0 04) restores the preempted process. The remaining privi-
leged instructions allow loading and storing of the ID register, INT
register, SEC (sector mask) register, and process state registers (as
specified in the CUPI description). A further restriction is placed
on the ID register loading as follows: A new ID content is restricted
such that

IDk[1 9j] < IDk[1 sj]"y

16

where
0<y<ID, [1,]]

i.e. process j cannot define a new ID content where more bits are set
in the new ID register than are set in ID[i,j]. This prevents a CU
from increasing its communicative power either directly or indirectly.
LDSIG and STSIG are unprivileged instructions to allow a process
to manipulate its SIG register in setting up for a communication.
Cooperative communication is accomplished using the instructions
with op codes 0 10 through O 13. When SIGNAL is executed by process
j, a check is made to see that communication is allowable between pro-
cesses j and j' (the ID of j' is again loaded into SIG[i,jl). In the
case that process j' is in a critical section and cannot receive a
message, the cooperative message is queued and the sending process is
released. If the message can be received by process j', then the in-
struction counter is saved, a parameter is passed via the CAC[0] regis-
ters, and process j' resumes execution at the address specified by
INT[i',3']. Process j' will normally have loaded INT[i',j'] with the
address of a message receive procedure, but if process j privilege
over j', then it has the option of forcing process j' to other code
by altering its INT immediately before signalling. Race conditions
on the setting of INT may arise.

B. CUPI Organization

The Control Unit Processor Interface is a single bit slice micro-
processor used to implement the intercommunication instructions and to
control the Bus Sector Allocation unit. CUPI 1is invoked by CUi when
CUi stores a type O instruction into MM Tocation 3FFFF8+i. If more
than one CU calls CUPI at one time, CUPI will service the requests on
a round robin basis. The calling CU is blocked in a busy wait until
CUPI has finished processing the instruction. CUPI also uses other
high address MM Tlocations to save the state of all 32 processes and
to implement the interrupt queue. Table 1 shows the organization of
high address MM, and in particular, locations 3FFF80-3FFFAF are used
to maintain the interrupt queue. A1l queue operations are implemented
in CUPI microcode. MM locations 3FFF90-3FFFAF contain the ID register
contents in the 8 most significant bits, and a pointer to a queue

17

header in the least significant bits for each process respectively.
The queue header is a double word containing the given process's ARM,
ABLE, SECTOR, SIG, and INT register contents and a queue length and
1ink. Each entry in the queue contains another 1ink and the calling
process's CAC[0] (argument pointer). The CUPI microprogram sub-
routine, ENQUEUE, enters messages into the queue, and DEQUEUE removes
messages from the queue. The queue routines are used as mentioned
above and in the Appendix. Locations 3FFFBO-3FFFB7 are used to save
the previous instruction counter content during a SIGNAL operation,
and 3FFFB8-3FFFBF serve the same purpose for PREEMPT instructions.

CUPI is organized around a bus similar to that of a PE, (see
Figure 6). The bus is used to maintain the current ID, SECTOR, and
INT registers for the 8 processes that are active on control units.
As a process is loaded onto a CU, the registers are Toaded within
CUPI. The ID and SECTOR registers interface with the distribution
switch via the Bus Sector Allocator as indicated in Figure 5. The
INT registers are gated back to appropriate CUs during SIGNAL instruc-
tion execution. Since CUPI must access MM, a 32 bit data register and
a 22 bit address register are included as shown in the figure. The
SIG registers are implemented within the CUPI instruction processor
(ALU). The operation of CUPI is described by the op codes in the
Appendix. Notice that the strategy for interprocess communication
remains much more flexible than the particular scheme given here,
since it is almost totally implemented in the CUPI firmware.

