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ABSTRACT

One of the useful results concerning EOL Tanguages States that a
language is an EOL language if and only if it is a coding of a OL
language. In this paper we refine this result by demonstrating that
there exist EOL languages that are not codings of languages that are
generated by propogating OL systems with finite axiom sets. This

solves Problem 10 from the "L SYSTEMS PROBLEM BOOK '75" (see [41]).



I. -INTRODUCTION

One of the useful results about EOL Tanguages says that a language
is an EOL language if and only if it is a coding of a OL language (see
[11). The proof of this result from [1 ] (see also [6 ]) essentialy
requires that the "underlying" OL system contains erasing productions.
As it is much easier to deal with the structure of derivations in OL
systems that do not use erasing, the open question for the last few
years was: can one get every EOL language as a coding of a Tanguage
generated by a propogating OL system with finite axiom set? (See
Problem 10 in the "L SYSTEMS PROBLEM BOOK '75 from [4 ]).

We settle this question in the negative. Our solution is effec-
tive in the sense that we provide a result characterizing a subclass
of CFPOL Tlanguages which allows one to construct examples of EOL

languages that are not CFPOL languages.

IT1. PRELIMINARIES

We assume the reader to be familiar with the rudiments of L systems
theory (see, e.g., [3] or [6]) and with the basics of formal language
theory (see, e.g., [71]).

The basic type of L systems considered here are propagating OL
systems with finite axiom sets (abbreviated FPOL systems). For such a
system we use the notation G = <z,P,Ax> where = is the alphabet of G, P
its set of productions and Ax its axiom set. We will write a—uo
for "a-»o is in P". L(n)(G) denotes the set of all words derisab1e in
n steps in G. A letter a in ¢ is called (stnictly) recwrsive in G if

a=i>aa8 for some a,Bes* (such that ag#A). Unless clear otherwise we con-

sider only xeduced FPOL systems, it is such FPOL systems G in which



every letter of = occurs in a word of L(G). For a positive integer m,
the m-sLicing of G, is an FPOL system G(m) = <z(m),P(m),Ax(m)>, where

Z(m) = I, p(m - {a—>ata=ta}, and ax(m {xtxéKE:%/ L(1)(G)}' "
G 1=

is obvious that L(G(m)) = L(G). For a letter a, AccG(a) denotes the
set of all letters accessible from a in G.

If x is a word than [x| denotes the length of x, min x denotes the
set of letters that occur in x, pneﬁnx is the prefix of x of length n
and Auﬁnx denotes the suffix of x of length n. If £ is an alphabet
then ¢y X denotes the word resulting from x by erasing from it all
letters that are not in . To avoid very cumbersome wordings we will
often talk about "a Letter in a word" when we really mean "an ocewrence
of a Letter in a word", this however should not Lead to a congusLon.

For a language K, Length (K) denotes the length set of K,

PmeénK = {p&eﬁnx:XeK}, SuénK = {Auﬁnx:XEK} and ¢ZK = {¢Zx:x£K}.

We will use N,N+,R,R+ to denote the sets of nonnegative integers,
positive integers, nonnegative reals and positive reals respectively.
For an ultimately periodic set Z we use thres 7 to denote its smallest
threshold, and for this threshold we use per Z to denote its smallest
period.

We end this section by proving a result that will be very useful

in the sequel.

Definition 1. Let G be an FPOL system and let K be a language.

Then the existential spectrum of G with respect to K, denoted as

Espec (G,K), is defined by Espec (G,K) = {neN:( Jw) [weK]}.

L(n)(G)
The following result is from [2 ].

Theorem 1. If G is an FPOL system and K is a regular Tanguage,

than Espec (G,K) is ultimately periodic.



We introduce now a subclass of FPOL systems that is (mathematically)

quite pleasant to deal with.

Definition 2. Let G = <z,P,Ax> be an FPOL system. We say that

G is Ampatient if
(Va,b).(Vr,s) [bis accessible from a in r steps if and only if
N

b is accessible from a in s steps].

