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ABSTRACT
A notion of a DOL system with rank is introduced. It provides
a structural characterization of polynomially bounded DOL systems.

Several consequences of such a characterization are studied.



INTRODUCTION

L systems (see, e.g., [4], [6] or [8]) have recently gained con-
siderable attention in both formal language theory and theoretical
biology. One of the most interesting and physically best motivated
topics in the theory of L systems is that of "local versus global
properties". It is concerned with explaining on local level (sets of
productions) global properties (1.e.; those properties of the language
or the sequence generated by an L system whose formulation is independ-
ent on the L system itself).

This paper is concerned with the topic:-of "local versus global
properties" in the case of DOL systems. It provides a structural
characterization of those DOL systems whose growth functions are
polynomially bounded. In this sense it continues the work from [9]
and [11].

We present here a full -and extended version of an extended
abstract [2]. We also prove some results not stated in [2]. On the
other hand we do not prove here Corollary 1 from [2], because in the
meantime the equivalence problem for arbitrary DOL systems was

proved decidable (see [1]).



PRELIMINARIES

We assume the reader to be familiar with basics of formal
language theory (see, e.g., [10]). We use mostly the standard
language-theoretic notation. The following is perhaps worth mention-
ing.

If A is a set then P(A) denotes the set of subsets of A. We use
N, N+, R, R" to denote the sets of nonnegative integers, positive
integers, real numbers and positive real numbers respectively. In
this paper we will consider polynomials over N with integer coeffici-
ents and a positive coefficient at the highest power. We will use
Pol(k) to denote the set of such polynomials of degree k. For a
function f from a set X into itself we use fi to denote the i-folded
composition of f with itself.

For a language K, Length K denotes the length set of K and for
a positive integer q,ﬁeAAqK={neLength K:n<q}.

For a word x, |x| denotes its length and min x denotes the set
of letters occurring in x. If V is a set of Tetters then #Vx denotes
the number of occurrences of elements from V in x and ¢V(x) denotes the
word resulting from x by erasing all letters in x that are not in V.

Now we recall some basic notions concerning DOL systems.

Definition 1. A DOL system is a triple G=<I,8,s> where I is a

finite alphabet (the alphabet ¢f G), w is a nonempty word over & (the
axiom of G) and & is a homomorphism from & into z* (called the transi-

ton function of G).

Definition 2. Let G=<i, 6 w> be a DOL system.

1) The sequence of G, denoted as E(G), is the sequence wp,wy,... of words

over % such that wg=w and w1=61(w) for every i>0.



2) The growth function of G, denoted as fes is a function from the non-
negative integers into itself such that fG(n)=lwn! for every n>0.
For a word z in Z+, fG,z denotes the growth function of the DOL
system Gz=<z,6,z> and ff Ve 1 then fG,z,V is a function from

nonnegative integers into itself such that f (n)=#,8"(z). We
v

G,z,V
say that G is polynomially bounded if there exists a polynomial p
such that, for every n>0, fG(n)gp(n).

3) The Language o4 G, denoted as L(G), is defined by
L(G)={X€Z*!5i(w)=x for some i>0}.

4) lLet aer. We say that a is wseful if aemin 61(w) for some i>0. -We
say that a is expansive if Si(a)=a1au2aa3 for some >0 and ay,aj,,03
in ©*. (We cal G expansive if it contains a useful expansive
letter.) We say that a is recwwsive if 61(a)=a1au2 for some 1>0

and aj,ap in I*,

14 not clear othewwise, we consider only DOL systems that generate
Anginite Languages, because otherwise the probLems we considern become
trivialk.

Definition 3. Let G=<%,8,u> be a DOL system and Tet K be a

language. The spectrum of G with respect to K, denoted as Spec(G,K),
is defined by Spea(G,K)={neN:6n(w)eK}.

The following result is a special case of a more general theorem
from [3].
Lemma 1. If G is a DOL system and K a regular language, then

Spec(G,K) is an ultimately periodic set.



Defintion 4. Let G=<z,8,w> be a DOL system and m a positive
integer. The m-decomposition of G, denoted as DecmG, is a finite set

GpsersG of DOL systems such that, for O<izm-1, Gi=<255}wi> where,

m-1
for every a in %, §(a)=a if and only if ém(a)=u. The set U of DOL
systems is called a decomposition of G if there exists an m, such that

U=DecmG.