VI. Main Memory and the I/0 System

A block diagram of the Main Memory and I/0 subsystem appears in Fig-
ure 7. Main Memory is divided into 16 physically distinct 256K word mod-
ules each with three ports. Each module may, in turn be subdivided to
incorporate interleaving if there is a need. MM modules O through 7 are
configured such that CUi has a preferred path to module i, and CUPI has a
preferred path to module 15. Any of the nine units has access to any of
the 16 memory modules via a shared memory bus. Likewise, the I/0 subsys-
tem uses a distinct bus to access any of the modules. No priority among
the three ports has been set at this time, although the most Tikely

18

scheme would give the I/0 subsystem the highest memory access priority,
followed by the preferred CU, followed by the shared memory bus. This
arrangement was chosen to reduce memory conflicts among CUs as much as
possible, where a CU will normally have its instruction stream Toaded
in its corresponding MM module. In the event that an instruction
stream (program) and associated global data do not fit within the pre-
ferred module, the memory can be allocated by the operating system so
that most of the code fits within the preferred module, but may over-
lap into neighboring modules. If all CUs require more than 256K words
of MM, then memory bus conflicts will occur. The code for the distri-
buted operating system will be Toaded into modules 8 to 14.

The CUMAR for each CU can hold a 22 bit address, hence any CU can
generate any MM address. However, memory loading is greatly simplified
if the programs for a given CU are assembled relative to location 0.
This requires that some form of base register be incorporated into
each CU so that addresses that are apparently absolute within the CU
are relative to the first allocated location within MM. This problem
is solved by constructing each CU's microprograms such that effective
addresses are relocated by an internal base register (set on process
allocation) before being loaded into CUMAR. Firmware address reloca-
tion is used, rather than hardware or software modification of the
address. This scheme implies that a process uses a contiguous set of
memory locations within MM. CUPI calls will bypass the relocation
mechanism.

The I/0 subsystem must have access to each memory module in order
to load programs and to accomplish normal I/0. An analysis of the I/0
subsystem may possibly require that multiple shared buses are required
to perform I/0, depending on the bandwidth of the I/0 subsystem. The
initial design of the entire system discourages high operating rates
for the I/0 system, since each I/0 implies more use of the data bus
system interconnecting CUs and PEs. The overall design philosophy of
MAP dictates that high I/0 programs will not perform well on the
machine.

19

MM ADDRESS RESERVATION

3FFFFF: CUPI call from CU7

3FFFFS: CUPI call from U,

3FFFF7: 110 Device codes
: 58 device codes

3FFFCO: v v

3FFFBF: IC7 save space for preempt
3FFFBE: IC6 " " " "
3FFFBD: ICS 1 1 H 1t
3FFFBC: 104 " " " "
3FFFBB: IC3 1 n 1 it
3FFFBA: ICZ " 1] " Il
3FFF89: IC] i 1 H] n
3FFFB8: ICO n n 1] "
3FFFB7: IC7 " " " signal
3F{:‘FBO: ICO 1] 1" 1 1"
3FFFAF: 1D, for process 3)
3FFFAE: ID7 " " 2
3FFFAD: ID7 " " 1
. " " > 32 ID registers.
3FFFAC: 1C; 0 (8 bit ID and address for message queue)
3FFFAB: ID6 " " 3
3FFF90: 1, noog
3FFFSF: Que header for CU7 Que Header (typical)
3FFF8E: " " " " 31 30 29 27 24 7
: A ﬁ 22?7 %27 0 Sector SIG
3FFF81: Que header for CU, rol g A%%%/éégég Tength | Mask
3FFF80: M " 1 m m e /// %
23 7421
F7F: .
L 1024, , word Q. Tink é% INT
3FFB80: queue space Que entry (typical)
21
0. Tink. CAC content

4 (of caller)

meésage type
(signal/preempt)

Table 1

INPUT/OUTPUT

MAP ORGANIZATION
FIGURE 1

SUBSYSTEM
MAIN
MEMORY
U, cu ey,
DISTRIBUTION
SWITCH
ey |[PEy . PE, .
pemg | [PEM, PEM_

MM

31 f

MM
21

“CUMAR

CUMDR
A
) |
ol
INSTRUCTION
PROCESSOR
| B
31
CAC[0]
CAC[1]
CAC[2]
CAC[3]
7 0
1D
A
S1G

MICROPROGRAMMED
DECODE
UNIT

PC

31

DBR

CONTROL UNIT ORGANIZATION
FIGURE 2

ID BUS (8)

