DATA FLOW ANALYSIS IN
SOFTWARE RELIABILITY *
By

LToyd D. Fosdick
Leon J. Osterweil
Department of Computer Science
University of Colorado
Boulder, Colorado 80309

TR #CU-CS-087-76 (Revised) May 1976

Key Words: data flow analysis, software reliability,
automatic error detection, automatic documentation.

CR Categories: 4.4, 5.24

* This work supported by NSF Grant DCR 75-09972.

Data Flow Analysis In Software Reliability*

LLOYD D. FOSDICK
and

LEON J. OSTERWEIL

Department of Computer Science, University of Colorado, Boulder, Colorado 80309

The ways that the methods of data flow analysis can be applied to improve
software reliability are described. There is also a review of the basic terminology
from graph theory and from data flow analysis in global program optimization. The
notation of regular expressions is used to describe actions on data for sets of paths.
These expressions provide the basis of a classification scheme for data flow which
represents patterns of data fow along paths within subprograms and along paths
which eross subprogram boundaries. Fast algorithms, originally introduced for
global optimization, are described and it is shown how they can be used to implement
the classification scheme. It is then shown how these same algorithms c¢an also be
used to detect the presence of data flow anomalies which are symptomatic of
programming errors. Finally, some characteristics of and experience with DAVE, a
data flow analysis system embodying some of these ideas, are described.

Keywords and Phrases: automatic documentation, automatic error detection, data

flow analysis, software reliability
CR Calegories: 4.40, 5.24

INTRODUCTION

For some time we have bhelieved that a
careful analysis of the use of data in a
program, such as that done in global opti-
mization, could be a powerful means for
detecting errors in software and otherwise
improving its quality. Our recent experience
[27, 28] with a system constructed for this
purpose confirms this belief. As so often
happens on such projects, our knowledge
and understanding of this approach were
deepened considerably by the experience
gained in constructing this system, although
the pressures of meeting various deadlines
made it impossible to incorporate all of our
developing ideas into the system. More-

75-09972.

over, during its construction advances
were made in global optimization algorithms
that are useful to us, which for the same
reasons could not be incorporated in the
system. Our purpose in writing this paper
is to draw these various ideas together and
present them for the instruction and stimu-
lation of others who are interested in the
problem of software reliability.

The phrase “data flow analysis” became
firmly established in the literature of global
program optimization several years ago
through the work of Cocke and Allen [2, 3,
4, 5, 6]. Considerable attention has also
been given to data flow by Dennis and his
co-workers [9, 29] in a different context,
advanced computer architecture. Our own
interpretation of data flow analysis is simi-

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish, but
not for profit, all or part of this material is granted provided that ACM’s copyright notice is given
and that reference is made to the publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Computing Machinery.

Computing Surveys, Vol. 8, No. 3, September 1476

306 .

CONTENTS

INTRODUCTION

BASIC DEFINITIONS—GRAPHS

BASIC DEFINITIONS—PATH EXPRESSIONS TO
REPRESENT DATA FLOW

ALGORITHMS TO SOLVE THE LIVE VARIABLE
PROBLEM AND THE AVAILABILITY PROBLEM

SEGMENTATION OF DATA FLOW

DETECTING ANOMCLOUS PATH EXPRESSIONS

CONCLUSION

ACKNOWLEDGMENTS

REFERENCES

T

lar to that found in the literature of global
program optimization, but our emphasis
and objectives are different. Specifically,
execution of a computer program normally
irplies input of data, operations on it, and
output of the results of these operations in
a sequence determined by the program and
the data. We view this sequence of events
as a flow of data from input to output in
which input values contribute to inter-
mediate results, these in turn contribute to
other intermediate results, and so forth
until the final results, which presumably
are output, are obtained. It is the ordered
use of data implicit in this process that is
the central object of study in data flow
analysis.

Data flow analysis does not imply execu-
tion of the program being analyzed. In-
stead, the program is scanned in a syste-
matic way and information about the use of
variables is collected so that certain in-
ferences can be made about the effect of
these uses at other points of the program.
An example from the context of global opti-
mization will itlustrate the point. This ex-
ample, known as the live variable problem,
determines whether the value of some
variable is to be used in a computation

Computing Surveys, Vob. 8, No. 3, September 1976

Data Flow Analysis In Software Eeliability

after some designated computation step.
If it is not to be used, space for that vari-
able may be reallocated or an unnecessary
assignment of a value can be deleted. To
make this determination it is necessary to
look in effect at all possible execution se-
quences starting at the designated execution
step to sce if the variable under considera-
tion is ever used again in a computation.
This is a difficult problem in any practical
situation because of the complexity of exe-
cution sequences, the aliasing of variables,
the use of external procedures, and other
factors. Thus a brute force attack on this
problem is doomed to failure. Clever al-
gorithms have been developed for dealing
with this and related problems. They do
not require explicit consideration of all
execution sequences in the program in order
to draw correct conclusions about the use of
variables. Indeed, the effort expended in
scanning through the program to gather
information is remarkably small. We dis-
cuss some of these algorithms in detail,
because they can be adapted to deal with
our own set of problems in software re-
liability, and turn to these problems now.

Data flow in a program is expected to be
consistent in various ways. If the value of
a variable is needed at some computation
step, say the variable a in the step

¥y « ot 1,

then it is normally assumed that at an
earlier computation step a value was
assigned to «. If a value is assigned to a
variable in a computation step, for example
to v, then it is normally assumed that
that value will be used in a later computa-
tion step. When the pattern of use of vari-
ables is abnormal, so that our expectations
of how variables are to be used in a compu-
tation are violated, we say there is an
anomaly in the data flow. Examples of data
flow anomalies are illustrated in the fol-
lowing ForTraN constructions. The first
is

X = A
X =B

It is clear that the first assignment to X is
useless. Why is the statement there at all?
Perhaps the author of the program meant to
write

X = A
Y = B

Another data flow anomaly is represented by
the FoORTRAN construction

SUBROUTINE SUB(X, Y, %)
=Y+ W

Here W is undefined at the point that a
value for it is required in the computation.
Did the author mean X instead of W, or
W instead of X, or was W to be in COM-
MON? We do not know the answers to
these questions, but we do know that there
is an anomaly in the data flow.

As these examples suggest, common
programming errors cause data flow anoma-
lies. Such errors include misspelling, con-
fusion of names, incorrect parameter usage
in external procedure invocations, omission
of statements, and similar errors. The
presence of a data flow anomaly does not
imply that execution of the program will
definitely produce incorrect results; it im-
plies only that execution may produce in-
correct results. It may produce incorrect
results depending on the input data, the
operating system, or other environmental
factors. It may always produce incorrect
results regardless of these factors, or it
may never produce incorrect results. The
point is that the presence of a data flow
anomaly is at least a cause for concern be-
cause it often is a symptom of an error.
Certainly software containing data flow
anomalies is less likely to be reliable than
software which does not contain them.

Our primary goal in using data flow analy-
sis is the detection of data flow anomalies.
The examples above hardly require very
sophisticated techniques for their detection.
However, it can easily be imagined how

L. D. Fosdick and L., J. Osterweil . 307
similar anomalies could be embedded in a
farge body of code in such a way as to be
very obscure. The algorithms we will de-
scribe make it possible to expose the pres-
ence of data flow anomalies in large bodies of
code where the patterns of data flow are
almost arbitrarily complex. The analysic is
not limited to individual procedures, as is
often the case in global optimization, but
it extends across procedure boundaries to
include entire programs composed of many
procedures.