Definition 5. Let G=<%,8,w> be a DOL system. G is well-

sliced if

N2 (Ymn) i o"(@)min (" (@)1,

2) (V) (YV)py)[i6 fg 4,y is bounded then
(,\fm,n)N+[d>V(6m(a))=¢V(6n(a))]]

Definition 6. A decomposition of a DOL system is well-sliced if

each of its elements is well-sliced.

Lemma 2. Let G=<I;8,w> be a DOL system. There exists a well-
sliced decomposition of G.

Proof

First of all it is well known, see [7] or [4], that the sequence
min w, min 8(w), min 8§2(w),... is ultimately periodic. (Notice that
this is also an immediate corollary from Lemma 1). Let t be the
threshold of it and p its period. Let my be a positive integer larger
than t and divisible by p.

Now let a be in I and Tet V be a subset of . Let us assume that
fG,a,V is bounded, in other words that the sequence ¢V(5(a)),¢v(62(a)),...
is built up from a finite number of words only. Let the set of these
words be b,,...b b, ....b b b with bijav for

“tting’ T 21 2ny” " T kgt knk
1sizk, 1sjsn1. But for 1sisk,



= * * *
Z,=(z\V) {1 }(Z\V) (b, ... (2\V) (b,

*
1|r]1}(2\V)

is a regular set and so, by Lemma 1, Spec(Ga,Zi) is an ultimately

periodic set. Llet My be a positive integer larger than the thres-

hold of Spec(Ga,Zi) and divisible by the period of Spec(Ga,Zi).

Finally let m be the least common multiple of all the numbers

m o for all a in £ and the number my. Then, obviously, the

m-decomposition of G is well-sliced.

Definition 7. Let G=<%,8,0> be a DOL system and let a be in z.

Then we say that

1) a is of growth type 0 (in G) if AeL(Ga), and

2) a is of growth type 1 (in G) if AéL(Ga) and L(Ga) is finite.

(1)

Now comes the definition of the basic notion of this paper.

Definition 8. Let G=<z,8,0> be a DOL system.

The rank of a Lettern a 4in G, denoted as nanke(a) is defined
inductively as follows.
(i) If a is of growth type 0 or 1 in G then nan&e(a)=0,
(ii) For n>1, let §, denote the restriction of & to
zn=z\{b:nanhG(b)5n} and Tet Gn=<z,8n,m>.
If a is of growth type-1 in G , then nankG(a)#n.
If z is a word consisting of letters with a rank only, then the
rank of z in G, denoted as nanhG(z), is defined as the highest
rank of a letter occurring in G.
We say that G is a DOL system with rank if every useful letter in
G has a rank. In that case the rank of G, denoted as rankG, is

defined as the highest of the ranks of useful letters in G.



The following two results follow directly from the definitions.
Lemma 3. It is decidable whether an arbitrary DOL system has a

rank.

Lemma 4. Let G=<Z,8,w> be a DOL system with rank. Let K be a
decomposition of G and Tet H=<V,§,0> be in K. Then for every b in V,

nanhH(b)=k L§ and only L§ nanhG(b)=k.



RESULTS

In this section we investigate properties of DOL systems with
rank.

Lemma 5. Let G=<%,8,0> be a well-sliced DOL system with rank. Then
(Y z)z+[iﬁ /uxnhG(z)=k then

(BpZ)PoZ(k)(V n)N_I_[x’,ﬁ n>2k ;Chen;fG;z(n)=pz(n)].

Proof.
The proof goes by induction on nankG(z).
(1) Let nankG(z)=O.
(i.1) If z= aer, then the result follows immediately from the second
condition on a well-sliced DOL system. (see Definitions 5 and
6, take V=x).

(i.2) If z=aj...a, with A15. 052,67, then, for every n>0,

t

: t
fG,z(n)=22 fG’ai(n) and so by (i.1) the result holds.
i=1

(ii) Let us assume that the result holds for every z in 2 with
nanhG(z)fk-1.

(ii1) Let nanhG(z)=k.

(ii1.1) Let z=ael.

(ii1.1.1) Let a be a recursive letter.

