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ABSTRACT

Microprocessor Implementation
of a Parallel Processor

A wide variety of uses have been proposed for the spectrum of
currently available microprocessor systems. Included in this set of
applications is the use of microprocessors for implementing larger
systems; here, the possibility of employing bit slice microprocessors
for various parts of a multiple control unit SIMD processor is dis-
cussed. A brief summary of bit slice microprocessor architecture is
given, followed by an outline of individual applications to various
components such as control units and arithmetic/logic units of the

SIMD processor.



INTRODUCTION

Large scale integrated circuit technology has created a number of
interesting alternatives to computer system designers that were not
available with previous technologies. In particular, LSI technology
has made great strides in the areas of memory packaging and micro-
processor design. The existence of inexpensive microprocessors has
led many to consider the design of larger computer systems incorporating
multiple microprocessors to implement various functions of the overall
system, (e.g., see [1,4,5]). 1In this paper, the applicability of bipolar
bit slice microprocessors to implement various portions of a particular
parallel processor system is considered. The general class of computer
systems for which this discussion applies includes parallel processors
and ensembles, as defined by Thurber and Wald [11]. As a particular
instance of this class, the Multi Associative Processor (MAP) system is
the subject machine for which microprocessor implementation is considered,
[6].

Figure 1 is a general block diagram of the MAP machine; the primary
components include an input/output subsystem, a main memory (MM) subsystem,
eight control units (CUs), a distribution switch, and a set of 1024
identical processing elements (PEs) each with its own Tocal memory (PEM).
The architecture of MAP deviates from the class of SIMD parallel process-
ors in the following respects:

- Eight control units, rather than one, are included to allow up

to eight SIMD programs to be executed simultaneously.
- MAP is a stand alone system in the sense that no host processor

is used to execute system software, or otherwise control its



operation. All software is executed directly on MAP.

- There is no Tinear relationship imposed on the set of processing
elements through fixed interconnections among the elements;
interconnections are controlled by the software.

Briefly, the rationale for such a design is that the system ought to be
able to effectively execute a variety of programs on the eight CUs even
when some of the programs tend toward sequential operation; this is
possible since processing elements are allocatable resources used by
each CU as the need arises. Thus, system software, with substantial
sequential processing, can execute on one or more CUs at a time, using
one PE for sequential tasks and multiple PEs for SIMD parallel tasks
such as scheduling and deadlock detection. The absence of fixed
~interconnections between PEs allows them to be treated as identical
system resources to be allocated upon request by a CU.

The design is not without its Tiabilities; rapid I/0 to and from
the Tocal processing element memories is not possible as it is in the
ILLIAC IV [3]. Processing Element Memories must be loaded via the main
memory and control unit to which the given PE is currently allocated.
Efforts have been made to make this process as fast as possible under
the overall design, [2,6]. The lack of fixed interconnections between
PEs Timits the speed with which all PEs can simultaneously move data to
an immediate neighbor; however, any individual PE can move data to any
other arbitrary set of PEs in a single machine cycle.

The architecture of MAP is discussed in detail elsewhere, [2].

Our purpose here is to outline a relatively inexpensive microprocessor
implementation of various machine components, (in particular, the control
units and processing elements), and the impact of this implementation on

the distribution switch shown in Figure 1. Additional description of the



architecture will be provided only as it applies to the microprocessor
implementation. The operation of the I/0 and main memory systems are

not considered in any detail in this paper.

BIT SLICE MICROPROCESSORS

Although fixed instruction set, MOS microprocessors have been
suggested as possible components in larger computer systems, [9], the
bipolar bit slice microprocessors such as the 2-bit Intel 3000 series
or the 4-bit AMD 2900 series show more promise as components for MAP
control units and processing elements. There are three characteristics
of these microprocessors that lend themselves to such an application:

- Arithmetic units can be interconnected to implement Targer

word Tength units, (e.g., 16 to 64 bit words).

- The microprocessor control units are microprogrammable,
allowing quite general operation of the arithmetic unit and
additional hardware.

- Minimum cycle times of the processors are as low as 100 ns,
although realistic configurations may cause the cycle times to
be 2 or 3 times larger than the minimum cycle time.

The speed and generality exists in these microprocessors to use them in
control unit and processing element design.