The scarch for data flow anomalies can be-
come expensive to the point of being totally
impractical unless careful attention is
given to the organization of the search. Our
experience shows that a practical approach
beging with an initial determination of
whether or not any data flow anomalies
are present, leaving aside the question of
their specific location. This determination of
the presence of data flow anomalies is the
main subject of our discussion. We will see
that fast and effective algorithms can be
constructed for making this determination
and that these algorithms identify the
variables involved in the data flow anomalies
and provide rough information ahout loca-
tion. Moreover, these algorithms use as
their basic constituents the same algorithms
that are employed in global optimization
and require the same information, so they
could be particularly efficient if included
within an optimizing compiler.

Localizing an anomaly consists in finding
a path in the program containing the
anomaly ; this raises the question of whether
the path is executable. For example, con-
sider Figure 1 and observe that although
there is a path proceeding sequentially
through the boxes 1, 2, 3, 4, 5, this path
can never be followed in any execution of
the program. An anomaly on such a non-
executable path is of no interest. The de-
termination of whether or not a path is
exeeutable is particularly difficult, but often
can be made with a technique known as
symbolic execution [8, 16, 22]. In symbolic
execution the value of a variable is repre-
sented as a symbolic expression in terms of
certain variables designated as inputs,

Computing Surveys, Vol. & No. 3, September 1976

anomaly on an executable path without
resorting to symbolie execution is of con-
siderable practical importance.

While an anomaly can be detected me-
chanically by the techniques we describe,
the detection of an underlying error re-
quires additional effort. The simple ex-
amples of data flow anomalies given earlier
make it clear that a knowledge of the in-
tent of the programmer is necessary to
identify the error. It is unreasonable to
assume that the programmer will provide
in advance enough additional information
about intent that the errors too can be
mechanically detected. We visualize the

308 . Data Flow Analysis In Software Reliabilily
N : s
Ye-X? Yo A +X
AN /
Xe—X + |
Y<O 4
T F

Figure 1. The path in this segment of a flow
diagram represented by visiting the boxes in the
sequence 1, 2, 3, 4, 5 i8 not executable. Note that
Y > 0 upen leaving box 1 and this condition is
true upon entry te box 4, thus the exit labeled
T could not be taken.

rather than as a number. The symbolic
expression for a variable carries enough
information that if numerical values were
assigned to the inputs a numerical value
could be obtained for the variable. Symbolic
execution requires the systematic derivation
of these expressions. Symbolic execution is
very costly, and although we believe further
study will lead to more efficient imple-
mentations, it scems certain that this will
remain relatively expensive. Therefore a
practical approach to anomaly detection
should avoid symbolic execution until it is
really necessary. In particular, with pres-
ently known algorithms the least expensive
procedure appears to be: 1) determine
whether an anomaly is present, 2) find a
path containing this anomaly, and then
3) attempt to determine whether the path
is executable.

We show that the algorithms presented
here do provide information about the
presence of anomalies on executable paths.
While they do not identify the paths, the
fact that they can report the presence of an

Computing Surveys, Vol. 8, No. 3, September 1976

actual error detection as being done man-
ually by the programmer, provided with
information about the anomalies present
in his program. Obviously, many tools
could be provided to make the task easier,
but in the end it must be a human who
determines the meaning of an anomaly.
We like to think of a system which detects
data flow anomalies as a powerful, thorough,
tireless critic, which can inspect a program
and say to the programmer: “There is
something unusual about the way you
used the variable a in this statement. Per-
haps you should check it.”” The critic might
be even more specific and say, “‘Surely
there is something wrong here. You are
trying to use a in the evaluation of this
expression, but you have not given a value
to a.”

The data flow analysis required for de-
tection of anomalies also provides routine
but valuable information for the documenta-
tion of programs. For example, it provides
information about which variables receive
values as a result of a procedure invocation
and which variables must supply values to
a procedure. It identifies the aliasing that
results from the multiple definition of
COMMON blocks in FORTRAN programs.
Tt identifies regions of the program where
some variables are not used at all. It recog-
nizes the order in which procedures may
be invoked. This partial list illustrates that
the documentation information provided
by this mechanism can be useful, not only
to the person responsible for its construction,
but also to users and maintainers.

We are ready now to enter into the de-
tails of this discussion. We begin with a
presentation of certain definitions from graph
theory. Graphs are an essential tool in data
flow analysis, used to represent the execu-
tion sequences in a program. We follow
this with a discussion of the expressions
we use to represent the actions performed
on data in a program. The notation in-
troduced here greatly simplifies the later
discussion of data flow analysis. Next, we
discuss the basic algorithmic tools required
for data flow analysis. Then we describe
both a technique for segmenting the data
flow analysis and the systematic applica-
tion of this fechnique to detect data flow
anomalies in a program. We conclude with a
diseussion of the experience we have had with
a prototype system based on these ideas.

BASIC DEFINITIOMS-—GRAPHS

Formally a graph is represented by G(N, E)
where N is a set of nodes {ny, ng, -,
and E is a set of ordered pairs of nodes
called the edges, { (n;,, ny,), (0, n5,), -,
(N s My}, Where the n;s are not neces-
sarily distinct. For example, for the graph in
Figure 2,

N =10,1,2 3, 4,
E ={(0,1),(0,2),(2,2),(2,3), (4,2),
(1,4), (4, D}

The number of nodes in the graph is repre-
sented by |N | and the number of edges
by | E |. For the graph in Figure 2, | N | = 5
and | E| = 7. For any graph | E | < |N [},
since a particalar ordered pair of nodes
may appear at most once in the set E.

0

2

et

4 3

Fioure 2. Pictorial representation of a directed
graph. The points, labeled here as 0, 1, 2, 3, 4,
are called nodes, and the lines joining them are
called edges.

L. D. Fosdick and L. J . Osterwel . 309
For the graphs that will be of interest to us
it is usually true that | E| is substantially
less than | N |*; in fact it is customary to
assume that |E| < k|N| where k is a
small integer constant.

For an edge, say (n. n;), we say that
the edge goes from n; to n; ; n; is called a
predecessor of n;, and n; is called a successor
of n;. The number of predecessors of a
node is called the in-degree of the node,
and the number of successors of a node is
called the out-degree of the node. For the
graph shown in Figure 2, 0 is the predecessor
of 1 and 2, the out-degree of 0 is two; 0 is
not a successor of any node, it has the in-
degree zero. In this figure we also see that
4 is both a successor and a predecessor of
1, and 2 is a successor and predecessor of
itself. A node with no predecessors (i.e.,
in-degree = Q) is called an enry node, and
a node with no successors (i.e., out-degree
= 0) is called an exit node; in Figure 2,
0 is the only entry node and 3 is the only
exit node.

A path in (@ is a sequence of nodes n;, ,
Njy, -+, nj such that every adjacent
pair (n,,, nj,.,,) is in E. We say that this
path goes from n; to n, . In Figure 2,
0, 2, 3 is a path from 0 to 3; 1, 4, 1, is a
path from 1 to 1. There is an infinity of
paths from 1 to 1:1, 4, 1; 1, 4, 1, 4, 1;
ete. The length of a path is the number of
nodes in the path, less one (equivalently,
the number of edges); thus the length of the
path 0, 1, 4, 1, 4, 2, 3 in Figure 2 is six.
If nj,, njy, -+, nj is a path p, then any
subsequence of the form nj, Ny, ~*°,
Njgamdor 1 <7 <kandl <m<k — 1
is also a path, p’; we say that p contains the
path p’.