Let us recall that a coding is a letter-to-letter homomorphism,
and a coding of an FPOL language is referred to as an CFPOL language.

Lemma 1. A language K is a coding of an FPOL language if and only
if it is a coding of an FPOL Tlanguage that can be generated by an
impatient FPOL system.

Proof.

Clearly it suffices to show that if K is a coding of an FPOL
language then it is a coding of a Tanguage generated by an impatient
FPOL system.

Thus let p be a coding and G = <z,P,Ax> be an FPOL system such that
K= p(L(G)). Let for every a in Z,Ga = <%,P,a>. From Theorem 1 it
follows that for every b in %, Espec (Ga,z*{b}z*) is ultimately periodic.
Let My b be a fixed integer larger than thres (EApec(Ga,Z*{b}z*)) and

divisible by pen (E&pea(Ga,Z*{b}Z*)). Finally let n = l ‘ m
a,bel

Now if we consider the system G resulting from the n-slicing of G

a,b °

then, clearly, it is impatient.



ITI. SOME SPECIAL CLASSES OF LANGUAGES
In this section we introduce several basic notions needed for
our analysis of CFPOL languages.

Definition 3. Let K be a language, Kg;z+.

1) We say that K is Legt tight if
(1) (V<M=B) +[Lﬁ BaeK th@ﬂ @éK]a
)
(1) (Vo,B) +[£6 aeK then Baf¢K], and
z
iii vk) L(3n) (Vap,0p,8)
(iii) | )N+ "W o+

[46 a1BeK,azBeK, |ag |<k andflelzpk'thanﬂal‘ anl.
2) We say that K is night tight if
(iv) (¥ aiB) +[£6 aBeK then afK],
T
(v) (Vaj,B) +[i6 aeK then apfK] and
%
(vi) (v k) +(3n) (¥a1,07,8)
N+ k‘N+ "
[46 B&lsK,deﬁK,[allSk and IB[znk then 01 = uz].
Example 1. Let £;,E, be two disjoint alphabets, Tet p,, be a

coding from £, into I, and let py; be a coding from %, into ;. Then

+
{p,1(B)B:Bex,} s left tight, and

t

Ky

+
Ky = {a+pip(a):aen;} s right tight.

Definition 4. Let K be a language over I.

1) We say that K is f§initely prefixed if
(3k) ,(¥n) (3z1,...,2)
N W Ly
E(Izil=...=lzkl=n) and {xeK: |x[>n and pref (x)£{zy,...,z,}} is finite].
2) We say that K is f§initely sufgixed if
(3k) (¢n) (3z1,...52))
N kgt
[(lzil=...={zk{=n) and {xeK:|x|>n and suf (x)E{z1,...,z)}} is finite].



Example 2. It was proved in [ 5] that every DOL language is both

finitely prefixed and fintely suffixed.

Definition 5. Let G = <z,P,Ax> be an FOL system. We say that

G is extreme if
( Ba)N(43b)§+[£5 Xg==X;==...=>X_ is a derivation in 6

then eithen |xm}<a or |x[>bem]

Definition 6. Let K be a language. We say that K is CFPOL-

extreme if
(V Ky eK) [{f Ky=p(L(Gy)) where o is a.coding and G; is an FPOL system

then Gy is extreme].

It is rather difficult to provide examples of CFPOL-extreme
languages, unless one has a result that binds together a:"structural"
property of a Tanguage with the "grammatical" property of being
CFPOL-extreme. Such a result is provided now.

Theorem 2. Let K be a language over I such that
i) (Vv xl,xz,y)z*(v'a)z[éﬁ x1ax,eK and y#a then xiyx¢ K,
and

1) (V) 030 (Y a8.Bim)
[if aByeK,aByeK, |8]<k,|8|<k and ]uylznk then g=g'].
Then K is CFPOL extreme.
Proof.
Let us assume that K;€ K and that K;=p(L(G)) where p is a coding
and G=<¢,P,Ax> is an FPOL system. We will show that G is extreme.
“1) First of all Tet us notice that we can assume that G is

impatient. If we construct, as in the proof of Lemma 1, an impatient

FPOL system G equivalent to G and we find constants g bﬁ



from Definition 5, then it suffices to take constants aG=a§-and

bx -
bG=ﬁ§-(where G results from G by n-slicing) to show that G is extreme.