In the remainder of this section, the architecture of the AMD 2900
series slice microprocessor is reviewed, [12]. This microprocessor is
briefly discussed since it is sTlightly more general than the Intel 3000
series in the control unit organization, and it is considerably simpler
in its overall design. The basic components are the 4 bit arithmetic
unit slice (AM 2901), a 4 bit sequencer (AM 2909), a microprogram control

store, and interconnecting logic. An array of two 4 bit arithmetic unit



slices can be interconnected with carry-lookahead units so that arithmetic
on words of length 4xi can be executed using carry-lookahead arithmetic.
Within the unit, addition, subtraction, OR, AND, exclusive OR, exclusive
NOR, and shifting operétions can be executed on any pair of 16 registers.
Operands can also be passed to the unit from external sources for compu-
tation.

The arithmetic unit receives commands specifying the function and
register selection indirectly from the sequencer. This sequencer
operates on 4 bit addresses (i.e. operation codes), producing 4 bit
control store addresses; however, sequencer units may also be inter-
connected to support larger op codes and a larger control store address
space. Sequencer operation is straight forward in that the operation
begins by placing an initial control store address in a sequencer
register. The sequencer fetches the contents of that address to a
microword register, and the contents then specify control signals to
the arithmetic unit array, to the sequencer array and to any other
external components desired. The sequencer continues fetching control

words until interrupted from an external source.

MAP COMPONENT FUNCTIONS

The input/output subsystem is assumed to be conventional in its
design, and is composed of peripheral devices, controllers, and data
channels. A1l I/0 is directed to/from the main memory. The main memory
may hold three types of information: Data that are being loaded into,
or unloaded from, PE memory are temporarily stored in the main memory;
global data that may be applied to all data streams under the control of
a single instruction stream are stored in the main memory; all instructions

are stored in the main memory. One crucial aspect of the MAP architecture



has to do with the main memory design, since memory contention is
1ikely to be a bottleneck to system performance; several potential designs
have been proposed and tested using simulations, [7,10]. It is noted
in passing that two factors tend to relax the memory contention problem
in this context. First, MAP control units will normally be accessing
the main memory only during the instruction fetch cycle, (and only
occasionally for data:references). Secondly, with current memory
technology, memory cycle times can be matched to control unit cycle times
in a cost-effective manner.
The purpose of a control unit is to provide a mechanism to implement
the software notion of a process, where the process itself is composed
of parallel tasks; each control unit must manage control and data flow
for a particular SIMD program. In order to accomplish this purpose,
the following functions must be implemented in each CU:
- Instruction fetching from the MM.
- MM address formation.
- Distribution switch communication.
- Communication with other control units.
- CU instruction decoding and execution, i.e. branch instructions,
index register manipulation, etc.
- At Teast partial decoding of instructions to be executed by
PEs allocated to the CU.
- Broadcasting PE instructions and global data over the distribution
switch.
Each processing element roughly corresponds to an arithmetic/logical
unit in a conventional processor. Computations on a data stream are
executed in a PE. The operation of a PE is complicated by the need to

selectively activate and deactivate the unit for certain instruction



sequences being broadcast by the owning CU, i.e., depending on Tocal
conditions that exist within a PE, the program may wish to deactivate that
PE while some sequence of instructions is being broadcasted. In MAP,

a Select Register is used to save a set of local conditions, and the

PE is activated or deactivated on the basis of a predicate applied to
the conditions indicated by this register. It is this aspect of the
machine that Teads to the term "associative" in the name of the machine,
and those instructions which control the activation state are called
associative instructions. The 1ist of functions to be implemented 1in
each PE includes:

- Receiving the PE instruction.

- Arithmetic and logical instruction execution.

- Associative instruction execution.

- Data references to the PE memory.

- Receiving/sending data from a CU.

The purpose of the distribution switch is to provide a mechanism for
any CU to broadcast instructions or data to any subset of PEs. The
switch must also allow data to be moved from any single PE to any number
of other PEs allocated to the same CU.

In the remainder of this paper, the implementation of control units
and processing elements as bit slice microprocessors is discussed, and

a design of the distribution switch is given.

CONTROL UNIT IMPLEMENTATION

For the purposes of this discussion, assume that the MM word length
is 32 bits, with one instruction stored in each word. If a 64 bit word
size were used, (with 2 instructions stored in each word), then the CU

logic becomes slightly more complicated. A block diagram of an AMD 2900



series implementation of a control unit is shown in Figure 2.

As mentioned in the previous section, the CU has a number of functions
to perform, and they cannot all be performed by sequencer chips. Instead,
each CU is a complete, bus-organized, microprocessor in itself, with the
arithmetic/logical unit used to implement CU functions. Five additional
registers are used to communicate with units external to the CU. CUMDR
is the data and instruction interface to the main memory system, and
CUMAR 1is the interface to the main memory address register. DBR is the
broadcast register used to broadcast undecoded machine-level instructions
and data to allocated PEs, and to receive data from PEs. 1ID is an eight
bit CU identification register used by the distribution switch. CUSR
is an interface to a CU communication unit to be discussed below. The
ALU array, composed of eight 4-bit AM 2901 chips is used to implement
other CU programmable registers, (such as the instruction counter, main
memory index register(s), and an operand comparison register), and as
working registers for the microprograms. Thus address formation and main
memory references are handled by the ALU.