Then clearly §(a)=caB with nanhG(as)<k and ag#A. Hence, for every

positive integer n,

n-l(

s"(a)=s""1(a)...5(a)uass(g)...s" 1 (8),

and so if n>2k-1, then



n-1
fG,a(n)=|a[+}ae|+fG’aB(1)+...+fG’aB(2k-2)+ 28 fG,aB(i)
i>2k-2

If we set now C to be the positive integer constant equal

to ]+]“B‘+f8,a8(])+"'+fG,ae(2k'2)’ then we get
n-1
fG,a(n)=C+ 22 fG,as(i) .
i>2k=2

Since nanhG(aB)<k, the above summation yields a polynomial of degree k
and so the result holds.
(iii.1.2) Let a be a nonrecursive letter.
Then, clearly, 8(a)=ugbyas...ba. with bi,...,b ex\{ak,ag,...oa el s
nanke(bl...bs):k and &anke(uo...us)<k. From the second condition on a
well-sliced DOL system (see Definitions 5 and 6, take V equal to the
set of all letters in = of rank k) it follows that each bi,Tgigs, is
a recursive letter.

For every positive integer n,
f =f

k(”'])+fa,b1(”'1)+"'+f n-1),

(
¢ G,b

G,a(n) .

Gy0pg-- 0
where by the inductive assumption fG,“0-°'“S is a polynomial of degree
smaller than k, and by (iii,1.1) each fG,b.,1sjss, is a polynomial of
degree k. ’

Consequently if we take n>2s, hence n-1>2s-1, then the result

follows from (iii.1.1).

(iii.2) 1If zex’, then we complete the argument in the same way as in (i.2).



*

Remark. Please note that the bound n>2k results from the follow-
ing. For the letters of rank 0 we get a polynomial description of
their growth from the first step on. If a letter b is recursive of
rank 1, hence §(b)=abg, then we get a polynomial description of its
growth after rewriting it at least once and after we get a polynomial
description of growth of ag (which is of rank 0). If a Tetter b is
nonrecursive of rank 1, then it takes one step for it to introduce
recursive letters and one step for each recursive letter to introduce
itself with some letters of rank 0 for which it takes again one step
to settle for a polynomial description of its growth. Iterating this
argument we gat that, indeed, it takes more than 2k steps for a letter

of rank k before its polynomial description settles down.

As a direct corollary from Lemma 5 we get the following result.

Theorem 1. If G is a well-sliced DOL system of rank k then

(BpG)POK(k)(vn)NJM n>2k then f.(n)=ps(n)].

Theorem 2. Let G be a DOL system of rank k. Then
(3"0N+(apo""ANPT)POZ(k)(vn)N
[i4 n=tem+u with O<u<m and t>2k then fG(n)=pu(t)].
Proof.

It follows directly from Lemma 2, Lemma 4 and Lemma 5.

Corollary 1. Let G be a DOL system of rank k. Then

(3 Cl)R+( ECZ)N+(V n)N+[C1 -nkst(n-l )5c2-nk].

Proof.

Let G=<%,8,0>. By Theorem 2 there exists mxz1 and m polynomials
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Pose«sPp of degree k such that if t>2k and n=temtu with Osu<m then
fG(n)=pu(t). Hence if n>2kmt+u, then fG(n)=pu(ﬂ%9). But pu(ﬂﬁi) is a
polynomial on n of degree k; let us denote this polynomial by gu(n).

Let MAX(n) be the polynomial of degree k resulting by taking as
the coefficient for n£,0§2§k, the maximal of all coefficients of n®
among all gu(n), O<u<m. Similarly let MIN(n) be the polynomial of
degree k resulting by taking as the coefficient for ng, 0<2<k, the
minimal of all coefficient of n* among all gu(n), O<u<m.
1) Let Z(n)=MAX4n)+max{fG(1):05152km+(m-1)}.
Obviously fG(n)SZ(n) for all n>0.
We have Z(n)=agnk+21(n), where Z;(n) is a polynomial of degree smaller
than-k. Let ny be the smallest nonnegative interger such that for
every nzng, aonkzzi(nsl).
Now Tet us chooée
co=(2ap+1) (abs(Z(1))+1)<(abs(Z(2))+2) ... (abs(Z(ng))+1),
and let us check that indeed, for every n>}
fG(n—1)5c2-nk.
(i) I nzny then agn‘>Z(n) and since (abs(Z(1))+1)-...-(abs(Z(ng))+1)