2) We shall divide letters in I into two categories.

1

r1 = {aer:if a—>a then |a| = 1}, and
p

L, = {aer:dif a—>a then |a|>2}.
P

That £;= Z;u Z, is proved as follows.
Let us assume, to the contrary, that there is a Tetter a in £ such that
a—>b and a—>o, where bex and oer’ with |a|22. Let z be a word in L(G)
ofPthe form z = wiaw, and Tet us consider two one-step derivations

from z:

z=>71 = wibw, and z=>7z, = WiaW,

which differ only in the way the given occurrence of a is rewritten.
But then both o(z;) and o(z,) are in K which contradicts assumption
(1) from the statement of the theorem.

3) Let us now make a subdivision of letters in z;.

il

211 = {ael;:i{f a—>b then o(a) = p(b)}, and
P

™
et
N
i

= {aeX:4f a—>b then o(a) # o(b) and beri;}.
P

That £; = £13U Ly, is proved as follows.
Let aeZ; and let us consider b; and b, such that a—b; and a—>b,.
Let z be a word from L(G) of the form z = wjaw, andplet us aga?n con-
sider two one step derivations from z:
z==7; = wibjw, and z=>z, = Wibow,
whigg differ qnly in the way that the given occurrence of a is re-

written. As o(z;)eK and p(z,)eK we conclude

Ai§ a—=b; and a—>b, then o(by) = o(by) ... (*) .
p p



Let us now consider a production b;—>8 from P. Since G is impatient
and aezy, B8] = 1. But G is impatient and so a=>g thus, by (*),
o(B) = o(b;) which completes the proof. ;
4) G satisfies the following property:
A4 WE=PWL ™ TEWTI W T W isca derivation in G

i

and |w;| = |w; | then |wj| = Jwy |

i+1
This is proved as follows.
If fws| = |Wi+]| then w, consists of letters from £; only. Since letters
from zy derive letters from z; only, we have 4wji = fwi].
5) G satisfies the following property:

there exists a positive integer constant ng, such that

Af Wg==Wi==. .. =W —>w

=2, ..=2W. s a derivation in.G
Ng n-0+l ) -J ”

and lwn0|<|wn0+]| then ]wj|>|sz]|.

This is proved as follows.

Let D be a set of derivations in G constructed in the following
way. One starts with an axiom and carry on a derivation

wo==>w1==>...==>wi as long as:

(i) either |W1| = lwi_]l, or

(ii) there exists a strict recursive symbol a in Wes for some f<i,
such that it contributes to Wi a word of the form cap with
aB#A.

Clearly one of the above two possibilities must occur because if a

derivation does not contain the second situation than the Tength of

every word in it is bounded by a constant dependent on G only. Let

D, be the subset of D which consists of derivations which do stop by

the second condition. Let ny be the maximal Tength of a dertvation -

in D.



We will demonstrate now that if one takes a derivation
D:w0==>w1==>...==>w1 from D, and then continues it further as a
derivation

Diwg== .. =Wy == then lei>le+11-

To prove this let us assume, to the contrary, that

[wi| =|w The situation is the best visualized by the follow-

J J‘+1"
ing picture.

o

T 0 02 03 T

J+l

Note that sz:ZT, W.,1€ Zfl, and 0;0,#A.

3+
Let |010,03]|=k and let n, be a positive integer constant satisfying
condition (ii) from the statement of the theorem. We will construct

now two derivations D; and D, resulting from D in such a way that



(i) both D; and D, have the same inital piece which is simply a deri-
vation w= ...=>w; as in D,

(i) then in Dy we iterate (nk+1)—times the piece from We to w, in such
a way that in each iteration a contributes the same segment aag
but elements of vy and & are rewritten in such a way as in D, that
is they "aim" at m; and m, respectively and if they reach them then
they obviously do not change anymore as far as their coding through
p is concerned (remember that wj+]g:2§1); after the completion of
this iteration we continue as in the piece from W to Wj+7 in D.

