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ABSTRACT

This note discusses the problem of placing software monitors
in programs to aid testing. It is shown that the optimal as well
as the e-approximate traversal marker placement problems are

NP-complete.






Introduction.

In validating software through systematic testing evaluation of
a test requires that the output be monitored in some way. Ramamoorthy
et. al. [1] has proposed monitors for analysing test paths during a
run. Traversal markers are an example of such montitors that use the
information recorded during the test to determine the test path.

The problem considered in this note is that of optimal placement
of monitors viewing the optimization process as determining the minimal
number of Tocations needed to place monitors to identify the test path
traversed. We show that the optimal placement problem for traversal
markers is NP-complete. Briefly, NP-complete problems belong to that
wide class of problems for which the existence of an efficient (poly-
nomial time) solution for any problem in the class implies the existence
of such solutions for all other problems in NP [2]. A problem X
is NP-complete if -

(i)  some NP-complete problem A "reduces" to X, i.e. the

existence of an efficient solution to X implies such
a solution to A, and

(ii) X can be solved non-deterministically in polynomial

time, i.e., X & NP.

In view of the NP-completeness of the optimal placement problem,
we analyze the complexity of algorithms that give approximate solutions.
Following Johnson [3] we define an algorithm to be e-approximate for a
minimization problem if and only if ’ F* F < e,e > 0, where F* is the
optimal solution and F is the approx1mate solution obtained. We show
that the corresponding approximate problem for traversal marker place-

ment problem is also NP-complete. This implies that any polynomial



time approximation algorithm for the above problem will produce

arbitrarily bad outputs on some inputs.

Proofs of NP-Completeness.

We view programs as flow graphs, i.e., directed graphs with a
single source and sink denoted by s and t respectively. In what follows
we consider acyclic flow graphs only.

Consider the flow graph represented by the directed graph
G = (V,E), where:V denotes the set of vertices and E a relation on V
denotes the set of edges. P(G) is the set of the paths from s to t,
and for peP(G), A(p) represents the set of edges constituting the
path p. A set of edges E1,E]gﬁ, defined to be a placement for
traversal markers if E1nA(p1)qunA(pj) for all pj,pjeP(G), i.e., each
path from s to t in G covers a unique subset of edges 1in E]. Clearly
the set of edges in & flow graph is a placement-for traversal markers.
One of the properties of traversal markers is that deletion of traversal
marker edges from the digraph results in a subgraph that has at most
one path between any pair of vertices, i.e.,a uniconnected subgraph.
Ramamoorthy et. al. [1] has shown that for acyclic flow graphs maximal
uniconnected subgraph problem (i.e., determining the subset of edges
of smallest cardinality deletion of which results in:a uniconnected
subgraph) and the optimal traversal marker placement problem are
equivalent, i.e., the solution to both problems is the same.

For the problems considered here it is quite straight forward to
show that they can be solved non-deterministically in polynomial time.

We shall therefore give proofs of "reductions" only.



Lemma 1. The vertex cover problem can be transformed polynomially to
the traversal marker placement problem.

Proof. For an undirected graph G=(N,A)*and a postive integer 2

the vertex cover problem is defined as determining the existence of a
set RcN such that |R|s2 and every edge in A is incident with some
vertex in R.

Consider the following transformation on the graph G=(N,A):

V' o= {s,t,ug»usl u AuyN,
E' = {(s,uo),(s,u])} U {(u],u)IUsN}u
{(u,e),(v,e)|ecA and u,v are the vertices on which
e is incident} u
{(uo,e),(e,t)lesA} ,
k = 2+|A| .

For the digraph G'=(V',E') let E*,EX=E',be such that G*=(V',E'-E¥)
is uniconnected. Suppose |E*|<k. Since G* is uniconnected and in G'

there are |A| disjoint path- -~ - least |A|-1

edges emanating from ug or In fact all

of these |A|-1 edges must be incident at t in G' so as to render the
subgraph subtended by Nw AU {t} uniconnected. One of the edges emanating
from s will be in E* so as to have at most one path from s to any other
vertex. The only other multiple paths in G' are in the subgraph -
subtended by vertices {u]}U‘AU’N, denoted by G"=(V",E"). ‘In G"

the edges emanating from;u] correspond to the vertices in G=(N,A) and

the sinks of G",. i.e., the vertices in A, correspond to the edges of é.
Also, in G" there are exactly two paths from Uy to every vertex in A.

If the edge e in G=(V,E) is incident on vertices u and v then the two

paths from Uy to e pass through edges (u1,u) and (u],v) respectively.

+ N and A denote vertices and edges of undirected graphs.



Hence removal of the edge (u],v) in G" Teaves only one path between
Uy and those sinks in G" which correspond to the edges in G that are

incident on v. The proof, therefore, follows. O]

Lemma 2. The vertex cover problem can be transformed polynomially to
the e-approximate traversal marker placement problem.
Proof. Given an undirected graph G=(N,A) and an integer k, let
G*=(V*,E*) be the digraph produced using the following transformation:
V* = {s,t,uo,u],uz,...,um} u A
UNx {1,2,...,m} ,
Ex = {(s,ui)] O<i<m}
U {(uss(v,1))| veN and T<ism}
u{((v,i),e) | eeA,veNse is incident on v in G,
T<igm}
U {(uo,e),(e,t) | ecA} .

The digraph G*=(V*,E*) differs from G'=(V',E') of Lemma 1 in that
it consists of m copies of G"=(V",E"), as defined in Lemma 1, each
connected to the source s and having A as the common set of vertices.
Since all the m copies of G" are connected in "parallel" any optimal
or approximate algorithm can be trivially modified such that in the
solution all the m copies are represented by the same number of edges.
Therefore, by reasoning similar to Lemma 1 the optimal edge cover for
the graph G=(N,A) will have cardinality k if and only if the optimal
solution to the traversal marker placement problem has cardinality
|E[+m.k. Since the closest non-optimal solution, assuming that the
optimal solution has cardinality |E|+m.k, will have at least |E|+m.(k+1)

edges, it follows that any approximate algorithm for the traversal



- marker problem which on digraph G* results in a solution of cardinality

<|E|+m.(k+1) solves, in effect, the optimal problem. Given any e, we

< e .

can always choose m such that IE*-E‘ =!] Im |
F* E | +mk

Hence e-approximate solution to G*=(V*,E*) will exist if and only if

the optimal solution to the vertex cover problem has cardinality <k. [
Since vertex cover problem is NP-complete [2] we have that optimal

traversal marker and the e-approximate traversal marker problems are

NP-complete.
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