If p is a path from n; to n; and © = J,
then p is a cycle. In Figure 2 the paths 1, 4, 1,
1,4, 1, 4, 1, and 2, 2 are cycles. The path
0,1, 4, 1, 4, 2, 3 contains a cycle. A path
which contains no cycles is acyelic, and a
graph in which all paths are acyclic is an
acyclic graph.

If every node of a connected graph has in-
degree one and thus has a unique prede-
cessor, except for one node which has in-
degree zero, the graph is a tree T'(NV, E).
The graph in Figure 3 is a tree, and if the

Computing Surveys, Vol. 8, No. 3, September 1976

310 .

Q
/‘< o
2 >
VAN

Fiaurs 3. Pictorial representation of a free
rooted at 0. Each node has a unique predecessor
except the root which has no predecessor.

edges (4, 1), (4, 2), and (2, 2) in Figure 2
are deleted, then the resulting graph is also
a tree. The unique entry node is called the
root, of the tree and the exit nodes are called
the leafs. It will be recognized that there is
exactly one path from the root to each node
in a tree; thus we can speak of a partial order-
ing of the nodes in a tree. In particular, if
there is a path from n, to n; in a tree, then
n; comes before n; in the tree; we say that
n; is an ancestor of n; and n; is a descendent
of n;. In Figure 3 every node except 0 is a
descendent of 0, and 0 is the ancestor of all
of these nodes. Similarly 1 is an ancestor of
the nodes 2, 3, 4, 5, 6; on the other hand, 7
is not an ancestor of these nodes. A tree
which has been derived from a directed
graph by the deletion of certain edges, but
of no nodes, is called a spanning tree of the
graph.

These elementary definitions are com-
monly accepted, but they are not universal.
Graph theory seems to be notorious for its
nonstandard terminology. Additional in-
formation on this subject can be found in
Efarious texts such as Knuth [24], and Harary
13].

The use of flowcharts as pictorial repre-
sentations of the flow of control in & com-
puter program dates back to at least 1947
in the work of Goldstine and von Neumann
(11], and the advantage of the systematic
application of graph theory to computer
programming was pointed out in 1960 by
Karp [21]. In recent years this approach has
been actively developed with numerous
articles appearing in the SIAM Journal on
Computing, the Journal of the ACM, and

Computing Surveys, Vol. §, No. 3, September 1976

Data Flow Analysis In Software Reliability

many conference proceedings, especially
those of the ACM Special Interest Group on
the Theory of Computing. We now introduce

~ some ideas and definitions drawn from this

literature pertinent to the subsequent dis-
cussion.

When a graph is used to represent the
flow of control from one statement to an-
other in a program, it is called a flow graph.
A flow graph must have a single entry node,
but may have more than one exit node, and
there must be a path from the entry node
to every node in the flow graph. Formally,
a flow graph is represented by Gr(NV, E, No),
where N and E are the node and edge sets,
respectively, and ng, an element of N, is
the unique entry node.

Generally the nodes of a flow graph
represent statements of a program and the
edges represent control paths from one state-
ment to the next. In data flow analysis the
flow graph is used to guide a search over
the statements of a program to determine
certain relationships between the uses of
data in various statements. Thus before
data flow analysis can begin, a correspond-
ence between the statements of a program
and the nodes of a flow graph must be
established. Unfortunately, difficulties arise
in trying to establish this correspondence
because of the structure of the language
and the requirements of data flow analysis.

Statements in higher level languages can
consist of more than one part, and not all

X=X+1.0

TF(X.LT.Y) Jsd+l
A=e*X :
: n
i
My
Nive
y
ni+5ﬁ

5

Froure 4. Graph representation of a segment
of a Forrran program. Node n; represents
the statement X = X - 1.0, node n;,, repre-
sents the first part of the IF statement
IF(X.I'T.Y), node niye represents the second
part of the TF statement J = J + 1, and node
Tli4s represents the statement A = X=X,

parts may be executed when the statement
is executed. This is the case with the
Forrran logical IF, as in

IF(A LE. 1.0)) = J + 1,

where execution of the statement does not
necessarily imply fetching a value of J
from storage and changing it. For the pur-
pose of data flow analysis it is desirable to
separate such statements into their con-
stituent parts and let each part be repre-
sented by a node in (p as illustrated in
Figure 4 for this IF statement.

Statements which reference external pro-
cedures pose a far more serious problem.
Such statements actually represent se-
quences of statements. If a node in a flow
graph is used to represent an external pro-
cedure, then some ambiguities in the data
flow analysis arise because the control struc-
ture of the represented external procedure
is, so to speak, hidden. On the other hand,
if we permit this control structure to be
completely exposed by placing its low graph
at the point of appearance of the referencing
statement, then we invite a combinatorial
explosion. Later we will discuss mechanisms
for propagating critical data flow informa-
tion across procedure boundaries in such a
way as to avoid a combinatorial explosion,
but at the price of losing some information.
An important construction used here is the
call graph.

C--MAIN FROGRAM

CALL SUBA(- --)

VEXeFUNA()
END MAIN
SUBROUTINC SUBA(---)
I=FUNB(- -)+1.0
: SUBA FUNA
ERD
FUNCTION FUNA(---)
: FUNB
YEFULB(- ..)-1.0
€10
FUNCTION FunB(..-)
END
Fraure 5. Illustration of the call graph for a
FortrAN program. The nodes have been

labeled to identify the program unit repre-
sented.

L. D. Fosdick and L. J. Osterwel . 311

/
A
o

Fraure 6. Ilustration of a transformation which
replaces paths consisting of a single entry and a
single exit by & node. In the transformed graph
open circles have been used to identify nodes
representing paths in the original graph.

Formally a call graph, which we represent
by Ge(N, I, no) is identical to a flow
graph. However the nodes and edges have
a different interpretation: using FORTRAN
terminology, the nodes in a call graph repre-
sent program units (a main program and
subprograms); an edge (n,, n;) represents
the fact that execution of the program unit
ny will directly invoke execution of the pro-
gram unit 7, . This is illustrated in Figure 5.
In data flow analysis the call graph is used
to guide the analysis from one program
unit to another in an appropriate order.

In data flow analysis, transformations are
sometimes applied to a flow graph to reduce
the number of nodes and edges, with nodes
in the resulting graph representing larger
segments of the program. One of these
transformations is illustrated in Figure 6.
Here all nodes along paths from a node with
a single exit to a node with a single entry
and containing only paths with this prop-
erty are collapsed into a single node. The
nodes in the transformed graph are called
basic blocks [4, 6, 31}. The important and
obvious fact about a basic block is that it
represents a set of statements which must
be executed sequentially; in particular if
any statement of the set is exccuted, then
every statement of the set is executed in the
preseribed sequence. Maximality is implicit

Cormputing Surveys, Vol. 8, No. 3, September [976

312 .

in the definition of a basic block, i.e., no
additional nodes can be collapsed into the
node representing a basic block, and the
single entry, single exit condition is pre-
served. It follows easily that in a flow
graph in which every node is a basic block,
either £ = ¢ (the empty set) or for every
(n¢, m;) € E either the out-degree of n,
is greater than 1, or the in-degree of n;
is greater than 1, or both of these condi-
tions are satisfied.