(ii1) in 5@ the situation is almost the same except that we iterate
(nk+2)—t1mes the piece from We to We o
Let us now look closer on the results of D; and D,. (In what

follows: far-a word x, x(i)'denoteS“the result of rewriting of x by-a

single iteration step from the-above. descriptions) Let:s:=ﬂnk.

First of all after the iteration is completed we get

(iv) in D the string of the form
80,08 () age () (8D ()

..;&( adBB %, and

(v) in D, the string of the form
Y(S+1)a(5+1).,.a(l)aaBB(l)...B(S+])6(S+1)'
Then after completing the derivations we get-the following strings in K.
(vi) fromDy = ¢
21 = o(m)((81))° 1 0(02) (p(03))° T o(m2), and
(vii) from D,
25 = o(m)(0(01)) 0 (01)0(02)0(03) ((83))* o (m).
But |o(0,) |<ks|0(07)0(05)0(03)|ck while, remember that ©,03#A,

lp(ﬂl)(o(91))s+](p(eg))s+1p(w2)|>nk which contradicts conditon (i{)

from the statement of the theorem.
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Consequently |Wj+1|>le| and so (5) holds.
Now to complete the proof we choose
3, to be (the maximal length of any word appearing in any deriva-
tion in D)+1, and

bG to be any number smaller than 1, for example, 0.9.

Example 3. Let K be a language over V and let V,,V, be
alphabets such that V,Vy,V, are mutually disjoint. Let p; be a one-to-
one coding from V to V; and p, be a coding from from V to V,. Than,

by Theorem 2, {wpj(w)po(w):weK} is CFPOL extreme.
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IV. AUXILIARY RESULTS

In this section we investigate the structure of an FPOL system
that generates (through a coding) a Tanguage KE;ZTZ; where %1,I, are
disjoint alphabets. Our investigation in this section proceeds in such
a way that starting with the very simple assumption about K (namely
that Kg;ZTZZ) we will be adding more and more constraints on K at the
same time observing their implication on the structure of an "under-
lying" FPOL system.

To avoid tivial considerations we will assume that K is an in-
finite Language and acconding to Lemma 1 we will restrict owrselves
fo Ampatient FPOL systems only.

Thus Tet 2;1,Z, be two disjoint alphabets. Let KEZGEZ be a
language such that K = p(L(G)) where p is a coding and G = <3,P,Ax>
is an (impatient) FPOL system.

Definition 7. Let ~ be an equivalence relation on & defined

by : avb if and only if p(a) = p(b). Let ae:.
1) a is called early 1if o(a) ez,
2) a is called Late if o(a) eZj,,
3) a is called stnong if
(v b)z[iﬁ beAaaG(a) then brval,
4) a is called weak . if
(v b)z[iﬁ bsAccG(a) then bfal],
5) a is called mixed if

( Eb,c)z[beAccG(a),CSAcaG(a) and b#c].
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We will use the following notation to denote various subsets

of %.
Ea G - early letters in z,
La G - Tlate Tetters in %,

Stn G - strong letters in z,

We G - weak Tetters in z,

M{ G - mixed letters in I,

Eas G- early and strong letters in z,
Eaw G - early and weak Tetters in %,

Eam G - early and mixed Tetters in I,

Law

G
G
Las G+~ late and strong letters in 1,
G - late and weak letters in 1,
G

Lam G - Tate and mixed letters in 1,
We leave to the reader the obvious but tedious proof of the
following result. This result although not always explicitly
mentioned underlies most of the further considerations in this
section.

Lemma 2. L(G) = Zyu ZouU Z3u Zy U Z5, where
7, < (Fas6) " (Las6) ™,
)+

L.
7,< (EasG) " (LawG) 2(LasG

b ]

Zs< (EasG)  (Faws) 3 (Las6) ™,

+
(

7, S (EasB) " (LawG) ™™ (LamG) (LasG)*, and

Zs < (Eas6)* (EamG) (EawG)*5(LasG) ™,

with 0<R2,23<06505 05 25<2, and 2, is a positive integer constant
dependent on G only.

