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ABSTRACT

This paper describes DAVE, an automatic program testing aid
which performs a static analysis of Fortran programs. DAVE analyzes
the data flows both within and across subprogram boundaries of Fortran
programs, and is able to detect occurrences of uninitialized and dead
variables in such programs. The paper shows how this capability
facilitates the detection of a wide variety of errors, many of which
are often quite subtle. The central analytic mechanism in DAVE is a
depth-first search procedure which enables DAVE to execute efficiently.
Some experiences with DAVE are described and evaluated and some

future work is projected.
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Introduction

There is currently a great deal of interest in creating systems
capable of assisting in the development of error-free programs.
This interest results both from an awareness that erroneous programs
are expensive and potentially lethal and from the fact that the
problems involved in producing error-free programs are challenging
and stimulating. As might be expected in the case of such a problem,
which has enormous economic significance and high intellectual appeal,
the approaches to its solution are numerous and diverse. This diversity
is shown by the following 1list of approaches, which is intended to
be indicative and not exhaustive:

* Devise error resistant design and coding practices: The
terms Structured Programming [1], Stepwise Refinement [2],
and Top-Down Design [3] are often associated with work in
this area.

* Create error resistant languages: Such investigators as
Wirth [4] and Gannon and Horning [5] have identified
error-prone language features and proposed languages which
avoid them.

* Devise better organizational strategies for programming:
The Chief Programmer Team strategy of Mills and Baker [6,7]
is notable in this area.

* Prove the correctness of programs: This is a relatively
difficult and time consuming process, which has been
successful largely for relatively small programs. Current
work [8], however, offers hope that machine aids may

eventually facilitate program proving for large programs



as well.

* Build automated program testing aids: These aids can do
such things as monitor program execution [9, 10, 11],
perform static diagnostic scans [12,13], and help generate

test data [13, 14].

It seems clear that in the future the results of work in
several of these areas will be coordinated in any effort to produce
high quality, error resistant programs. We feel certain, however,
that because humans will always have faulty memories, be prone to
commit keyboard errors, and will inject various other errors into
their programs, that any such coordinated attack will surely include
a testing activity. This activity should rely heavily upon automated
program test aids. In addition, we feel that automated test aids
are of particular importance at present, because they, unlike most of
the other current approaches, offer some hope of helping determine
the validity and worth of some of the enormous body of programs
already in existence.

For these reasons, we created DAVE, an automated program testing

aid which, we believe, embodies important new diagnostic capabilities.
DAVE As An Automated Testing Aid

DAVE performs a diagnostic scan of an ANSI Standard [15] Fortran
program for the purpose of detecting erroneous or suspicious situations.
Systems such as this are often referred to as static analysis systems,

in that they do not require that the program be executed. As a con-



sequence,. their analytic results are not restricted in their applica-
bility to a single execution. On the contrary, in DAVE's case it

is possible to simulate in a Timited way the effect of executing all
sequences of statements in a program. Hence DAVE is able not only

to detect errors, but, more important, it is also able to determine
the absence of certain types of errors or suspicious situations for
all possible executions of the program. Because of this latter
capability DAVE is a valuable tool in examining existing programs

for the purpose of validating them.

Should DAVE detect an error or suspicious situation along some
execution sequence through the program an error or warning message
describing the situation is produced. A human analyst must then
determine the true importance of the message. At this point a
dynamic analysis system might be used to instrument the program and
gather detailed information about the progress of an actual execution
of the sequence of statements which DAVE had pinpointed. Hence in
this way DAVE is also useful as a debugging aid during program .

development.

Errors Detected by DAVE

A1l program testing aids are incapable of determining whether
or not a program is completely correct. A program testing aid can
at best determine whether or not a program adheres to some specified
standards. A violation of such a standard may be taken to be an
a priori error or a suspicious condition, symptomatic of some other

error. Hence in all program testing aids there must be an initial



understanding of the standards against which programs are to be
measured. In DAVE these standards all relate to the correct flow
of data through a program. It is our contention that in a correctly

executing program two rules should always be obeyed:

1. No variable will be used in a computation (referenced)
until it has previously been assigned a value (been
defined).

2. A variable, once defined, will subsequently be refer-
enced before the variable is redefined or the program

terminates.

DAVE's diagnostic scan determines whether either of these
two rules can be violated for any sequence of statement executions.
A violation of the first, called a type 1 anomaly, is a violation
of the ANSI Fortran Standard [15] and is considered to be an a
priori error. A violation of the second, called a type 2 anomaly,
is considered to be a symptom of some other error. DAVE is able
to detect a type 1 anomaly for any possible execution sequence.
Thus if DAVE does not detect such an anomaly then none exists
within the program. Hence DAVE is able to both detect the presence,
and assure the absence of data flow anomalies. The former capability
we refer to as error detection and the latter we refer to as validation.
Clearly the foregoing implies that DAVE is able to validate programs

for the absence of “uninitialized variables.

In practice we have found, however, that anomalies of both
types are usually symptoms of other errors. We have been gratified

to find that the range of errors symptomatized by type 1 and type 2



anomalies is quite large, extending from misspellings to subpro-
gram invocation errors. Because of this phenomenon of anomalies
occurring as symptoms of other errors, it has turned out that DAVE
has been most useful in indirectly detecting errors other than unin-
itialized and dead variables (in the sense of [16] ).

More specifically, a large measure of DAVE's indirect error
detection capability arises from the fact that DAVE performs its
data flow analysis across subprogram boundaries. This data flow
from one program unit to another must be completely determined if
all possible anomalies are to be detected. Having made this complete
determination, however, DAVE is in a position to also detect a variety
of program unit communication errors such as illegal side effects
and inconsistent COMMON declarations. Because this interprocedural
data flow is often quite ;ubt]e, errors involving it are likewise
often subtle and difficult for a human to identify. Hence it is
not surprising that DAVE's error detection capabilities in this area

have proven to be among its most useful features.