Since there are no branches or cyeles in a
basic block, the analysis of data flow in it
is particularly simple. In some situations
the reduction of a flow graph in which nodes
are statements to one in which the nodes
are basic blocks results in a significant re-
duction in the number of nodes. In such
cases there is a practical advantage in per-
forming the data flow analysis on the basic
blocks first, then reducing the flow graph to
one in which the nodes are the basic blocks
and continuing the data flow analysis on the
reduced graph. However, we have found
that the average reduction in the node
count for ForTrRAN programs is about 0.56.
Thus for ForTRAN it is not clear that a
significant advantage can be obtained by
this initial preprocessing of basic blocks and
reduction of the graph. In global optimiza-
tion it is customary [4, 6, 31] to use basic
blocks, since an intermediate language,
close to assembly language, is used and the
reduction in node count is significant.

Knuth [24] is the standard reference for
data structures to represent graphs. Hop-
croft and Tarjan [17] describe a structure
that is particularly efficient for the search
algorithms described here and is illustrated
in Figure 7. In this structure there is an
ordered list of | N' | elements, each represent-

- T e

B

;m** 310

4[4 [

Figure 7. Datastructure for the graph in Figure
2. This is a linked successor list representation.
The numbered entries could be replaced by
pointers to a node table carrying ancillary in-
formation.

Computing Surveys, Vol, 8, No, 3}, September 1976

Data Flow Analysis In Software Reliability

ing a node and pointing to a linked sublist
of successors of that node. The storage cost
for this structurc is |N | 4+ 2| F| words
if we assume that one word is used to store
an integer. In practice it is necessary to
associate information of variable length with
each node so we need to allow for a second
pointer with each of the nodes, bringing the
storage cost to 2(|N | 4 | E|), so that if
| E| < k|N |, the cost is less than or equal
to 2(1 4+ k)| N |

BASIC DEFINITIONS—PATH EXPRESSIONS
TO REPRESENT DATA FLOW

When a statement in a program is executed,
the data, represented by the variables, can
be affected in several ways, which we dis-
tinguish by the terms reference, define, and
undefine. When execution of a statement
requires that the value of a variable, say
o, be obtained from memory we say that «
is referenced in the statement. When execu-
tion of a statement assigns a value to a
variable, say «, we say that o is defined in
the statement. In the Forrran statement

A=DB+C

B and C are referenced and A is defined, and
in the ForTrAN statement

I=1+1

1 is referenced and defined. In the statement
A(D =B+ 1.0

B and I are referenced and A(I) is defined.
The undefinition of variables is more com-
plex to describe, and we note here only a
few instances. In ForTran the DO index
becomes undefined when the DO is satisfied,
and local variables in a subprogram become
undefined when a RETURN is executed.
In Avncor local variables in a block become
undefined on exit from the block.

We will want to associate nodes in a flow
graph with sets of variables which are
referenced, defined, and undefined when
the node is executed.' In doing this the un-
definition operation requires special at-

! Here and elsewhere we speak of nodes as if they
were the objects they represent, thus avoiding
cumbersome phrasing such as— ‘.. when the
statement represented by the node is executed.”

tention. Frequently, undefinition of a
variable occurs not by virtue of executing a
particular statement, but by virtue of exe-
cuting a particular pair of statements in
sequence. Consider, for example, the fol-
lowing FORTRAN segment:

DOI0K = I, N
X = X + A(K)
Y =Y + A(K)#2
10 CONTINUE
WRITE--

The DO index X becomes undefined when
the WRITE statement is executed after
the CONTINUE statement, but it does not
become undefined when the statement
X = X 4+ A(K) is executed after the CON-
TINUE statement. Thus it would be more
appropriate to associate the undefinition
with an edge in the flow graph rather than
with a node. However, for consistency we
prefer to associate undefinition with nodes,
therefore in the example above we would
introduce a new node in the flow graph on
the edge between nodes for the CONTINUE
and the WRITE and would associate with
this node the operation of undefinition of K.
Similar situations in other languages can
be handled in the same way. In the discus-
sion which follows we assume that the un-
definition of variables takes place at specific
nodes introduced for that purpose and that
at such nodes no other operation, reference
or definition, takes place. Thus, in particular
for a flow graph representation of a FORTRAN
subroutine, we would introduce a node which
would not correspond to any statement
but would represent the undefinition of all
local variables on entry to the subroutine.
Similarly, at the subroutine exit a node
representing undefinition of local variables
would be introduced.

Array clements pose a problem, too.
While it is obvious that the first element of
A is referenced in the ForTrAN statement

B=A(1)+ 10

no particular conclusion can be drawn about
which element is referenced in the state-

L. D. Fosdick and L. J . Osterwezl . 313

ment
B=A(K)+ 10

without looking elsewhere. That may be
hopeless if the program includes

READ(5, 100)K
B = A(K) + 1.0

For this reason we adopt the convenient,
but unsatisfactory, practice of treating all
elements of an array as if they were a single
variable.

The abbreviations r, d, and u are used
here to stand for reference, define, and
undefine, respectively. To represent a se-
quence of such actions on a variable these
abbreviations are written in left-right order
corresponding to the order in which these
actions ocecur; for example, in the FORTRAN
statement

A=A+ B,

the sequence of actions on A is rd, while for
B the sequence is simply r. In the FORTRAN
program segment

I
jole!

il

GO TO 10

the sequence of actions on A is drrdr and on
B it is rdd. We call these sequences path
expressions. Habermann (12} has used this
same terminology in a different context.
The path expressions purp’, pddp’, pdup,
where p and p stand for arbitrary sequences
of 1'’s, d’s, and u’s, are called anomalous
because each is symptomatic of an error as
discussed earlier. Our goal is to determine
whether such path expressions are present in
a program.

The problem of searching for certain
patterns of data actions is common in the
field of global program optimization, a
subject which receives extensive treatment
in a recent book by Schacffer [31]. Recent
articles by Allen and Cocke [6] and Hecht
and Ullman [16] discuss aspects of this
problem that have particular relevance to

eelie-eslicg
i

e W

At

DG et

0
2.0

i

Computing Surveys, Vol. 8, No. 3, September 1976

314 .

our discussion. We focus on two problems in
global optimization: the live variable prob-
lem and the availability problem. We will
show that algorithms used to solve these
problems can also be used for the efficient
detection of anomalous path expressions.
The live variable problem has already
been sketched in the introduction to this
paper. The availability problem arises when
one seeks to determine whether the value
of an expression, say « -+ 3, which may be
required for the execution of a selected state-
ment actually needs to be computed, or
may be obtained instead by fetching a pre-
viously generated and stored value for it.
Since our specific interest in these problems
arises in the context of software reliability

rather than global optimization, we prefer

to characterize and define these problems in
a general setting which we now develop.
Consider a flow graph G(N, E, no).
With this flow graph we associate a set
known as the token sef, denoted by tok,
consisting of elements «, 8, - - - . With every
node, n e N, we associate three disjoint sets:
gen(n), kill(n), and null(n), subsets of
tok, with gen(n) u kill(n) v null(n) = tok.
This association is illusérated in Figure 8.
Informally, one may think of the tokens as
representing variables in a program, and
the sets gen(n), kidl(n), and null(n) as
representing certain actions performed on
the tokens; for example, if the first action
performed on « at node n is a definition
then « € gen(n), if no action is performed
on « st node n then a € null(n), ete. The
specific association of these sets with ele-
ments of the program will depend on the
problem under consideration, as we illustrate
later. For the time being we simply assume

(¢]
P n gen %11 | nult Yive | avail |
9 .2
3 i
2 #
[3
% 5 4 a8
5 R
Fiqgure 8. IHlustration of gen, kill and null sets

assigned to the nodes of s simple flow graph.
The derived live and avail sets are shown in the
last two columns.