DATA BUS (32)

OWNER
=
=
(o |
O <
o =
[a T db]
O -
o v
[@h]
l—~MICROPROGRAM SIGNAL
PE DATA BUS (32)
4
9 0 9 l
1CTL 0CTL
B | 1
< i
Y w ; |
]]
- PE MICROPROGRAMMED F- - '
INSTRUCTION DECODE e e)
4Kx32 - PROCESSOR UNIT
/ 4 :
31 0o 7 0
AC[0] SELECT o --
AC[1]
- - 2
2
AC[7]

PROCESSING ELEMENT ORGANIZATION

FIGURE 3

— PE64
—— PEgs

‘ — 127

DISTRIBUTION SWITCH
FIGURE 4

SLS

G JUN9IA
d0Ly30T1Y ¥0L133dS Snd

)
L
]
—
(]
nUvG
w
m
(qp]
'.—
(o]
...LMG
LINN 7
m
3LN0Y T
o
/_“G
) Ad)
™ m m
L D O
11
: ho 193m3s—L ,
. LINN LINN
19 19373s 19174N02 L9174N0D
) * | NOISSTWSNYYL ¥0193S
e
a1 Lot . a1 N3 133135 19174N09 SSTW9Pud
ON NI
19174N09
L9174N0J ¥0193S ON

NOISSIWSNVYL ON

7130/7L31 %2072

(319-3)

L

9IS-

9 FUN9I4

FIVAYILINI ¥0SS3J0dd NI

Og1s

- 40SS3004d NOTLONYLSNI NI SYILSIHIY HIHLO

(W 03)

v1vd

0

553¥aay

LIND
10003a
QINWYII0UdOUITH |

40SS3304d
NOILONYLSNI
1dn3J

Le

L€

31dy
WdY

Sd014dIT4

(Yyo3LMs uoLINqLJ3stq ol)

Lar

al

al

Ly0193S

lyoLoas

Oyo193s

0

Gl

(z€) sng vLlva 1dn?

Idna

L J&N9I4

NOILVZINYIYO AHOWAW NIVW

na

na

nJ

A9G¢
myzz

A96¢

vrzz

A199¢
WW

A9G¢
Wi

A96¢
W

A PP

HAS
GEN
FOR

’”TL - 10 BIT REGISTER

1
- 1

INPUT , nCI81).
{t)f:: 0 BIT REG f*m&"f; OPE:! ACTY9T) .

235"? - 4 BIT ‘T”W r"“-’%f‘ Q%",'

‘I"Lji? THE Iy 1 PE, S AL [if}})
BIT REG ,”’,“i“* BT MATCHES THE I REGISS

T i .Lwi“; AT {,:'Fk_,ﬁr}? A
ACIG] = 32 BIT REGISTER FOR .
AC[1..71 - 32 BIT

TYvE

U
4

S

S

o oo

pe—
et

o,

b

i

0

op

g9
Ul

Lad N3

St

7
o
[
e

U5
U6
Ui
05
U9
OA
us

ac

i

U

I

BALT
PE

CLEAR

LEID

STIN

L?IMm

el &
LOET

STST

A;M scrﬂ

MO TC

YICATE
FUQ Ty
1

Ph U
YT'

Al SRRUPT TO CI EII k)
CC .

L 'j’)

‘I

QQLM[I',J“} <~ FALSE

END

IF P(I,J,1',J%) THEN

GIw
crer,Jt)

Arplrr,J !
EJL
IF V{{ J It

<— MHIEA
iy, J']

I
<~ SECTOR[T

Ty - ;
ELSE PREBMPT

AVE ARM,ABLE,SECTOR ,SIG,
I,J,I ,J) THEN
R=FIELD OF

SCONTINUE MONITORING:
START MONITORING T

TORING J';

T
AL

}QP WT O IWHSTRUCTION CYCLE:

CODRE
T kwx

m
oo
&
[
o~ r
o B2 jeA
e et
T bt £
5w
g
¥
<L) b
. b -
SN o4
o =
&

fal?

o
-

[

I

3

ol

2

kS

b

-

e e I oo e ey o

{

o

et

D

y
Lo

TYPE

Lad Lad Lad L Lo Wb Lad Lo Lo Lo Ll G0 L G L e L0 Ad L A L L0 L) L) L Ll e b

fad Lad Lo

op
00
01
02
03
04
05
06
07
08

oo
o

0a

st
ez

[e e e i eI G s B o

U
08
Usg

o
o

,q},_,
L
3w

[——
S R

roy ot

oo o fnd ot et fond et o 7 3 O L
T omd O T b) D e

iNe]

1o
iw
l il

MNEMONIC
CLI

CAT

GLIC
GLOC
GLOW
G5
G%IP
SO0
(— {m’lhi

i

o
-
wkd

z

p
el

Iy}

]

PUEH
PULL

YSCnT
R MR

CAC[R]

CACIR]

ACTR] <
ICTL <=
OCTL <~
HER
MMRA]
MM [EAL
[an]
MIEal

41

CAC[R]

axc{a)
]

IF
IF OWNE
I# MORE

HO A

IF CACH
I Cﬁ“[
I CaC[R
i C&L{
IF CACH
e
Ir
Ie
e H(“A

IF

IF
IF
EXCHANG

IF CAC[R

U>CAC

MME’W[,L

MM[EA]

PRSI

ACTIVE

U<=CAC

PO

<= €

- MMIEA]

P B
(e

Zom o~ 35D
(g e I e

3
5

I
<= OR(ACI[R])
<= OR(ICTL)
<= OR(OCTL)
| R

)
o
A
o
#ied

- PC: PC <~ EA
~- STREAA- MM[EA]
<~STREAM= AC[R]
EN)] <~STREAM->

CTIVE P

THAN ONE A B P ¢ TO EA
BlleﬂC 2}, BRANCH “O BA
21 fr2y,

F
R R2], (D
1] <CAC [F D

b e
-3
st

=
N

3.
" [

(o]
s
SF
oo P . o
e b = I P o I v
&
e
f 3 p
R & Py

CIRr21,!¢ i TO E
CACTIR2Y, DIETO
Cir271, DITTO
ACI[R2], (DITTO
221 DITTC
DITTOY
MENTS

s
2
o]

o

g

=
M

BY CAC[RI1].

PR N

[N M A = A S P S T - -

E=N

she she i

e e e

By

s

s i I B

LELECT 1\[\ {) C(‘;rl’” oL

11100l0l, KEY = 0l000100 *#%%)
U BELEC ‘ \) ‘ OF -
TIVATE PE=S JCH THAT THE P’W;LOQCE“K’ I5 FALSE
B A LORL (LHOTOMASK)
TLY “CT[VL -5 Ou
LHSWRUC?IO& ANT CQMPLM

SELEC
?P}Fﬂw%
AMLIVI”Y O A :

COMSEL,R (N=1) PERFORM SELECT,R IN
ACTIVITY Op
(***ASSEM

a5 THCC

STROUCTIO
LY acxivL SUBSE
WRITTEN TO USE

IN THE V

M Qmﬁ COMPLEMENT

R PN ER ~y sTat -
ACE OF COMSEL,

RSTION ‘TE“"""L}(}YT SET***%)

ONS IH THE AS \GE, A SET
(mez 4,02 TH
MACHINE INS .

THEL
LD ASE WITH
s8T KBEY = uﬂ;ﬁﬁlﬁl : 0o,
SETREL HET Jldulqﬁﬁ, MAEL 31001000
(FxESETRE] H=0 4%% CAUSES A HNBEW ACTIVITY
5 ‘
SET fH N=1 AND SUPPRE

ia

i
g
i
e
3

Wy e . Nt e
U2 5§ S5ET T8 YOKEY AHD MABW |
U3 SE SET BIv

Ud SETHG SET B

3
]
-
e
S
iy
W
3
¥y
bt
7

Ui) ‘u’;

o
[ORe!

o
[PRO RS

B

T

B RIS Lo
SETHME. SET BIT OF QVE PEOIF AC
UP SpTMIn SET BIT OF ACIR] Is5 #MIx
)& SET 8I7T OF ONE PR IF AC[Q_
SETORIT OF OHNE P&,
RESET 2IT OF ONE PH,

U R T ST S U

T VALOE,
I8 MAXIMUM VALUE.
VALUE.