An Example

Figure 1 shows a somewhat contrived Fortran program which is
designed to illustrate some of the error detection capabilities
referred to in the previous section. The purpose of the program is
to compute and print out the cost of covering an area with some
covering material. The program reads in PSF, the cost per square
foot of the material; LCRT, an integer used to denote whether the

area is a rectangle (if LCRT 1is 1), a circle (if LCRT is 2), or a



triangle (if LCRT is 3); and D1 and D2, the two dimensions of the
area (D2 is unused if LCRT is 2). The program then branches on
LCRT to three different subprograms, AREAR, AREAC, and AREAT, which
are supposed to compute the area of the rectangle, circle or triangle
(respectively), and place the value of this area in the variable
AREA. Subroutine DOLS 1is then called to compute COST, the product
of AREA and PSF. Finally COST, the desired result,is printed out.

Close inspection of the program reveals that it contains errors,
some of which are not very obvious. Perhaps the most obvious error
is that the value of pi is set into the variable PI, but the
variable P is used to pass this value into AREAC, the subprogram
which requires it. A second error is that there is a misspelling
in the subroutine AREAT. The third parameter is named AREA, but
the body of the subroutine defines a value for the variable AREAT
instead. Hence upon return there is no value given to the main
program variable AREA, which is referenced in a subsequent compu-
tation. A third error involves the COMMON block B, which is used
for communication between the main program and DOLS. B contains the
variables AREA and COST. DOLS, which expects AREA to contain the
computed area, uses it to compute the value of COST, which is then
passed through B back to the main program. Unfortunately, the order
of declaration of AREA and COST in the main program is the reverse
of the order of declaration in DOLS.

Detection of these three errors would most Tikely be at least
tedious using conventional debugging methods. The third error would

cause any execution to be erroneous, but each of the first two would



COMMON /B/ AREA, COST
READ (5, 1) PSF, LCRT, D1, D2
PI = 3.7416
IF (LCRT .NE. 1) GO TO 10
AREA = AREAR (D1, D2)
GO TO 100
10 IF (LCRT .NE. 2) GO TO 20
AREA = AREAC (P, D1)
GO TO 100
20 CALL AREAT (D1, D2, AREA)
100 CALL DOLS (PSF)
WRITE (6, 2) COST
STOP
1 FORMAT (F6.2, 12, 2F10.4)
2 FORMAT (1H , F8.2)
END
FUNCTION AREAR (A, B)
AREAR = A * B
RETURN
END
FUNCTION AREAC (PI, RAD)
AREAC = PI * RAD ** 2
RETURN
END
SUBROUTINE AREAT (B, H, AREA)
AREAT = 0.5 * B * H
RETURN
END
SUBROUTINE DOLS (PSF)
COMMON /B/ COST, AREA
COST = PSF * AREA
RETURN
END

Figure 1: A program illustrating some of the error detection
capabilities of DAVE.



cause an erroneous execution only for a single specific value of
LCRT. Hence it is reasonable to expect that the three errors would
be ferreted out one at a time, perhaps with some difficulty, if the
usual procedure of running test cases was followed.

DAVE would facilitate the detection of all three errors in
only one diagnostic scan because each one causes data flow anomalies.
In the case of the first error, DAVE would identify the definition of
PI without subsequent reference as a type 2 anomaly. DAVE would also
determine that the first argument in any invocation of AREAC must
carry in a value. Hence in analyzing the main program DAVE would
conclude that the invocation of AREAC would cause a type 1 anomaly,
and would print an appropriate message. DAVE is unable to state
directly the true error--namely a misspelling. The two anomaly
messages, however, point strongly to the true error.

The second error, also a misspelling, is likewise strongly
indicated by anomaly messages. In analyzing AREAT, DAVE would dis-
cover that the local variable AREAT is never referenced after
definition, and print a message describing this type 2 anomaly.

DAVE would also determine that the parameter AREA is neither refer-
enced nor defined in the subroutine. This is regarded as a suspicious
situation, and DAVE would produce a message describing it. Finally,
in analyzing the main program, DAVE would discover that there is a
sequence of statements leading up to the invocation of DOLS which

does not cause the variable AREA to be defined (namely the one which
includes the invocation of AREAT). No anomaly message will be printed
because, as shall be seen, the third error causes DOLS to make no

use of AREA. Had the third error not been present, however, a type 1



anamaly message would have been printed. In this case the inter-

action of two errors causes the suppression of one anomaly message.
DAVE, nevertheless, produces two other messages in response to the
second error.

The third error is a transposition of variables in a COMMON
statement. DAVE would analyze DOLS and determine that it requires
a value to be passed in through the second variable in COMMON block
B, and that it passes out a value through the first variable in B.
Upon analyzing the main program DAVE would find that COST, the second
variable in COMMON block B, is never initialized before the invo-
cation of DOLS--hence a type 1 anomaly message would be printed.

DAVE would also discover that AREA,the first variable in block B,
generally has a freshly computed value when DOLS is invoked. DAVE
would observe the DOLS resets this value before it is ever refer-
enced and print a type 2 anomaly message. Finally, DAVE would
observe that AREA, the first variable in block B, is never referenced
after its definition in DOLS and print another type 2 anomaly
message. Here too, it is clear that these three messages strongly
illuminate the transposition error, although it is never explicitly
identified.

This brief example is intended to give an impression of how
DAVE's analysis can assist in isolating subtle errors. We expect
that the reader can see how DAVE is also useful in detecting
other errors such as transposed statements, illegal side effects,
and mismatched argument and parameter Tists. Likewise the reader
should be able to see that the use of an automatic aid such as DAVE
is far more necessary in analyzing a large, complex, real-world
program than in detecting the errors in this small, simple, contrived

example.
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The Design of the DAVE System

DAVE performs its analysis by passing over the program units
of a program, from the Towest level subprograms upwards to the main
program, analyzing each program unit exactly once, employing a
depth-first search of a Tabelled flow graph of the program unit.
Details of the system's design and implementation can be found in
[17, 18], and hence are omitted here. For completeness, however,

a brief simplified overview shall now be given.