Upon fetching an instruction from the main memory, the ALU must
do a preliminary decode of the instruction to see if it applies to a
CU, to the PEs, or to both (in the case of global data transfers). The
design as indicated in Figure 2 implies that this preliminary decoding
is done within the ALU array, although it might as easily be done with
random logic while the instruction is still on the CU bus. In either
case, PE instructions must be routed to the DBR for broadcasting. This
aspect of PE instruction processing differs substantially from that
proposed in the MAP architecture report, [2], where microinstructions

were broadcast to the PEs rather than machine level instructions. By



broadcasting machine instructions, more Togic must be incorporated into
each PE, but standard LSI circuits can be used in this construction,
reducing cost and simplifying the distribution switch. This tradeoff is
discussed at length below.

During the instruction fetch cycle, an 8-bit operation code is
passed to the Op Code Mapping Memory. This memory is a small (256 x 12
bit) ROM that determines a 12-bit initial address for the microprogram.
The 12-bit sequencer array then executes the given microprogram producing
j-bit words from the 4096xj bit Control Store. The Control Store word.
length, j, is unspecified here but must be sufficiently wide to contain
control information for the ALU array, feedback information to the
Sequencer, to provide signals for the I/0 system and distribution switch,
etc.. Preliminary designs indicate that j is about 40.

There are at least two aspects of this implementation that Tlead
to complexities. First, since some instructions are partially executed
on a CU and partially executed on a set of PEs, timing and synchronization
are critical. An example of such an instruction is a global data load
operation, which fetches a global datum from the MM and causes it to be
loaded into a register internal to each active PE.

The second problem has to do with CU communication instructions.
Intercommunication must be synchronized by a unit distinct from each CU,
but which communicates with all CUs. A solution to this problem is to
incorporate a Control Unit Supervisor into the design, where all communi-
cations instructions are executed within this unit. The unit can be
constructed as a small bit slice microprocessor that is invoked by
interrupts from the CUs. Details of such a unit have not been worked

out at this time.



PROCESSING ELEMENT IMPLEMENTATION

The processing element implementation is simpler than that of a
control unit, although it does incorporate an ALU array and a sequencer
array. Figure 3 is a block diagram of a bus-organized microprocessor
implementation of a PE.

The most complex part of the PE design is the interface between
the distribution switch, (Déta Bus in the figure), and the internal PE
Bus. As discussed later, the Data Bus is shared among several PEs,
thus a mechanism must be provided for gating data between the Data Bus
and the PE Bus. The 8-bit OWNER register is used for this purpose by
comparing the ID tag on the Data Bus with OWNER. If the compare is
true, then data can be gated between the two busses.

Since machine level instructions are being broadcasted to PEs,

a sequencer array is used to decode the instruction into a microprogram
exactly as in the design for a CU. However, each microinstruction is
much simpler than in the CU case, since the unit need not be concerned
with instruction addresses, peripheral I/0, nor distribution switch
control. The set of microprograms for a PE is much simpler than those
used in the CU microprocessor.

One aspect of the design that should be mentioned is that of activity
state computations, i.e., executing associative instructions and de-
activating a PE. This is handled entirely by the microprograms, with
the Select Register being implemented as an internal ALU array register.
If the PE is logically deactivated, a flip flop in the State and
Synchronization Unit records this event. To simplify timing and clock
enable hardware, this flip flop simply disables the Microword Register
outputs until a new associative instruction redefines the PE to be

active. Thus, an inactive PE still executes a microprogram, but the
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effect of the microprogram is negated.

THE DISTRIBUTION SWITCH

The distribution switch offers the most challenge for a cost-
effective design. Although it does not incorporate microprocessors in
its organization, its design is heavily influenced by the use of micro-
processors to implement CUs and PEs. The basic requirement is to allow
any of eight CUs to broadcast information simultaneously to any subset of
the 1024 PEs.

Before considering the microprocessor implementation, the organization
shown in Figure 4 was proposed. Each CU was presumed to be broadcasting
PE microinstructions at a frequency of 10 MHZ; each microinstruction
was 6 bits in width. Because of the high broadcast frequency and narrow
bus width, a full 8x1024 crosspoint switch was included for instruction
broadcasting. It should be pointed out that the switch did not
incorporate resolution and queuing hardware at each point, because
crosspoint conflicts would be avoided by the PE allocation mechanism.
Nevertheless, an expensive proposition.