Computing Surveys, Vol. 8, No. 3, September 1878

Data Flow Analysis In Software Reliability

that the sets gen(n), kidl(n) and null(n)
are given.

For a path p and a token a we are in-
terested in the sequence of sets containing a
along the path. We traverse the path, and
as each node n is visitied we write down ¢
if «€gen(n), k if a € kill(n), and 1 if
« € null(n). The resulting sequence of gs,
ks, and 1s is a path expression for « on p
which we denote by P(p; «). Here the alpha-
bet used is {g, k, 1} instead of {r, d, u}.
Referring to Figure 8, the path expression
foraonp =0,1,2,4,2, 518

PO, 1, 2, 4, 2, 5; a) = lkgkgk,
and similarly,
P, 1, 2, 5; B) = 1klk.

We use the notation of regular expressions
(e.g., [18 p. 39]) to represent sets of path
expreﬁslons For example, the set of path
expressions for a on the set of all paths
leaving node 1 in Figure 8 is

P(1 —; a) = g(kg)"k + 1k,

where it is to be noted that the k associated
with node 1 is not included. Similarly, the
set of path expressions for on the set of
all paths entering node 5 in Figure 8 is

P(—5;a) = lkg(kg)* + 1K1,

where it is to be noted that the k associated
with node 5 is not included. These too are
called path expressions. We say a path ex-
pression is simple if it corresponds to a single
path. It is evident that a simple path ex-
pression will not contain the symbols * or +.

Path expressions are concatenated in an
obvious way. Thus, referring again to
Figure 8,

P(1; @)P(1—; &) = k(g(kg)*k + 1k)
and
P(—5;a)P(5;a) = (lkg(kg)* + 1k1)k.

Two path expressions representing identi-
cal sets of simple path expressions are
equivalent. Thus, using the last path ex-
pression above, it is easily seen that

(lkg(kg)* + 1k1)k = lkg(kg)*k + 1klk.

Furthermore, two path expressions differing
only by transformations of the form

g —g, 1k — k, gl — g, k1 —k, 11 — 1,
and 14+ 1-—1

are equivalent. For example
1+ gk 4+ kkl + 11 ==gk + kk + 1.

The final step in this general development
is to introduce the sets live(n) and avail(n),
subsets of fok. For each o € {0k and each
n € Nof Ge(N, K, ng).

a € lve(n) if and only if P(n—; o)

=go + s,
and
@ € avatl(n) ifandonly if P(—n;a) = pg,

where p and p’ stand for arbitrary path ex-
pressions. In words, a € lve(n) if and only
if on some path from » the first “action” on
o, other than null, is ¢; and a € avail(n)
if and only if the last action on «, other than
null, on all paths entering n is ¢g. These
definitions are illustrated in Figure 8, where
the live and ava?l sets are shown.

The live variable problem is: given G#(¥,
E, no), tok, and, for every n € N, kill(n),
gen(n), and null(n) determine live(n) for
every n € N. The availability problem is:
given Gx(N, E, ny), tok, and for every
n € N, kidl{n), gen(n), and null(n) deter-
mine avail(n) for every n € N. While one
might solve these two problems directly in
terms of the definitions, that is by deriving
the path expressions and determining if
they have the correct form, such an approach
would be hopelessly slow except in the most
trivial cases. Instead, these problems are
attacked by using search algorithms directly
on G which avoid explicit determination of
path expressions, but which do provide
enough information about the form of the
path expression to solve the live variable
problem and the availability problem. These
algorithms are discussed in the next section.

Before closing this section we show how
these tools are helpful with a simple ex-
ample. In this example the problem is to
detect the presence of path expressions
(now in terms of references, definitions,
and undefinitions) of the form pddp’. As-

L. D. Fosdick and L. J. Osterweil . 315
sume that we can construct a flow graph
for the program in which the nodes arc
statements or parts of statements, so that
the following rules of membership for tokens
representing variables can be trivially ap-
plied at every node:

1) a € kil(n) if « is referenced at n,
or undefined at n;

2) a € gen(n) if « is defined at n and
a § kill(n);

3) a € null(n) otherwise.

After these sets have been determined,
suppose the live variable problem is solved.
Now if « is defined at n and if & € lwe(n)
it follows easily that there is a path expres-
sion of the form pddp’ in the flow graph.
The truth of this conclusion is seen from
the fact that a € live(n) implies P(n—; «)
= gp + p and since g stands for a definition

P(n—;a) =dp + ¢,
hence
P(n; a)P(n—; a) = ddp + po".

Conversely, if at every node at which « is
defined a § live(n), then one may similarly
conclude there is no path expression of the
form pddp’; i.e., there are no data flow
anomalies of this type.

ALGORITHMS TO SOLVE THE LIVE VARIABLE
PROBLEM AND THE AVAILABILITY PROBLEM

In the last section the live variable problem
and the availability problem were defined
and a simple example was given to show
how a solution to the live variable problem
can be used to determine the presence or
absence of data flow anomalies. In this sec-
tion we describe particular algorithms for
solving the live variable problem and the
availability problem. Several such algo-
rithms have appeared in the literature [6,
16, 23, 31, 35]. The pair of algorithms we
have chosen for discussion do not have the
lowest asymptotic bound on execution time.
However, they aré simpler and more widely
applicable than others and their speed is
competitive.

The algorithms involve a search over a
flow graph in which the nodes are visited

Computing Surveys, Vol. 8, No. 3, September 1976

316 .

in a specific order derived from a depth first
gearch. This search procedure is defined by
the following algorithm, where it is assumed
that a flow graph Gx(N, E, no) is given, and
a push down stack is available for storage.

Algorithm Depth First Search:

1. Push the entry node on a stack and
mark it (this is the first node visited,
nodes are marked to prevent visiting
them more than once).

2. While the stack is not empty do the
following:

2.1 While there is an unmarked edge
from the node at the top of the
stack, do the following:

2.1.1 Select an unmarked edge from
the node at the top of the stack
and mark it (edges are marked
to prevent selecting them more
than once);

2.1.2 If the node at the head of the
selected edge is unmarked,
then mark it and push it on the
stack (this is the next node
visited) ;

2.2 Pop the stack;

3. Stop.

In Figure 9 the nodes of the flow graph
are numbered in the order in which they are
first visited during the depth first search.
We follow the convention that the left-
most edge (as the graph is drawn) not yet
marked is the next edge selected in step
2.1.1; thus the numbering of the successor
nodes of a node increases from left to right
in the figure. The ordering of the nodes
implied by this numbering is called pre-
order [24]. The order in which the nodes
are popped from the stack during the depth
first search is called postorder [16, 24]. In

Ficure 9. Numbering of the nodes of a graph in
the order in which they are first visited during
a depth first search. This numbering is called
preorder.

Computing Surveys, Vol. 8, No. 3, September 1476

Data Flow Analysis In Software Reliability

ooy 614)

Froure 10. Illustration of postorder and r-post-
order numbering of the nodes of a graph. The
r-postorder numbers are in parentheses.