DAVE's analysis is performed on labelled flow graphs, where a
different graph represents each of the program units of the program.
The nodes of a flow graph represent the program unit's state-
ments and the edges represent intra-program-unit control transfers.
Each node's label describes which variables are defined and referenced
during the execution of the code corresponding to the node. These
graphs are constructed at the start of DAVE's analysis. The graphs
are easily constructed, but they cannot immediately be completely
labelled, due to the undeterminable status of variables which are
used as arguments to subprograms. Hence the graphs are left only
partially labelled until a later phase of the analysis. A1l invo-
cations of subprograms which are made by a program unit are care-
fully noted, however. After the last program unit flow graph has
been created and partially labelled, the totality of these invocations
is used to construct the program call graph, a graph whose nodes
represent the program units and whose edges represent the subprogram

invocations. Due to the impossibility of recursive calling chains
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in ANSI Standard Fortran, it is expected (although not always true)
that the call graph will be acyclic. Hence there will be leaf nodes
(nodes without any outedges) in the graph. These represent program
units which do not invoke any subprograms. Hence the flow graphs for
these program units are known to be completely labelled. DAVE now con-
tinues by carefully analyzing these program units' flow graphs.

Once a program unit's flow graph is completely labelled it is
possible to determine the pattern of references to and definitions of
each of the program unit's variables for each of the program unit's
execution sequences. Uninitialized and dead variables are found by
examining these patterns. 1In DAVE a variable's pattern of references
and definitions is determined and examined by a depth-first search
procedure (described in detail in [18] ) which executes in time pro-
portional to the number of edges in the flow graph. The search
procedure is repeated for each variable in the program unit. It
classifies each variable as either non-input, input or strict input and
either non-output, output or strict output. A variable is classified
input if along some, but not all, execution sequences through the
program unit the variable is referenced before it is defined. If
there is no such execution sequence, the variable is classified
non-input. If the variable is referenced before definition along
all execution sequences, the variable is classified strict input.
Similarly, the variable is classified output if along some, but not
all, execution sequences in the program unit the variable is defined.
If there is no such execution sequence the variable is classified
non-output. If it is defined along all execytion sequences, it is

classified strict output.
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These classifications having been made, DAVE begins its search

for anomalies. If a local variable is classified strict input,

it is clear that a type 1 anomaly will occur, and an error message

is produced. If a local variable is classified input, then a type

1 anomaly exists for some, but not all, sequences of statements. In
recognition of the fact that these sequences may not actually be
executable in response to any input data, DAVE produces a warning
message describing the possibility of executing an anomaly bearing
sequence of statements. DAVE performs similar scans for type 2
anomalies by executing searches from a definition of a Tocal variable
to determine whether the subprogram terminates or redefines the variable
before referencing it.

The determination of the input/output status of non-local
variables (ie. parameters and COMMON variables) of leaf subprograms
is not used immediately in the detection of anomalies, but rather
is used to enable DAVE's analysis to continue for higher level
program units. The program call graph is used to locate all invoca-
tions of the Teaf subprograms, and now the nodes corresponding to
these invocations are labelled. At the end of this process, some
non-Teaf subprograms have become completely labelled and the depth-
first search procedure can be applied to them. This process con-
tinues until eventually the main program itself is searched.

The process of using the input/output classification of a non-
local variable of an invoked subprogram to Tlabel an invoking node is
worthy of some elaboration here as it incorporates a number of useful
error checks. DAVE first compares argument and parameter lists for
agreement in length and type. Lack of agreement is considered an error.

Next, parameter output classifications are compared to arguments. If
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a parameter is classified as output or strict output and the corres-

ponding argument is a constant, expression or subprogram name,
DAVE produces a message. COMMON variables which carry data into or
out of the invoked subprogram are identified at this time and
messages describing them are made available for use as documentation.
Finally, the variables in the invoking statement are examined to
see whether any of them is used both as an input and an output in
separate subprogram invocations. If so, DAVE has detected an illegal
side effect, and produces a message identifying it.

After DAVE has searched the main program, it examines the input
classifications of its COMMON variables. Error or warning messages
are generated for each COMMON variable which is typed strict input

or input but is not initialized in a BLOCK DATA subprogram.

Implementation Data

DAVE is implemented as a Fortran program consisting of approx-
imately 25,000 source statements. It operates in four overlaid
phases, the largest of which occupies 50,000 decimal words of central
memory on the CDC 6400. DAVE is written almost entirely in machine
independent ANSI Standard Fortran. Some non-Standard and machine
dependent coding practices seemed expedient, however, and they are
quarantined to a small number of small subprograms. DAVE was
developed on the CDC 6400 at the University of Colorado, but has
been successfully moved to a CDC 7600 and two machines in the IBM
360/370 series. Installations on a Univac 1100 series machine and a
Honeywell 6000 series machine are planned for the near future.

Under its current configuration DAVE is able to process a program
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consisting of a few dozen subprograms, each of which may contain no

more than 200 - 250 source statements. These 1imits depend entirely
upon internal table and scratch array sizes, and have been quickly
altered to produce different experimental configurations. At this
writing, the Targest body of code which DAVE has processed has been

a 2700 source statement subprogram library. DAVE is currently opera-
tional, however, on a machine with sufficient central memory to enable
it to process its own source code, and this should be accomplished

in the near future. The analysis of a source program by DAVE has been
observed to require an average of 0.3 seconds of central processor time
per source statement on the CDC 6400 and to cost approximately six

to eight cents per source statement under the University of Colorado

Computing Center charge algorithm.

Summary of Experience to Date

DAVE has been operational on an experimental basis for a few
months to date. During this time we have seen evidence that it can
be a valuable tool in the production of high quality, error-free
programs. Most of our experience has come from using DAVE in validating
completed programs. These included a highly respected matrix manipula-

tion system, several recent algorithms taken from the ACM Transactions

on Mathematical Software, and a program submitted as a part of a Master's

Thesis in Computer Science. Errors were detected in some of the
algorithms, and the Master's Thesis was found to have numerous errors.
In most cases the errors were of the type that would hamper program
portability, such as reference to uninitialized variables which should

have been initialized to zero, reference to exhausted DO Toop indices
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and subprogram invocations with mismatched argument and parameter
1ists. In each case, the errors did not seem to prevent successful
execution on the author's computer, but seemed Tikely to cause
trouble if executed elsewhere. (There was some suspicion, however,
that some of the erroneous subprogram invocations were imbedded in
program segments which had never been tested or were unexecutable.)