Data broadcasting used an entirely separate path, as indicated by
the solid lines in Figure 4. The frequency with which PE operand addresses
and data were to be passed to the allocated PEs was much lower than the
instruction broadcast frequency, (and was a function of the program mix
being executed). This led to the strategy, shown in Figure 4, called
bus sectoring. A bus sector is a crossbar that may be connected to any
CU data bus, but is shared by a number of PEs. In order to test the
feasibility of such a design, and to determine the number of bus sectors
required, an intensive analysis of bus sectoring under realistic machine

operating conditions was performed, [7]. The load for the bus system
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was obtained by interpreting and monitoring MAP assembly language programs
one-at-a-time. Combinations of programs were then used to create the load

on the data bus system. The results from the study indicated two interesting
facts: The number of bus sectors required should be in the range of

8-12; the scheduling of PEs to CUs had a significant effect on the amount

of bus contention experienced in the model. Further studies into PE
allocation algorithms uncovered some cost-effective strategies for PE
allocation, [8].

The proposed microprocessor implementation employs an entirely
different distribution switch design than originally proposed, since
machine level instructions, rather than microinstructions, are to be
broadcast to PEs. The motivation for this change Ties in the micro-
instruction width used by the AMD 2900 series; 25 bits of information
must be supplied in order for a Sequencer Array to specify the operation
of an ALU array. Furthermore, information flow is bi-directional, since
the sequencer must know the status of arithmetic operations, e.g.,
overflow conditions, zero detection, etc.. These requirements render
the original instruction bus design untenable.

The strategy employed in the microprocessor implementation takes
advantage of the lower instruction broadcast frequency required by the
design outlined in the previous two sections. The instruction bus and
data bus are combined into a single sectored bus system corresponding to
the data bus (solid lines) in Figure 4. To investigate the feasibility
of this approach, the following simple analysis of bus utilization is
presented. First, a rough set of microprograms to implement the MAP
instruction repertoire were written; (the microprograms were "rough" in
that several details of the microcode, as well as CU communication
instructions, were omitted). The microprograms were used to obtain an

estimate of the amount of time required to execute each machine instruction.
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The average PE instruction execution, excluding floating point arithmetic
instructions, required about 9 microinstructions, and the average CU
instruction execution required about 6 microinstructions. Experience with
MAP programs indicates that no more than one out of every four instructions
executed is a CU instruction. Thus, each CU broadcasts an instruction
over the set of sectors in which it contains PEs about once every 8
cycles. Assuming a maximum of one datum broadcast per PE instruction,

the CU must use one or more bus sectors, (depending on the program and

PE scheduling algorithm), about once every 7 cycles. This argument
indicates that bus sectoring for machine instruction and data broadcasting
is feasible. It does not show conclusively that the scheme will be cost-
effective, nor does it indicate the number of sectors that should be
configured into the machine. A more detailed analysis, using simulation,
is currently being done on the design. Although this analysis is
incomplete at this writing, preliminary results support the above con-
clusion and further indicate that no more than 16 sectors will be

required.

CONCLUSION

Using microprocessors as a medium of implementation for a parallel
processor is promising in a number of respects, not the least of which
is economics. Another area of promise is the generality provided by
the approach. Since each PE is microprogrammed, it would be possible
to implement the control store as a read/write memory. This would allow
firmware to dynamically reconfigure the machine in two interesting ways.
First, each PE control store could be loaded by its owning CU to define

the set of actions caused by the machine instructions broadcast by that
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CU. In this manner, PEs are tailored to fit the process being executed
on the CU. A more exotic approach would allow different PEs allocated
to the same CU to have different microprograms, thus distinct operations
would be applied to distinct data streams under a single instruction
stream. It is difficult to see how one might write effective software
to take advantage of this latter approach, although the possibility does
exist.

The overview of the bit slice microprocessor implementation of a
parallel processor given in this paper is intended to show the feasibility
of such an approach. The resulting implementation could be built at a
cost much Tess than that of a random Togic design; conservative estimates
of the chip costs are $1000/CU and $750/PE. The economic savings in the
distribution switch would also be substantial. The resulting system
would have a lower instruction execution rate, perhaps by a factor of 2,
than the random logic design if timings are based on current technology.
This reduction in speed is offset by the cost, and with the realization
that bit slice microprocessor times are Tikely to decrease in cycle times

as newer circuit technologies are used to build microprocessor chips.
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