is not smaller than 1, then indeed
fG(n-])EZ(n—1)52a0nk5c2-nk.
(ii) If n<ng then aonk<Zl(n-l). Then, indeed
fG(n—])SZ-Zl(n—l)gcz.
2) Let T(n)=MIN(n).
Obviously fG(n)zT(n) for all n>0.
We have T(n)=a0nk+T1(n), where T1(n) is a polynomial of degree smaller
than k. Let ny be the smallest nonnegative integer such that ng>2km+(m-1)

ap
and for every n>ng, E—nk<T(n—1).
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Now Tet us choose
ag

C1=. mk

2-(a0+1)-n0

and Tet us check that indeed, for every n>1,
fG(n-])zcl-nk.

(i) If nzny, then fG(n-1)zT(n-1)>;E~nk, and so indeed
fG(n—1)3c1-nk.

(ii) If n<ngy, then

cl-nk<1st(n—1).

Remark. Please note that since E(G) is counted starting with 0
(it is E(G)=wg,wys...)» the statement of the above result is in the

form cl-nksfg(n-1)5c2-nk rather than in the form cl-nkst(n)scz-nk.

Now we get a characterization of polynomially bounded DOL systems.

Theorem 3. A DOL system G is of rank k if and only if k is the
minimal degree of a polynomial p, such that, for every n, p(n)sz(n).v

Proof.

It follows from Corollary 1 that if suffixes to prove that if a
DOL system is polynomially bounded then it has a rank.

This is proved as follows.

Let us assume that G=<I,8,w> is a polynomially bounded system
but it does not have a rank. Then constructing, as in Definition 8,
consecutive systems Gy,Gi,... we must arrive at the system Gj=<z,6j,w>
such that no letter in Gj is of growth type 0 or 1. Following [12] let
us consider the equivalence relation ~ on @ defined by asb if and only
if there exist aj,25,B81,82 in Z* such that 3=:>a1ba2 and b=§>81a62.
Let us consider now an equivalence class A of ~ which is a minimal one

(it is no element of this class can introduce an element of another
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class). Let xeA. Since x derives in Gj an infinite language then
there exist a positive integer s, words z;,z5,z3 and a letter y in A
such that Gs(x)=zlyzzy23. Since y is in A, there exist a nonnegative
integer r and words zy,z, such that §' (y)=zixz,. Consequently there
exist words uj,us,us such that 6r+s(x)=u1xu2xu3. Thus x is an
expansive letter and consequently, by [9], G is not polynomially

bounded.

Let us turn now to the length sets of images of DOL Tanguages
through nonerasing homomorphisms.
Theorem 4. Let G be a DOL system of rank k, k>0, and let y

be a A-free homomorphism. Then
RO | 1
: N ok
(3d1.d2) (¥ Q)§+[d1'qkﬁﬂMﬁqw(L(G))fdziq 1.
Proof.

1) We will first prove that
1 1

(3d1.d2) (v ) JTdr-a"sess L (8)xdna"]
This is done as follows.
Let G=<2,8,w>. It was proved in [5] that, for every natural

number n, L(G) does not contain more that m! elements of the length

n, where m=#z.

Let d;= and d,= E%~where c; and c, are constants from the

c2~m!
statement of Corollary 1. Also to avoid strange indexing Tet us con-
sider that the elements of E(G) are numbered starting with 1 (that

is E(G)=wj,wps...). Then from Corollary 1 we have that

(V n)N+[cl -nkst(n)SCZ-nk].
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F%Th~

Since cl-nkst(n),Lﬁ nx—— then fG(n)zq.

(@}

1
1

k
Consequently 4§ fG(n)<q Zhen n<%—-and o)
1

1

1.k
ZQAAqL(G)< R

1

: k., 1 k
Since fG(n)scz-n Ab nsEé-q then fG(n)gq, and so

1

1 k

Hence the result holds.
2) Now we will prove the theorem.