Perhaps the most surprising observation was that DAVE's
messages often gave unexpected insight into the author's coding
style. For example, a program for which DAVE produced numerous type
2 anomaly warning messages did not prove to be incorrect, but rather
it contained numerous loops in which indices and counters were up-
dated immediately before DO Tloop endings. It was discovered that the
author tended to favor WHILE Toop constructions which are often
awkward in Fortran. This was observed by DAVE. As another example,
some programs contained subroutine definitions which did not use some
parameters either as input or output. This was observed to be a symptom
of the'Pactthat the code had evolved, but not been carefully polished.
We acknowledge that in the first case the author should probably
have coded in a more comfortable language, énd in the second the
program was probably not thoroughly designed before coding began.
DAVE can do nothing to prevent these serious breaches of good pro-
gramming practice. It was surprising and gratifying, however, to
discover that DAVE could often strongly indicate their presence--
a capability which we believe is quite useful.

We have had Tess experience in using DAVE as an error detection
aid during program development. This seems paradoxical because we

feel that DAVE is very well suited to aiding the detection of subtle
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errors, thereby speeding program development. The high cost of using
and the awkwardness in accessing the current version of DAVE,
however, forestalled its use in many cases. DAVE's accessing pro-
cedures have recently been streamlined, but the high cost of
using the system is attributable to a decision made during develop-
ment of the prototype system to favor flexibility over efficiency.
Hence high costs are 1ikely to remain for the forseeable future. As
a consequence of this, the few programs which DAVE helped to debug
all had subtle errors which had defied earlier concerted efforts at
detection. DAVE was usually able to point rather directly at these.
Such errors as camouflaged misspellings (eg. CARD instead of CARDS)
and mismatched argument/ parameter 1ists were discovered in this way.
Our experience has not been entirely positive. An obvious and
troublesome difficulty is DAVE's copious output. As already illus-
trated, a single error often generates numerous messages. Moreover,
we have observed that some messages are rarely symptoms of errors. The
net effect is that human analysts are often reluctant to pursue all
of DAVE's messages, thereby raising the possibility that errors
whose symptoms have been detected will go unnoticed. DAVE users
have also complained about the unclear wording of many messages.
A1l of these human interface problems must be solved Test DAVE's

useful capabilities be buried under an avalanche of opaque verbiage.
Problem Areas and Future Work
We consider the current DAVE system to be a working prototype.

Consequently, as might be expected, it has neither the spged nor

complete processing capabilities which might be expected of a polished
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system. The purpose of this section is to describe the areas in
which we feel DAVE is deficient and to indicate where and how im-
provements might be made.

One of the most immediate problems is that DAVE was designed to
analyze only programs written in ANSI Standard Fortran. DAVE has
since been Tiberalized to accept most of the Fortran dialects
available on CDC equipment. Little effort, however, has been devoted
to the problems of accepting other dialects. Many of the changes
required in order to accept such dialects appear to be straight-
forward, but it is worthwhile to note that some features of some
dialects (eg. the ENTRY feature found in FORTRAN V [19]) can not
be properly analyzed by DAVE without substantial alterations.

More serious is the fact that there are a number of features
of ANSI Standard Fortran which are currently incorrectly or
inadequately handled by DAVE. A notable and discouraging example
of this is the treatment of arrays. Currently DAVE treats all arrays
as simple variables, thereby blurring all distinctions between
array elements and eliminating the possibility of detecting certain
anomalous uses of the individual elements. Unfortunately, there are
fundamental theoretical reasons why patterns of array references in an
arbitrary program can never be completely analyzed by a static analysis
system such as DAVE.

As already noted, the call graph of a Fortran program may not
be acyclic even though the program is incapable of ever executing a
recursive calling chain. Such a program can not be analyzed by
DAVE. The most promising solution to this problem seems to be to

adapt DAVE so that it is able to analyze recursive programs. This is
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an interesting and worthwhile problem which seems solvable, and would

move DAVE in the direction of being able to analyze programs written
in other languages such as ALGOL and PL/I.

DAVE is also currently unable to build the complete call graph
for programs in which subprogram names are passed as parameters. Hence
DAVE cannot analyze such programs. An algorithm due to Kallal and
Osterweil [ 20 ] 1s capable of building the call graph of such a
program. This algorithm will probably be incorporated into future
versions of DAVE.

Other problems are encountered by DAVE in trying to analyze
programs containing extensive or tricky uses of aliasing constructs
such as EQUIVALENCE statements and restructured COMMON Tists. Most
of these will be overcome in future versions of DAVE by using well
known compiling techniques. Others,such as using two EQUIVALENCE'd
variables as arguments to the same subprogram, challenge some of DAVE's
basic assumptions, and may never be satisfactorally solved.

Programs in which variables become undefined (eg. the
exhaustion of a DO Toop causes the undefinition of the DO index) wmay,
under certain unusual circumstances, be incorrectly analyzed. This
results from our tardy recognition that variables must be typed with
respect to undefinition just as they are typed with respect to input
and output (ie. they must be typed as non-undefined, undefined, or
strict undefined). We have developed algorithms for performing
and correctly empioying this typing of undefinition, but have not
yet incorporated them into DAVE.

Finally, we are actively exploring the relationship between

static testing aids and global program optimization. Our investigation
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[21] has shown that existing algorithms in global optimization can
readily be harnessed to do much of the analysis done by DAVE. Hence
we foresee the incorporation of systems such as DAVE into a future

generation of compilers.
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ABSTRACT

This paper describes DAVE, an automatic program
testing aid which performs a static analysis of Fortran
programs, DAVE analyzes the data flows both within
and - across subprogram boundaries of Fortran pro-
grams, and is able to detect occurrences of uninitialized
and dead variables in such programs. The paper shows
how this capability facilitates the detection of a wide
variety of errors, many of which are often quite subtle.
The central analytic mechanism in DAVE is a depth-
first search procedure which enables DAVE to execute
efficiently. Some experiences with DAVE are described
and evaluated and some future work is projected.