Moreover the structure of derivations between words from different

components of L(G) looks as follows:
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Definition 8. Let yelL(G).

We say that (an occurrence of) a letter b in y is a Last early
anceston (1.e.a) if there is a derivation from y to a word x such
that in:this derivation:b is an ancestor of the rightmost occur-
rence of an early letter in x.

We say that (an occurrence of) a letter b in y is a §Uust Late
ancestor (f.l.a) if there is a derivation from y to a word x

such that in this derivation b is an ancestor of the Teftmost

occurrence of a late Tetter in x.
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Lemma 3. Let us assume that ¢21(K) is right tight and ¢22(K)
is left tight. Then
1) If yeZ; then the rightmost early strong letter in 'y is a l.esa.
and the Teftmost late strong letter in y is a f.1l.a.
2) If yeZ, then the rightmost late weak letter in y is a l.e.a. and
the Teftmost late strong letter in y is a f.l.a.
3) If yeZ; then the rightmost early strong letter iny is a l.e.a.
and the leftmost early weak letter in y is a f.1l.a.
4) If yeZ, then the late mixed letter in y is both 1.e.a. and f.1l.a.
5) If yels then the early mixed letter in y is both 1.e.a. and f.1.a.
Proof.
The obvious (based on Lemma 2) proofs of 1), 2) and 3) are left
to the reader.
4) Let yeZ,. Let a be the late mixed letter in y and Tet us assume
that y contains also a letter b which is a 1.e.a. or f.l.a.
4.1) Let us assume that b occurs to the right of a. Then clearly it
must be a f.l.a. Let us now consider a derivation D from y into z in
which b contributes to z the Teftmost late letter in z. Then let us
change D to D in such a way that all letters from y except for a behave
precisely as in D and a contributes now a Tate Tetter to the last word
(Tet's call it z). But then ¢y (p(2)) 1s a-suffix of ¢, (o(z))

which contradicts the assumption that bs (K) is left tight.
2

4.2) Analogously we got a contradiction if we assume that b occurs

to the right of a.
5) This is proved anologously to the proof of 4).
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Lemma 4. If a is an early mixed recursive letter and a—>a is
a recursive production in P, then o must contain either an early weak
letter or a late strong letter.

Proof.

Let us assume to the contrary that the Temma is not true. Let
us consider a derivation D:y=y,ay,=>z=z;azy from a word in Zs where
a is an early mixed recursive letter. Clearly, because of our assump-
tion, all Tetters in z, are strong late and a production used to
rewrite a in y is of the form a—ga (where g consists of early letters
only).

Now et us change D to D in such a way that y1 and y, are re-
written exactly as in D but a introduces a late letter. Let the word
obtained from y in D be z. Then ¢22p(z) is a suffix of ¢22p(2) which

contradicts the fact that ¢22(K) is left tight.

Lemma 5. If a is a late mixed recursive letter and a—ua
is a recursive production in P, then o must contain either late weak
letter or early strong letter.

Analogous to the proof of Lemma 4.

As a corollary from Lemma 4 and Lemma 5 we get the following
result.

Lemma 6. If a is a mixed recursive letter and a—>a is a recur-
sive production in P then |a|>2. Moreover if a=ajaa, then if a is an

early Tetter then |ou,|>1 and if a is a Tate letter then |ap|>1.

Lemma 7. Let a be a mixed recursive letter and let

D:a==>y:=$>...=#>ys be a derivation in G such that in each step of
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this derivation a is rewritten by a recursive production. Let
53a==>§iz?>§éz=>...=*>§; be a derivation in G. Then @Zzp(ys)=¢22p(§;).

Proof.