Let w:z——>e+. Let G=<V,8,u> be a DOL system such that
V=% y Qu zx0,
for a in =, 4§ s(a)=A, then §(a)=A,

if 8(a)=by...by,b1,...,by X, then §(a)=(a,by)bs...b

K

for a in 0, s(a)=A,

for (a,c)ezxo, §((a,c))=6(a).
Let us consider the 2-decomposition of G, Dec,G={G;,G,} where

the axiom of G; is w and the axiom of G, is §(w). Then

(i) The derivation tree of E(G) is identical to the derivation tree of
E(Gy), hence nankG=rankG; and consequently, by Lemma 4 ‘
nankG=rankG=rankG,=1ankG.

(i1) The length sequence of E(G,) is identical to |¢(w)|s|d(8(w))],...
and so, for every positive integer q

q{L(62)).

Now the theorem follows from (i), (ii1) and (1).

LeAAq(¢(L(G))=£eAA
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Let us contrast now the situation with DOL systems without rank.
Theorem 5. Let G be a DOL system without rank and let ¢ be a

A-free homomorphism. Then

('aa,B)R+(V q)N+[u-1092qs£eAAqw(L(G))ss-1ogzq]

Proof.
1) First we will prove that

(3<x,s)R+(&1q)N+[u-1ogzqsﬁeéAqL(G)ss-1ogzq]

This 1is done as follows.
let G=<I,8,w>.

(1) (ac,d>R+(Vn)N+[zd'”st(n>szc‘”].

This is proved as follows.
(i.1) Let t be not smaller than the maximal length of s(a), aeX,
nor the length of the axiom w. Then clearly fG(n)stn=2n']°gztland
so if we set c=log,t then 1ndeed;fG(n)52?f?.
(i.2) Since G is a system without rank, it follows from Definition 8
(in the same way as in the proof of Theorem 3) that G contains a useful
expansive letter. Applying Lemma 1 and the technique demonstrated in
the proof of Lemma 2 we can find an m-decomposition of G such that
each element H=<3,§,0> of DecmG will be such that for each expansive
letter a in it, s§(a)=capay for some a,B,y in z*. Then clearly

é—cn

fH(n)zzn which implies that fé(njzzm

Hence if we set d=%', then indeed Zd'nsfe(n).

(ii) From (i) it follows that if ng%«]ogzq then

c-%«1ogzq .
fa(m<2® s 2 =210929%
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It was proved in [5] that, for every natural number n, L(G) does not

contain more than m! elements of the length n, where m=#:. Thus

1

£eAAqL(G)zETHT-1ong and so if we take o= 1 then indeed

cem!
ZeAAqL(G)za-logzq.
(iii) From (i) it follows that if nz%w1ogzq then
1
; o deze10950
fo(mz2d ez @ p10020,

Thus KeAAqL(G)§%~]ogzq.
2) Now the rest of the proof of this theorem is carried on in pre-

cisely the same way as in the second part of the proof of Theorem 4.

Using Theorems 4 and 5 we can show now that the length sets of
DOL languages (even "disguised by A-free homomorphisms") code uniquely
the information about rank.

Corollary 2. Let G be a DOL system of rank k and let ¢ be a
A-free homomorphism. Let H be a DOL system and let p be a A-free
homomorphism. If Length y(L(G))=Length o(L(H)) then H is a DOL system
of rank k.

Proof.

First of all from Theorems 4 and 5 it follows that H must be
also a DOL system with rank. Let us assume, to the contrary, that H
is of rank 2#k.

Let 2<k (the case of 2>k is proved analogously).

From Theorem 4 it follows that

oo 2
(3d1adz) (1 @) [d10"sLess b(LE))dzq'], and
1 1

(3880) (¥ q)Nﬁl-q"zszqup(L(H)>sa'2-q7ﬁ.
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But ) .

( aqo)N+(v q)NJM q>qo then dzqk<51-q2]

and so

1 1

(va) JLé6 @>a then 20854 (L(6))sd;+q <y -q*sLess o (L(H))T.

q

Since Length w(L(G))=Length o(L(H)), this is a contradiction

Consequently it must be that 2=k and so the result holds.

We end this paper by summarizing results from [9], [10] and
this paper concerning characterizations of polynomially bounded DOL
systems. (The notation MR and RME is from [10]).

Theorem 6. Let G=<z,8,w> be a DOL system. The following four
statements are equivalent.

1) G is polynomially bounded,

2) No useful letter in T is expansive,

3) If b is a letter in z which is useful and recursive, then b is
in MRU RME.

4) G is a DOL system with rank.
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