INTRODUCTION

There is currently a great deal of interest in creating
systems capable of -assisting in the development of
error-free programs. This interest results both from
an awareness that erroneous programs are expensive
and potentially lethal and from the fact that the prob-
lems involved in producing error-free programs are
challenging and-stimulating. As might be expected. in
the case of such a-problem, which has enormous eco-

_ nomic significance and high intellectual appeal, the

approaches to its solution are numerous and diverse.
This diversity is shown by the following list of ap-
proaches, which is intended. to be indicative and not
exhaustive: :

¢ Devise error resistant desxgn and codmg practlces
The terms Structured Programming,’ Stepwise
Refinement,? and Top-Dawn Design® are often as-
sociated with work in this area.

e Create error resistant languages:
tors as Wirth* and Gannon and Horning® have
identified error-prone language features and pro-
posed languages which avoid them.

e Devise better organizational strategies for pro-
gramming : The Chief Programmer Team strategy
of Mills and Baker®’ is notable in this area.

* This work supported by NSF Grants GJ-36461 and DCRT75-
90072.

Such investiga- |
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e Prove the correctness of programs: This is a rela-
tively difficult and time consuming process, which
has ‘been successful largely for relatively small
programs, Current work,® however, offers hope
that machine aids may eventually facilit‘ate;ﬁro- .
gram proving for large programs as well:

e Build automated program testing aids: These aids
can do such things as monitor program execu-
tion,»103! perform static diagnostic scans,”” and
help generate test data.'®*

It seems clear that in the future the results of work
in several of these areas will be coordmated in any
effort to produce high quality,” error resistant pro-
grams, We feel certain, however, that because humans
will always have faulty memories, be prone to commit
keyboard errors, and will inject various other errors
into their programs, that any such coordinated attack
will surely include a testing activity. This activity
should rely heavily upon automated program test.aids.
In addition, we feel that automated test aids are of
particular importance at present, because they, unlike
most-of the other current appreaches, offer some hope
of helping determine the validity and worth of some of
the enormous body of programs already in existence:

For these reasons, we created DAVE, an automated
program testing aid which, we believe, embodies im-
portant new diagnostic capabilities.

DAVE AS AN AUTOMATED TESTING AID

DAVE performs a diagnostic scan of an ANSI
Standard!®* Fortran program for the purpose of detect-
ing erroneous or suspicious situations. Systems such as
this are often referred to as static analysis systems, in
that they do not require that the program be executed.
As a consequence, their analytic results are not re-
stricted in their applicability to a single execution. On
the contrary, in DAVE’s case it is possible to simulate
in a limited way the effect of executing all sequences of
statements in a program. Hence DAVE is able not only
to detect errors, but, more important, it is also able to
determine the absence of certain types of errors or
suspicious situations for all possible executions of the
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program. Because of this latter capability DAVE is a
valuable tool in examining existing programs for the
purpose of validating them.

Should DAVE detect an error or suspicious situation
along some execution sequence through the program an
error or warning message describing the situation is
produced. A human analyst must then determine the
true importance of the message, At this point a dy-
namic analysis system might be used to instrument the
program and gather detailed information about the
progress of an actual execution of the sequence of
statements which DAVE had pinpointed. Hence in this
way. DAVE is also useful as a debugging aid during
program development.

ERRORS DETECTED BY DAVE

All program testing aids are incapable of determin-
ing whether or not a program is completely correct.
A program testing aid can at best determine whether
" or not a program adheres to some specified standards.
A violation of such a standard may be taken to be an
a priori error or a suspicious condition, symptomatic
of some other error. Hence in all program testing aids
there must be an initial understanding of the standards
against which programs are to be measured. In DAVE
these standards all relate to the correct flow of data
through a program. It is our contention that in a cor-
rectly executing program two rules should always be
obeyed:

1. No variable will be used in a computation (refer-
enced) until it has previously been assigned a
value: (been defined).

2. A variable, once defined, will subsequently be
referenced before the variable is redefined or the
program terminates.

DAVE’s diagnostic scan determines whether either
of these two ruleg can be violated for any sequence of
statement executions. A violation of the first, called a
type 1 anomaly, is a violation of the ANSI Fortran
Standard*® and is considered to be an a priori error.
A violation of the second, called a type 2 anomaly, is
considered to be a symptom of some other error. DAVE
is able to detect a type 1 anomaly for any possible
‘execution sequence. Thus if DAVE does not detect such
an anomaly then none exists within the program. Hence
DAVE is able to both detect the presence, and assure
‘the absence of data flow anomalies. The former capa-
bility we refer to as error detection and the latter we
refer to as validation. Clearly the foregoing implies
that DAVE is able to validate programs for the absence
of uninitialized variables.

In practice we have found, however, that anomalies
of both types are usually symptoms of other errors. We
have been gratified to find that the range of errors
symptomatized by type 1 and type 2 anomalies is quite
large, extending from misspellings to subprogram invo-

cation errors. Because of this phenomenon of anoma-
lies occurring as symptoms of other errors, it has
turned out that DAVE has been most useful in indi-
rectly detecting errors other than' uninitialized and
dead variables (in the sense of Reference 16).