1) Let us assume that a is an early letter. Let for each k,nk
be a constant from the third condition of the definition of a left
tight language. Now let T, T be two derivations from a word z in Zg
constructed as follows. Both of them are identical on the first
niysl steps and in each of these steps a is rewritten by a recursive
production. Then T continues further for s steps with the condition
that a is rewritten as in D and T continues further for s steps re-
writing all letters precisely as in T with the exception that a is

rewritten precisely as in D.

Hence T Tooks as follows

z = zgg)azgr)z%>zg£)azgr)=%>...=¢>z§z) azﬁr) —
‘Ys! le[
W ) ()
==z YiZ: - =,, , ~>7Z z
My I My | My TS My |

and T Tooks as follows

z = zgz)azgr)=é>zg2)azgr):%>...==>z(2)~ azl")

nlys1 n{YSl
() - (r) () - _(r)
=7 NARA =,.,. >Z y.z
My [y My S5 My | 7S

But by Lemma 6, [zgr) |>ng. On the other hand ¢Zzp(zg2) +sysz£r) )
lysl| lys| lys|

and ¢ p(z(z) y z(r) ) differ at most on their prefix parts which are
Lo nly l+$ S n‘y !+S
S S

¢ o(y.) and ¢. o(y_) respectively. Since ¢. (K) is left tight, we
ZZ S 22 S 22
conclude that

¢Zzo(ys)=¢zzp(ys)-
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2) If we assume that a is a late letter then we can prove

the Temma analogously.

Lemma_8. Let a be an early mixed recursive letter and let
D:a=#>y1=#>y2...=;>ys be a derivation from a in G. Then there exists
a sequence of nonempty words A1y ens0g such that
¢22p(y1)=u1’

¢220(Y2)=@1a2»

Zzp(ys)=a1u2...us.

¢
Proof.
By Lemma 7 we can assume that D is such that in each step of D
a is rewritten by the same recursive production. Hence D Tooks as
folTlows
a=#>yla61=#>yZa8182=%>...=#>ysa6162...ssfWhene
a—>y;aB; is a production jn P,‘
31:ﬁ>82,...,65_1=%>83, and
by. Lemma 6 813...,65 are nonempty.
From this the Temma follows.
Analogously we prove the following.
Lemma 9. Let a be a Tate mixed recursive letter and let

D:a=ﬁ>y1=#>...=%>ys be a derivation from a in G. Then there exists a

sequence of nonempty words aj,...,a, such that
¢y p(y1)=on,
¢210(Y2)=@2&1a

¢le(ys)=as...u2a1 .
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Lemma 10. Let us assume that K satisfies also the following
two conditions:
1) ¢21(K) is CFPOL extreme and infinite, and
2) ¢ZZ(K) is not finitely prefixed.

Then (_Elul)q)Z (K)( Juy) (K)(uluéﬁK).
1

Proof.
Let us consider the set of all derivations in G starting with

an axiom and continuing untill the obtained word either contains a

mixed recursive letter or it consists of strong letters only. Clearly

such derivations cannot be longer than m+1 steps where m is the

number of mixed letters in . Hence the set of last words in these

derivations forms a finite set, say W. We can position W as follows:

W=W;U WU W3 where W€ Z1,WpocZy and W3cZs. If a word in L(G) can

be derived from Ni then we call it a Wi—wond,

Now the proof of the Temma goes through two claims.

¢21(K) Af lz|>kO then

Tz={te¢22(K):(Eax)Z+[(x is a Wy-word or x is a W,-word) and

(zt=p(x))1}

Claim 1. ( 3k0)N+(v z)

is finite.

Proof of Claim 1.

Let U1={¢le(x):x is a Wy-word!.
Clearly Uy is a CFPOL language. To see this take

H=<Eas G,R,Eanly W;> where

+ —_— J—

Ealy Wy={ye(Eas G) :(3y) +(yyeW1)}, and
(Las G)

R={a—>a:a—>0 and acEas G}.
P
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The correctness of the definition of R is insured by the fact that an
early strong Tetter in G derives only early strong letters. It is
also clear that ¢le(L(H))=U1.