Is5 MINTIMUM VALURE.

1s

I ACIR
19 &sLn1 ACTR ?WIWT
1A Sax AC[R] <= SHIFT

Fa
(€3
s
{

5
Ld

'yl

fa—

N
§

HA{ rsm

e R
]
A
Fas
i

i3 -
1¢C -
1D -
ig -
1F -

AR AN o U AR

i un Ui s

=

®

PO AR LT L Ut e

A

i

WUy

o

Oy O

e

&

OPF MNEMONIC DESCRIPTION
go -
01 -
U2 oM <= AC[RI1]
AC <—~ ICTL
cr
ACT
OCTL
ACIR3] N
SELECT <= AC
AR AC[R3] <- AC
04 FAR AC[R3] <- AC[R1
05 SR ACIR3] <=~ ACI[F
e ACIR3] <= AC

AC|
i

FLTG PT

ACIR. <~ AC HNTE
AC[H <- A FLT

ey

,»"»J &

- f‘*‘f"[e

O+ e

R 221
<~ AC[RY] DIV
1]

?LD&T b POTIHT

R
v}
[@]

)
3
GO0 e

[
AC
K

b b
p

mnlibe el B

PTG eeeeny PO [y pUesoy pemeny emamy ey e feeey
; =3
Lad L) L L Lo Lo L Ll {0 (s e
R
~
]
e
Osﬁ_-ﬁtw

303
~

i
=

UF §OT

A
§
OO,

A /
10 MORM A <= NORMALIZATION(ACIRLI]Y, ACIRZ] <~ SHIFT COUNT
11 FPIX ACIR <= BHNTIER(ACIRIT])

[
5]
V‘\
- 4
.
1
{3
smomy

LOGICAL (nc alg,a
ARITHMETIC RIGHT(

[RV Rt
mu
o
e
o
il
o
iy
{ad

P
ot
i

frd ot ek oo o

E -
—

00 LI
LICT
LOCI

01 -

02 -

03 AI AC[R] <= AC[R] + OPD
AICT ICTI <= ICTL + OPD
ACCT OCTL <= OCTL + OPD

04 -

05 91 AC[R] <= AC[R] =- OPD
SICT ICTL <- ICTL - OPD
SOCI OCTL <= OCTL - OPD

~E g e s -3~

OP HMNEMONIC

e
el
o

- [;‘;Q}

OCTL <~ PEM[EA]
SELECT <~ PEM[EA]

Al <= AC[R]

]
@]
4
’“}
EL”

e
et
4

-
-

ul

ISR O N o B v B v
U
[l

x ,J [
51C 93@{@&1 <= ICTI
S0C PEM[EA] <= OC
g9, PEM[EA] <~ SELRECT

03 AM AC[R] <~ ACI[R
AMIC ICTL <=~ ICTL
AMOC OCTL <= GCTL

04 FAN AC[R] <- AC[R

Us 9H AC[R] <~ AC[R
SHMIC ICTL < Icrn
5MOC OCTL <~ OCTI - DEM[EA

R] <= AC[R] = PEM[EA] FLOATING POTNT

U oM ACTT
U7 -
U8 My ACIRT <= BOIR

A
i
09 FMM
0A DM

=l

TG ey ey ey
et bt gt
e

;;3,\

e
0C ORM
Ul ANDM
OB BEORM
UF -

a: FLOATING POINT
Or 1
AND

w r"*, ,:3

e
SEeReIeRo NS RO R

]

2 P

=
i
b

ot
i

]

]

]

<= AC{w(uvqw)l MOD PEM[BA
: S

]

]

]

e e B B