More specifically, a large measure of DAVE’s in-
direct error detection capability arises from the fact
that DAVE performs its data flow analysis across sub-
program boundaries. This data flow from one program
unit to another must be completely determined if all
possible anomalies are to be detected. Having made
this complete determination, however, DAVE is in a
position to also detect a variety of program unit
communication errors such as illegal side effects and
inconsistent COMMON' declarations. Because this in-
terprocedural data flow is often quite subtle, errors
involving it are likewise often subtle and difficult for a
human to identify. Hence it is not surprising that
DAVE’s error detection.capabilities in this area have
proven to be among its most useful features,

AN EXAMPLE

Figure 1 shows a somewhat contrived Fortran pro-
gram which is designed to illustrate some of the error
detection capabilities referred to in the previous sec-
tion. The purpose of the program is to compute and

COMMON /B/ AREA, COST
READ (5,1) PSF, LCRT, D1, D2
PI=3.1416 ‘
IF (LCRT .NE. 1) GO TQ 10
AREA=AREAR (D1, D2)
. GO TO 100
10 IF (LCRT .NE.2) GO TO 20
AREA=AREAC (P, D1)
GO TO 100
20 CALL AREAT (D1,D2, AREA)
100 CALL DOLS (PSF)
WRITE (6, 2) COST
STOP .
FORMAT (F6.2, 12, 2F10.4)
2 FORMAT (1H, F8.2)
END
FUNCTION AREAR (A, B)
" AREAR=A*B
RETURN .
END ‘
FUNCTION AREAC (P, RAD)
" AREAC=PI * RAD ** 2
RETURN
END
SUBROUTINE AREAT (B, H, AREA)
AREAT=05*B*H
RETURN
END
SUBROUTINE DOLS (PSF)
COMMON /B/ COST, AREA
COST=PSF * AREA
" RETURN '
END

ey

Figure 1—A program illustrating some of the error detection
capabilities of DAVE
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print out the cost of covering an area with some cover-
ing material. The program reads in PSF, the cost per
square foot of the material; LCRT, an integer used to
denote whether the area is a rectangle (if LCRT is 1),
a circle (if LCRT is 2), or a triangle (if LCRT is 3);
and D1 and D2, the two dimensions of the area (D2 is
unused if LCRT is 2). The program then branches on
LCRT to three different subprograms, AREAR,
AREAC, and AREAT, which are supposed to compute
the area of the rectangle, circle or triangle (respec-
tively), and place the value of this area in the variable
AREA. Subroutine DOLS is then called to compute
COST, the product of AREA and PSF “Finally COST,
the desired result, is printed out.

Close inspection of the program reveals that it con-
tains errors, some of which are not very obvious. Per-
haps the most obvious error is that the value of pi is set
into the variable PI, but the variable P is used to pass
this value into AREAC, the subprogram which requires
it. A second error is that there is a misspelling in the
subroutine AREAT. The third parameter is named

AREA, but the body of the subroutine defines a value

for the variable AREAT instead. Hence upon return
there is no value given to the main program variable
AREA, which is referenced. in a subsequent computa-
tion. A third error involves the COMMON block B,
which is used for communication between the main
program and DOLS. B contains the variables AREA
and COST. DOLS, which expects AREA to contain the
computed area, uses. it to compute the value of COST,
which is then passed through B back to the main pro-
gram, Unfortunately, the order of declaration of AREA
and COST in the main program is the reverse of the
order of declaration in DOLS.

Detection of these three errors would most likely be
at least tedious using conventional debugging methods.
The third error would cause any execution to be errone-
ous, but each of the first two would cduse an erroneous

execution only for a single specific value of LCRT.

Hence it is reasonable to expect that the three errors
would be ferreted out one at a time, perhaps with some
difficulty, if the usual procedure of runnmg test cases
was followed.

DAVE would facilitate the detectzon of all three
errors in only one diagnostic scan because vach one
causes data flow anomalies, In the case of the first
error, DAVE would identify the definition of PI with-
out subsequent reference as a type 2 anomaly. DAVE
would also determine that the first argument in any
invocation of AREAC must carry in a value. Hence in
analyzing the main program - DAVE would conclude
that the invocation of AREAC would cause a type 1
anomaly, and would print an appropriate message.
DAVE is unable to state directly the true error—
namely a misspelling. The two anomaly messages,
however, point strongly to the true error. ‘

The second error, also a. misspelling, is likewise
strongly indicated by anomaly messages. In analyzing
. -AREAT, DAVE would discover that the local variable

AREAT is never referenced after definition, and print
a message describing this type 2 anomaly. DAVE would
also determine that the parameter AREA is neither
referenced nor defined in the subroutine, This is re-
garded as a suspicious situation, and DAVE would
produce a message describing it. Finally, in analyzing.
the main program, DAVE would discover that there is
a sequence of statements leading up to the invocation
of DOLS which does not cause the variable AREA to
be defined (namely the one which includes the invoca-
tion of AREAT). No anomaly message will be printed
because, as shall be seen, the third error causes DOLS
to make no use of AREA. Had the third error not been
present, however, a type 1 anomaly message would
have been printed. In this case the interaction of two
errors causes the suppression of one anomaly message.
DAVE, nevertheless, produces two other messages in
reponse to the second error.

The third error is a transposition of variables in a
COMMON statement. DAVE would analyze DOLS and
determine that it requires a value to be passed in
through the second variable in COMMON block B, and
that it passes out a value through the first variable in
B. Upon analyzing the main program DAVE would
find that COST, the second variable in COMMON
block B, is never initialized before the invocation of
DOLS—hence a type 1 anomaly: message would be
printed, DAVE would also discover that AREA, the -

first variable in block B, generally has a freshly com-

puted value when DOLS is invoked. DAVE would ob-
serve the DOLS resets this value before it is ever
referenced and print a type 2 anomaly message.
Finally, DAVE would observe that AREA, the first
variable in block B, is never referenced after its defini-
tion in DOLS and print another type 2 anomaly mes-
sage. Here too, it is clear that these three messages
strongly 1Hum1nate the transposition error, although it
is never explicitly identified.

This brief example is intended to give an impression
of how DAVE’s analysis can assist in isolating subtle
errors. We expect that the reader can see how DAVE -
is also useful in detecting other errors such as trans-
posed statements, illegal side effects, and mismatched
argument and parameter lists. Likewise the reader
should be able to see that the use of an automatic aid
such as DAVE is far more necessary in analyzing a
large, complex, real-world program than in detecting
the errors in this small, simple, contrived example.