Since Ulg;¢zl(K) and ¢21(K) is CFPOL-extreme, H must be extreme.
Let then a and b be constants satisfying Definition 6. Let k0=a.
Then if a word y is longer than a and it is derived in H in m steps
then |y|>bem hence m<l%l~. Consequently y occurs as the final word
only in derivations shorter then i%l-. From the construction of H
it follows then that

(v Z)¢Z (K) A4 [z|>kO then
1

(1)“{ts¢ (K) ( ax)z+[x is a Wyp-word and zt=p(x)]}
is finite.

Let U2={¢le(x):x is a Wpo-word}.

Let us consider an arbitrary derivation D:u1=#>...=#>us in G
such that ujeW,. By Lemma 9 the sequence |¢le(u1)l,!¢le(u2)l,...,
]¢le(us)l is strictly growing and so if z is one of the
¢le(u1),1siss, then T§2)={te¢22(K):( 3x)2+[x is a W,-word and zt=p(x)]}
is finite. Hence if we set k0 to be the maximal Tength of a word in
W and [z|>k, then T¢°) s finite.

But for every z in ¢21(K), TZ=T§1)U ng) and so Claim 1 holds.

~Claim 2.

Y= {ys¢ (K) 1 3x) +[x is a W3-word and ¢22p(x)=y]}
is 1nf1n1te.

Proof of Claim 2.

Let PR be the set of all early mixed recursive letters

occurring in words of W3. Let for each ai,a§1)...a§1)... be the

(infinite) string resulting from the catenation of words
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a§*),.,.,u§1),... which satisfy the statement of Lemma 8. Let the
set of all these catenated words be X.

Since ¢22(K) is not finitely prefixed, there exists a positive
integer n such that
{ye¢22(K):Iy|>n and pneﬁn(y)éPnaﬁn(X)} is infinite.
Consequently, by Lemma 8, Y is infinite, and so Claim 2 holds.

Now let ko be a constant from the statement of Claim 1 and let
u; be an arbitrary word from ¢21(K) such that [u1+>k0. (Since
¢21(K) is infinite such a word exists.) For this given u; Tet us choose
Uy to be such an element of the:set'Y (from the statement of Claim 2)
which do not-belong to the set Ial {from the statement of Claim 1).

Since u,eY, there do not exist a Wz-word x such that
Uyun=p(x) and because of our choice of u, for the given u; there do not
exist a word y which is either a Wy-word or a Wy-word such that
Uuo=p(x).

Consequently uju,¢K and the theorem holds.

V. THE MAIN RESULT

Now we can easily prove the main result of this paper.

Theorem 3. L(EOL)/L(CFPOL)#0.

Proof.

Let Z,%, be two disjoint alphabets. Let K;S £ be an EOL
language such that K; is infinfte, right tight and a CFPOL extreme.
Let Kzszzz be an EOL language such that K, is left tight and not
finitely prefixed. Then
(i)  since L(EOL) is closed w.r.t. catenation (see, e.g., [3]),

KyKoeL(EOL).

(ii) from Lemma 10 it follows that K;-K,AL(CFPOL).
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Example 4.

Let M be an infinite DOL language over an alphabet . let ¥ and ¢
be two new alphabets: such that £, ¥, % are pairwise disjoint and let
o1 be a one-to-one coding from r into £ and p, be a one-to-one coding
from T into .
Let Ky={wepq(w) pp(07(W)):weM}.
Clearly K; is infinite, right tight and (by Theorem 2) also CFPOL
extreme. It is also obvious that K; is an EOL Tanguage.
Let G=<V,P,a> be an OL system such that
V={a,b,b,c,c}, VN (ZuTuz)=p, and
P={a—>bab,a—>cac,b—>b,b—>b,c—>c,c—C} .

Then, by Lemma 10, K;+K, is not in L(CFPQL)fwhi1enobvious1y

Ki+K, is an EOL Tlanguage.

Let us notice that both K; and K, from Example 4 are CFPOL
languages, and so as a corollary from Lemma 10 we also get the
following result.

Theorem 4. LgQFPOL)~1s not closed with respect to- catenation.
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