Figure 10 the nodes are numbered in post-
order. This numbering could be generated in
the following way. Introduce a counter in
the depth first search algorithm and initi-
alize it to 0 in step 1. In step 2.2, before
popping the stack, number the node at the
top of the stack with the counter value and
then increment the counter. If each post-
order node number, say k, is complemented
with respect to | N |, ie., K «— [N | — &,
then the new numbering represents an
ordering known as r-postorder [16]. This
numbering is shown in parentheses in Figure
10.

The depth first spanning tree [33] of a
flow graph is an important construction for
the analysis of data flow. This construction
can be obtained from the depth first search
algorithm in the following way. Add a set
E' which ig initialized to empty in step 1.
In step 2.1.2 put the selected edge in E
if the head of the selected edge is unmarked.
After execution of this modified de})th first
search algorithm, the tree T(N, E') is the
depth first spanning tree of G#(N, E, o),
the flow graph on which the search was
exccuted. The depth first spanning tree
of the flow graph in Figure 9 is shown in
Figure 11. The edges in the set £ — E
fall into three distinct groups:

1) forward edges with respect to T:e €
E — K, is in this group if this edge
goes from an ancestor to a descendant
of T;

2) back edges with respect to T: e €
E — E',isin this group if this edge
goes from a descendant to an an-
cestor of T, or if this edge goes from a
node to itself;

3) cross edges with respect to T: €€

10

Froure 11. Depth first spanning tree of the flow
graph shown in Figure 9. Nodes are numbered
in preorder.

E — F',is in this group if this edge
goes between two nodes not related
by the ancestor-descendant relation-
ship.

These edges are shown in Figure 12 for the
flow graph in Figure 9 and for the tree shown
in Figure 11 derived from it. Tarjan [34]
has shown that it is possible to perform a
depth first search, number the nodes in
preorder, determine the number of descend-
ants for each node in the depth first span-
ning tree, and determine the backedges,
forward edges, and cross edges, all in
O(N |+ |E]) time.

This way of characterizing the edges in a
flow graph is particularly valuable for an
analysis of data flow patterns. It is to be
noted in particular that if the back edges are
deleted in Figure 12, then the resultant
graph is acyelic. This is true in general. The
cycles in a graph cause the major complica-
tion in the analysis of data flow. All of the
data flow analysis algorithms would have
O(] E|) execution times if cycles were ab-
sent, but with cycles present they have
execution times which generally grow faster
than linearly in |F| as | K| — . By
focusing attention on back edges one can
more easily see how cycles add to the
complexity of a data flow analysis al-
gorithm.

Some data flow analysis algorithms re-
quire the flow graph to be reducible. This
property is characterized in the theorem
below, which follows from results of Hecht
and Ullman [15]:

TuroreM. Gy is reducible if and only if
n; dominates n; in G for each back edge
(ny, ng), where j % 1, with respect to a
depth first spanning tree of G, .

#

L. D. Fosdick and L. J. Osterweil . 317
The notion of dominance which is intro-
duced here is defined as follows. Given s
pair of nodes ny and n; in Gy, n; dominates
n; if and only if every path from n to n;
contains n; . It can be easily seen from this
theorem that the flow graph in Figure 9 is
not reducible. Notice that the edge (5, 4)
18 a back edge (cf. Fig. 12) with respect to
the spanning tree in Figure 11. On the
other hand, node 4 does not dominate node
5; notice the path 0, 7, 8, 5. If this back
edge is deleted, then the remaining graph is
reducible. The frequently mentioned para-
digm of a nonreducible flow graph is shown
in Figure 13.

Some experiments [6, 25] have led to the
general belief that flow graphs derived from
actual programs often are reducible. For
flow graphs with this property, particularly
fast algorithms have been developed [1, 23,
35] for the live wvariable problem and the
availability problem. Recently two al-
gorithms for solving these problems on any
flow graph were presented by Hecht and
Ullman [16]. While these algorithms are not
always as fast as the others, they are com-
petitive and they have the distinct advan-

Freure 12. Forward edges, back edges, and cross
edges marked by dashed lines and lettered f, b,
¢, respectively. This grouping is with respect
to the tree shown in Figure 11.

Paradigm of s nonreducible graph.

Froune 13.

Computing Surveys, Vol 8, No. 3, September 1976

318 .

tages of simplicity and generality (they are
not restricted to reducible flow graphs).
These algorithms are described below.
The following algorithm [16] determines
the live sets of a flow graph. This algorithm
assumes that the nodes have been numbered
0, 1, ---, n in postorder and refers to the
nodes by the postorder number.
Here S(j) denotes the set of successors of
node j, and & denotes the empty set.

Algorithm LIVE:
for j « 0 to n do lve(j) «— &;
change « true;
while change do
begin
change «— false;
for j « 0 ton do
begin
previous <« live(j);
(*) live(y) « U ((live(k)
n (tok — kill(k))) U gen(k));
k € 8(j)
if previous ¢ lwe(j) then
change « true;
end
end
stop

Data Flow Analysis In Software Reliability

We refer to the paper by Hecht and
Ullman [16] for a proof of correctness of
this algorithm. Its operation is illustrated in
Figure 14 where the live sets are indicated
before ecach exceution of the step labeled
by (*). It is casily verified that the total
number of times step (*) is executed in
this example is twelve: first the for loop is
executed six times, making one pass over
the six nodes, then since there was a change
to the live sets a second pass is made, during
which no change occurs to the live sets,
and this completes execution.

The correctness of the algorithm does not
depend on the order in which the nodes
are visited, but the execution time does. In
the simple example just considered it is
easily verified that if the nodes were visited
in the order 5, 4, 2, 3, 0, 1 then eighteen
executions of step (*) would be required;
note that in this case « is not put in the live
set of node 2 during the first pass. The
nodes are vigited in postorder to ensure a
relatively rapid termination of the algo-
rithm. In particular, if the flow graph is
acyclic, then after the while loop is exe-
cuted once all live sets are correct; one

gen Kilop nell

v

live sets before k" execution of step * in LIVE

k= 1 2 3 4 5 6 7

nore
J ¢ ' % X 3 v v
1 ' + 1 * v ¥ no
i . ¢ f i t further

3 H t 1 b 1 b changes
4 t v 5 S 1, i
3 s 1 b

Fieure 14.

Iustration of the steps in the ereation of the live sets by algorithm LIVE for a simple

flow graph. Nodes are numbered in postorder. The correct live sets are obtained after five execu-
tions of step *, however seven more executions are required before no change to the sets is recog-

nized which then terminates execution.

Computing Surveys, Vol. 8 No. 1, September 1976

more execution of the while loop is required
to establish that there are no further
changes to the Live sets. Thus for an acyelie
flow graph the step (*) is exceuted 2| N |
times. If there is one back edge, then the
effect of a gen can be propagated to a lower
numbered (in postorder) node, and it is not
too difficult to see that upon completion
of the second (at most) execution of the
while loop all lwve sets will be correct. Thus
for a flow graph with one back edge the
step (*) is executed 3| N | times at most.
Heeht and Ullman [16] have shown that if
r is the number of times the step (*) is
executed, then

where d is the largest number of back-
edges in any acyelic path in the graph. For a
reducible flow graph it has been shown [15]
that the back edges are unique, but if the
flow graph is not reducible then the back
edges will depend on the depth first spanning
tree. The d appearing above refers to the
back edges with respect to the spanning tree
generated to establish the postorder num-
bering of the nodes.