THE DESIGN OF THE DAVE SYSTEM

DAVE performs its analysis by passing over the pro-
gram units of a program, from the lowest level sub-
programs upward to the main program, analyzing each
program unit exactly once, employing a depth-first
search of a labelled flow graph of the program unit.
Details of the system’s design and implementation can
be found in References 17 and 18, and hence are
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omitted here. For completeness, however, a brief sim-
plified overview shall now be given. -

DAVE's analysis is performed on labelled flow
graphs, where a different graph represents each of the
program units of the program, The nodes of a flow
graph represent the program unit’s statements and the
edges represent intra-program-unit control transfers.
Each node’s label describes which variables are defined
and referenced during the execution of the code cor-
responding to the node. These graphs are constructed
at the start of DAVE’s analysis. The graphs are easily

_constructed, but they cannot immediately be completely
labelled, due to the undeterminable status of variables
which are used as arguments to subprograms. Hence
the graphs are left only partially labelled until a later
phase of the analysis. All invocations of subprograms
which are made by a program unit are carefully noted,
however. After the last program unit flow graph has
been created and partially labelled, the totality of these
invocations is used to construct the program call graph,
a graph whose nodes represent the program units and
whose edges represent the subprogram invocations.
Due to the impossibility of recursive calling chains in
ANSI Standard Fortran, it is expected (although not
always true) that the call graph will be acyclic. Hence
there will be leaf nodes (nodes without any outedges)
in the graph. These represent program units which
do not invoke any subprograms. Hence the flow graphs
for these program units are known to be completely
labelled. DAVE now continues by carefully analyzing
these program units’ flow graphs.

Once a program unit’s flow graph is completely
labelled it is possible to determine the pattern of refer-
ences to and definitions of each of the program unit’s
variables for each of the program unit’s execution
sequences. Uninitialized and dead variables are found
by examining these patterns. In DAVE a variable’s
pattern of references and definitions is determined and
examined by a depth-first search procedure (described
in detail in Reference 18) which executes in time pro-
portional to the number of edges in the flow graph.
The search procedure is repeated for each variable in
the program unit. It classifies each variable as either
non-input, input or strict input and either non-output,
output or strict output. A variable is classified input if
along some, but not all, execution sequences through
the program unit the variable is referenced before it is
defined. If there iz no such execution sequence, the
variable is classified non-input. If the variable is refer-
enced before definition along all execution sequences,
the variable is classified strict input. Similarly, the
variable is classified output if along some, but not all,
execution sequences in the program unit the variable is
defined. If there is no such execution sequence the
variable is classified non-output. If it is defined along
all execution sequences, it is classified strict output.

These classifications having been made, DAVE be-
gins its search for anomalies. If a local variable is
classified strict input, it is clear that a type 1 anomaly

will oceur, and an error message is produced. If a local
variable is classified input, then a type 1 anomaly exists
for some, but not all, sequences of statements. In recog-
nition of the fact that these sequences may not actually
be executable in response to any input data, DAVE
produces a warning message describing the possibility
of executing an anomaly bearing sequence of state-

- ments. DAVE performs similar scans for type 2

anomalies by executing searches from a definition of a

" local variable to determine whether the subprogram

terminates or redefines the variable before referencing
it.
The determination of the input/output status of non-

'~ local variables (i.e., parameters and COMMON vari-

ables) of leaf subprograms is not used immediately in
the detection of anomalies, but rather is used to enable
DAVE’s analysis to continue for higher level program
units. The program call graph is used to locate all
invocations of the leaf subprograms, and now the nodes
corresponding to these invocations are labelled. At the
end of this process, some non-leaf subprograms have
become completely labelled and the depth-first search
procedure can be applied to them. This process con-
tinues until eventually the main program itself is
searched.

The process of using the input/output classification
of a non-local variable of .an invoked subprogram to
label an invoking node is worthy of some elaboration
here as it incorporates a number of useful error checks.
DAVE first compares argument and parameter lists for
agreement in length and type. Lack of agreement is
considered an error. Next, parameter output classifica-
tions are compared to arguments. If a parameter is
classified as output or strict output and the correspond-
ing argument is a constant, expression or subprogram
name, DAVE produces a message. COMMON variables
which carry data into or out of the invoked subprogram
are identified at this time and messages describing
them are made available for use as documentation.
Finally, the variables in the invoking statement are

- examined to see whether any of them is used both as an

input.and an output in separate subprogram invoca-
tions. If so, DAVE has detected an illegal side effect,
and produces a message identifying it. )
After DAVE has searched the main program, it
examines the input classifications of its COMMON
variables, Error or warning messages are generated
for each COMMON variable which is typed strict input
or input but is not initialized in a BLOCK DATA
subprogram. ‘

IMPLEMENTATION DATA

DAVE is implemented as a Fortran program consist-
ing of approximately 25,000 source statements. It
operates in four overlaid phases, the largest of which
occupies 50,000 decimal words of central memory on
the CDC 6400. DAVE is written almost entirely in
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machine independent ANSI Standard Fortran., Some
non-Standard and machine dependent coding practices
seemed expedient, however, and they are quarantined
to a small number of small subprograms. DAVE was
developed on the CDC 6400 at the University of Colo-
rado, but has been successfully moved to a CDC 7600
and two machines in the IBM 360,370 series. Installa-
tions on a Univac 1100 series machine and a Honeywell
6000 series machine are planned for the near future.

Under its current configuration DAVE is able to
process a program consisting of a few dozen subpro-
grams, each of which may contain no more than 200-
250 source statements. These limits depend entirely
upon internal table and scratch array sizes, and have
been quickly altered to produce different. experimental
configurations. At this writing, the largest body of
code which DAVE has processed has been a 2700 source
statement subprogram library. DAVE is currently
operational, however, on a machine with sufficient
central memory to enable it to process its own source
code, and this should be accomplished in the near
future. The analysis of a source program by DAVE has
been observed to require an average of 0.3 seconds of
central processor time per source statement on the CDC
6400 and to cost approximately six to eight cents per
source statement under the Tniversity of Colorado
Computing Center charge algorithm.