We now present an algorithm [16]} to de-

L. D. Fosdick and L. J. Osterweil . 319
termine the avail sets of a flow graph. This
algorithm assumes that the nodes have been
numbered 0, 1, -+, n in r-postorder and
refers to the nodes by the r-postorder num-
ber. Here P(j) denotes the set of prede-
cessors of node 7, and ¥ denotes the empty
set. ‘

Algorithm AVAIL:
avail (0) «— &,
for j « 1 to n de avaal(j) «- lok;
change «— true;
while change do
begin
change « false
forj « 1 ton do
begin
previous «— avail(jy;
aval(jy «) ({avazl(k)
N (tok — kdl(k))) U gen(k));
k¢ P()
if previous avail(j) then
change «- true
end
end
stop

We refer again to the paper by Hecht and
Ullman [16] for a proof of correctness of this

i node gen LSRR IR
0 3 ¢
3 2 1 ayr
2 a,
3 X “
5 4 & ey
5 o
avail sets before k™ execution of step * in AVAIL
k= 1 Z 3 A 3) 7
node™,
J ¢ ¥ +
1 a, R 4 3 Kl : 3 no
2 a,f i [b 1 further
3 a8 1,8 1y 3 b changes
) A [1yt [¢ ' '
5 e X d A i f ¢

Fraure 15.

Hlustration of the steps in the ereation of the avail sets by algorithm AVAIL for a simple

flow graph. Nodes are numbered in r-postorder. The correct avail sets are obtained after five ex-
ecutions of step *, however seven more executions are required before no change to the s ts is

recognized which then terminates execution.

Computing Surveys, Vol 8, No. 3, Septeruher 1976

320 .

algorithm. Its operation is illustrated in
Figure 15 where the avail sets are indicated
before each execution of the step labeled by
(*). Here, as with the example for LIVE
it is casy to verify that step (¥) is executed
twelve times. With the exception of the
entry node, which is treated separately, it
does not matter in what order the remaining
nodes are visited in the while loop so far
as correctness is concerned, but it does
matter for the execution time. Again, the
back edges are a critical factor. With r and
d as defined before, Hecht and Ullman [16]
show that

<2+ OIN] - 1),

Empirical evidence obtained by Knuth
[25] leads Hecht and Ullman (16] to the
conclusion that in practice one can expect
d £ 6 and on the average d < 2.75 for
FortraN programs. However, it is to be
noted that there are pathological situations,
as shown in Figure 16, for which the execu-
tion time is much larger than these numbers
indicate.

SEGMENTATION OF DATA FLOW

Normally a program consists of a main
program and a number of subprograms or
external procedures. This segmentation of

/
3

Ficurs 16. Pathological situation in which the
execution time for the availability algorithm is
unusually long. Hered = | N —{8,r = (| N|—1)?
assuming « € gen(n;) and a e kill(n;) and is
not in any other gen or kill sets.

Computing Surveys, Vol. 8, No. 3, September 1876

Data Flow Analysis In Software Reliahility

the program is a natural basis for the seg-
mentation of the data flow analysis. Here
we deseribe how this is done in such a
way as to permit detection of data flow
anomalies on paths which cross procedure
boundaries. We will see that the system for
doing this naturally includes the detection of
data flow anomalies on paths which do not
cross procedure boundaries. In this section
we describe the identification and repre-
gentation of the data flow, and in the next
section we describe the detection of anoma-
lous data flow.

We make several assumptions at the out-
set. The first concerns aliasing, the use of
different names to represent the same
datum. In crossing a procedure boundary
the name of a datum typically changes from
the so-called actual name used in the in-
voking procedure to the so-called dummy
name used in the invoked procedure. It is
assumed here that the aliases for a datum
are known and that a single token identifier
is used to represent them. Thus, in particu-
lar, in our notation for representing actions
on a token « along some path p we use
P(p; @) even when p crosses a procedure
boundary and the datum represented by «
is known by different names in the two
procedures. The second assumption we make
is that the procedures under consideration
have a single entry and a single exit. We
could permit multiple entries and multiple
exits, but it would complicate the discussion
without adding anything really important to
it. While we will discuss the segments as if
they were procedures, it will be obvious that
the discussion applies equally well to any
single-entry, single-exit segment of a pro-
gram. Our most restrictive assumption is
that the call graph for the program is acyclic.
This excludes recursion. We will discuss this
restriction later.

Let us consider a flow graph G»(N, E, no)
in which some node invokes an external
procedure, as illustrated in Figure 17. In
order to analyze the data flow in G#(N, E, no)
it is necessary to know certain facts about
the data flow in the invoked procedure. In
particular we need to know enough about
the data flow in the invoked procedure to be
able to detect anomalous patterns in the

Ge (N, E, ny) Gy (NVEvng)

Freure 17. At node nin Ge(N, E, ne) an external
procedure is invoked. The flow graph of the
invoked procedure is represented by Gp' (N, E’,
0’}

flow across the procedure boundaries. Re-
ferring to Gy in Figure 17 and considering a
single token o, it becomes evident that we
need to recognize three cases to detect
anomalous patterns of the form purp’ on
paths crossing the procedure boundary:

a) P(—n;a) = pu+ g,
P(n;e) =1+ 95

b) P(nja) = pu-+gp,
P(n—;a) =r1p+ p';

¢) P(-n;a) = pu-+ g,
P(”) a) =1+ P,i
P(n—;a) =10+ p.

Thus all we need to know about the data
flow in the invoked procedure is whether
P(n; a) has one of the following three
forms: rp + o, pu + 5, 1 + o', The last
form represents the situation in which there
is at least one path through the invoked
procedure on which no reference, no defini-
tion, and no undefinition of a takes place.
It is evident that a particular P(n; «)
could have more than one of these forms,
e.g., tu 4+ 1 has all three forms. Similar
. consideration of the problem of detecting
anomalous path expressions of the form
pddp” and pdup’ leads to the conclusion that
the following additional forms for P(n; «)
need to be recognized: dp + p', pd + 0,
up + o'

We now wish to extend these ideas to

L. D. Fosdick and L. J. Osterwel . 321

permit recognition of situations where an
anomalous path expression cxists on all
paths entering or leaving & node. This recog-
nition is important because it permits us to
conclude something about the presence or
absence of anomalous path expressions on
executable paths. Figure 1 makes it clear
that some paths in a flow graph may not be
executable, and it is evident that anomalous
path expressions on them are not important.
Only anomalous path expressions on execut-
able paths are important as indicators of a
possible error. Unfortunately, the recogni-
tion of executable paths is difficult?, but if
we make the reasonable assumption that
every node is on some executable path, then
if all paths through a node are known to be
anomalous we may draw the very uscful
conclusion that there is an anomalous ex-
pression on an executable path. Certain
additional forms for path expressions need
to be distinguished to achieve this. We ob-
serve, for example, that if

P(—n;a) = pu and P(n;a) = o,

then on every path in G of the formng, « -,
n, -+ - there is an anomalous path expression
purp . Thus it would be desirable to be able
to distinguish the form rp. Notice also that if

P(—n;a) = pu, P(n;a) =19 + 1,
P(n—; a) o,

then the same conclusion can be drawn, so
it is also desirable to distinguish the form
rp -+ 1. Similar considerations show the need
for recognizing the forms pu, pu + 1, 1 and

o

“similar considerations for anomalous ex-

pressions of the form pddp’, and pdup’ lead
to corresponding forms involving d and u.