SUMMARY OF EXPERIENCE TO DATE

DAVE has been operational on an experimental basis
for a few months to date. During this time we have
seen evidence that it can be a valuable tool in the pro-
duction of high quality, error-free programs. Most of
our experience has come from using DAVE in vali-
dating completed programs. These included a highly
respected matrix manipulation system, several recent
algorithms taken from the ACM Transactions on
Mathematical Software, and a program submitted as a
part of a Master’s Thesis in Computer Science. Errors
were detected in some of the algorithms, and the
Master’'s Thesis was found to have numerous errors.
In most cases the errors were of the type that would
hamper program portability, such as reference to un-
initialized variables which should have been initialized
to zero, reference to exhausted DO loop indices and sub-
program invocations with mismatched argument and
parameter lists. In each case, the errors did not seem
to prevent successful execution on the author’s com-
puter, but seemed likely to cause trouble if executed
elsewhere. (There was some suspicion, however, that
some of the erroneous subprogram invocations were
imbedded in program segments which had never been
tested or were unexecutable.)

Perhaps the most surprising observation was that
DAVE’s messages often gave unexpected insight into
the author’s coding style. For example, a program for
which DAVE produced numerous type 2 anomaly

warning messages did not prove to be incorrect, but
rather it contained numerous loops in which indices
and counters were updated immediately before DO loop
endings. It was discovered that the author tended to
favor WHILE loop constructions which are often
awkward in Fortran. This was observed by DAVE.
As another example, some programs contained sub-
routine definitions which did not use some parameters
either as input or output, This was observed to be a
symptom of the fact that the code had evolved, but not
been carefully polished. We acknowledge that in the
first case the author should probably have coded in a
more comfortable language, and in the second the
program was probably not thoroughly designed before
coding began, DAVE can do nothing to prevent these
serious breaches of good programming practice. It was
surprising and gratifying, however, to discover that
DAVE could often strongly indicate their presence—a
capability which we believe is quite useful.

We have had less experience in using DAVE as an
error detection aid during program development. This
seems paradoxical because we feel that DAVE is very
well suited to aiding the detection of subtle errors,
thereby speeding program development. The high cost

" of using and the awkwardness in accessing the current

version of DAVE, however, forestalled its use in many
cases. DAVE’s accessing procedures have recently
been streamlined, but the high cost of using the system
is attributable to a decision made during development
of the prototype system to favor flexibility over
efficiency. Hence high costs are likely to remain for the
foreseeable future. As a consequence of this, the few
programs which DAVE helped to debug all had subtle
errors which had defied earlier concerted efforts at
detection. DAVE was usually able to point rather di-
rectly at these. Such errors as camouflaged misspell-
ings (e.g., CARD instead of CARDS) and mismatched
argument/parameter lists were discovered in this way,
Our experience has not been entirely positive. An
obvious and troublesome difficulty is DAVE’s copious
output. As already illustrated, a single error often
generates numerous messages. Moreover, we have ob-
served that some messages are rarely symptoms of
errors. The net effect is that human analysts are often
reluctant to pursue all of DAVE’s messages, thereby
raising the possibility that errors whose symptoms
have been detected will go unnoticed. DAVE users
have also complained about the unclear wording of
many messages. All of these human interface problems
must be solved lest DAVE’s useful capabilities be
buried under an avalanche of opaque verbiage. '

PROBLEM AREAS AND FUTURE WORK

We consider the current DAVE system to be a work-
ing prototype. Consequently, as might be expected, it
has neither the speed nor complete processing capa-
bilities which might be expected of a polished system.
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The purpose of this section is to describe the areas in
which we feel DAVE is deficient and to indicate where
and how improvements might be made. ,

One of the most immediate problems is that DAVE
was designed to analyze only programs written in
ANSI Standard Fortran. DAVE has since been liberal-
ized to accept most of the Fortran dialects available
on CDC equipment. Little effort, however, has been
devoted to the problems of accepting other dialects.
Many of the changes required in order to accept such
dialects appear to be straightforward, but it is worth-
while to note that some features of some dialects (e.g.,
the ENTRY feature found in FORTRAN V*?) cannot
be properly analyzed by DAVE without substantial
alterations. i

More serious is the fact that therc are a number of
features of ANSI Standard Fortran which are cur-
rently incorrectly or inadequately handled by DAVE.,
A notable and discouraging example of this is the treat-
ment of arrays. Currently DAVE treats all arrays as
simple variables, thereby blurring all distinctions be-
tween array elements and eliminating the possibility
of detecting certain anomalous uses of the individual
elements, Unfortunately, there are fundamental theo-
retical reasons why patterns of array references in an
arbitrary program can never be completely analyzed
by a static analysis system such as DAVE.

As already noted, the call graph of a Fortran pro-
gram may not be acyclic even though the program is
incapable of ever executing a recursive calling chain.
Such a program cannot be analyzed by DAVE. The
most promising solution to this problem seems to be to
adapt DAVE so that it is able to analyze recursive
programs. This is an interesting and worthwhile prob-
lem which seems solvable, and would move DAVE in
the direction of being able to analyze programs written
in other languages such as ALGOL and PL/L

DAVE is also currently unable to build the complete
call graph for programs in which subprogram names
are passed as .parameters. Hence DAVE cannot
analyze such programs. As algorithm due to Kallal
and Osterweil?® is capable of building the call graph
of such a program. This algorithm will probably be
incorporated into future versions of DAVE.

Other problems are encountered by DAVE in trying
to analyze programs containing extensive or tricky
uses of aliasing constructs such as EQUIVALENCE
statements and restructured COMMON lists. Most of
these will be overcome in future versions of DAVE
by using well-known compiling technigues. Others,
such as using two EQUIVALENCE'd variables as
arguments to the same subprogram, challenge some of
DAVE’s basic assumptions, and may never be satis-
factorally solved.

Programs in which variables become undefined (e.g.,
the exhaustion of a DO loop causes the undefinition of
the DO index) may, under certain unusual circum-
stances, be incorrectly analyzed. This results from our
tardy recognition that variables must be typed with

respect to undefinition just as they are typed with re-
spect to input and output (i.e., they must be typed as
non-undefined, undefined, or strict undefined), We have
developed algorithms for performing and correctly em-
ploying this typing of undefinition, but have not yet
incorporated them into DAVE.

Finally, we are actively exploring the relationship
between static testing aids and global program op-
timization. Our investigation®* has shown that exist-
ing algorithms in global optimization can readily be
harnessed to do much of the analysis done by DAVE.
Hence we foresee the incorporation of systems such as
DAVE into a future generation of compilers.
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