Collecting these results leads to the seven
forms for path expressions shown in Figure
18. Corresponding sets A.(n), B.(n), -,
I(n) which are subsets of the token set are
defined as follows:

a € A.(n) if Pln;a) = xp,
a € B.(n) if P(n;a) =xp + 1;

a € I(n)

if P(n;a)

it

n).

? Indeed this problem is not solvable in general, for
if we could solve it we could solve the halting
problem [18].

Computing Surveys, Vol. 8, No. 3, September 1976

can augment (/» by attaching a new entry
node and new exit node with these prop-
ortics without affecting the data flow pat-
terns. The algorithms for determining the
path sets are presented informally below.
They are presented in alphabetic order;
however, as will become apparent, a differ-
ent order is required for their execution.
A satisfactory execution order is A.(n),

322 . Data Flow Analysis In Software Eeliability
label path expression
A X0
X) :

8, Q(\o_ﬂ
Cx R xo*p!
Dx pX

Ex pxtl
F oxtp!

Froure 18. Seven forms for path expression in
single-entry, single-exit flow graphs and labels
used to identify them. The parameter x stands
for r, d, or u.

These sets are called path sets. Although this
classification scheme was developed for
situations in which n represents a procedure
invocation as illustrated in Figure 17, it
will be recognized that it applies when n is a
simple node representing, say, an assignment
statement. For example if n represents
« <+ a + Band tok = {a, 8,7}, then

o € A (n), a€ Cin) BE Ad(n),
B € Cn) a€ Dun), «€ Foln)
v € I(n).

In such simple cases membership in the sets
can be determined by rather obvious rules.
On the other hand, when the node represents
a procedure invocation, determination of
membership in the path sets requires an
analysis of the data flow in the procedure.
It is this problem to which we now direct
our attention.

Suppose the path sets for node n are to
be determined. We assume that n repre-
sents the invocation of an external procedure
with flow graph Gy and that the path sets
for the nodes of Gy have been determined
already. (Our focus of attention now shifts
to the invoked procedure and to avoid an
excess of primes we have switched the role
of primed and unprimed quantities shown in
Fig. 17.) We also assume that no data ac-
tions take place at the entry node and exit
node of G ; thus

I(ng) = tok and I(texi) = lok.

This assumption is not restrictive since we

Computing Surveys, Vol. 8, No. 3, September 1876

C.(7), Bu(n), Du(n'), Fu(n)), En),
I(n’).

Algorithm Determine A.(n')
1) for all nsuch that 7 € N — {nex} do
null(n) « I(n) U B(n);
Eill(n) «— A.(n);
gen(n) « tok
— (kill(n) Unull(n));
2) null(fexin) < &
kil texie) “— &5
gen(nexi) « tok;
3) execute LIVE on Gr ;
4) A.(n) e tok — live(no);
{comment—the null sets are not
explicitly needed but are included
here for clarity}.

Algorithm Determine Bz(n')

1) for all n such that n € N do
null(n) « I(n) U By(n);
kidl(n) « Az(n);
gen{n) «— tok

— (kill(n) U null(n));

2) execute LIVE on Gr ;

3) B.(n') « (tok — live(na))

N (tok — A.(n')) NCAn").

Algorithm Determine C.(n')
1) for all n such that n € N do
gen(n) « Cu(n);
kali(n) — (Ay(n) UA:(n));
{comment—z, y, 2z is any per-
mutation of r, d, u}
null(n) « tok
— (gen(n) Ukill(n))’
2) execute LIVE on G ;
3) Ca(n') e lve(ng).

Algorithm Determine D.(n)
1) for all n such that n € N do
gen(n) < Di(n);
kill(n) « (Fy(n) UF.(n));
{comment—z, ¥, # 1S any per-
mutation of r, d, u}
null(n) « tok

— (gen(n) Ukill(n));
2) execute AVAIL on Gy ;
3) D.n) — avail(nei) .

Algorithm Determine E.(n')
1} forall n such that n € N — [ng do

gen(n) «— D.(n);

kill(n) « F,(n) U F.(n);
{comment—z, ¥, 2 is any per-

mutation of r, d, u}

null(n) « tok

— (gen(n) Ukdl(n));

2) gen(ne) « lok;
kill(ng) e &,
null(ng) «— &;

3) execute AVAIL;

4) E.(n') « avail(nexic)

N (tok — D,(n)) NF.(n').

Algorithm Determine F.(n')
1) forall nsuchthat n € N — |
gen(n) « D,(n) U D,(n);
{comment-—z, ¥, 2 is any per-
mutation of r, d, u}
kil(n) «— Fu(n);
aull(n) « tok
— (kill(n) U gen(n));

ng} do

2) gen(ng) « tok;
kill(ne) « &;
null(ng) « ¥,
3) execute AVAIL;
4) F (n') « tok — avail(neis)

Algorithm Determine I(n')
1) I(n) «NI(n).
' néeN

Since LIVE and AVAIL terminate, it is
obvious that these algorithms terminate.
Proofs of correctness for some of these al-
gorithms are presented below.

Proof Determination of A.(n') is correct
Let o € lok. By step 4 of the algorithm
a € A (7)) if and only if a ¢ live(no).
Take the “if”” part first:

a ¢ live(ng) a) # go + o

a) = kp or

= P(ne—;
= P(ne—;
P(ng—; a) = kp + 1,

or P{ny—+; «) = 1. The last two alterna-
tives are ruled out because by step 2 of the
algorithm gen(nexie) = tok. Consequently,
because of the construction of the kel
sets instep 1, « ¢ lwe(ny) = P(ng—; a)

L. D. Fosdick and I.. J. Osterwetl . 323
= 2p. We observe P(n'; a) = P(ne; @)
P(ny—; a) = P(ng—;«) , the last equal-
ity following from the fact that no data

action takes place at n,. Thus a 4
. 7 .
live(ng) = P(n; «) = zp; le., a €

A.(n'). Now consider the “only if” part.
a € live(ng) = Plng—; a) = gp + 5
Consequently, because of the construction
of the gen sets P(ny—; a) = yp + o
where y # 2. (Note that o € gen(n)

implies, by step 1, P(n; o) = uxp,
Pln;o) =2p+ 1, Pln; a) = 1‘). Con«
sequently, o ¢ lwe(no) = Pln'; a)

= yp + o # ap; le, aQA(n)?ﬁ

Proof Determination of B.(n') 1s correct
Let o € tok. By step 3 of the algorithm
a € B.(n) if and only if a ¢ lve(ny) and
a ¢ A(n") and @ € Co(n'). Take the “if”
part first: a § live(ng) =» P(ng—;a) = kp,
orP(ng—; o) = kg + 1, or P(ng—;a) = 1,
The first and last alternatives are ex-
cluded by the conditions e ¢ A4.(n") and
a € Cu(n'). This leaves only P(ne—; «)
= kp -+ 1 and using o € kill{(n) =
P(n; a) = zpgives P(ng—;a) = xp + 1.
Finally

P(n'; o) = P(ng; o) P(ng—; @)
= Png—; o)
= P(n';a) = zp + 1
ie., a € B,(n'). Now consider the “only
if’”’ part.
a € live(ng) = Plag—; o) = gp + o\
From step 1 it is seen that
a € gen(n) =» P(n; a) = yp + o, Yy .

Hence a € livelny) = P(ng—; a) =
yp + o, y # x, and from this it is
easily concluded that o § B(n'y. It is
mmwdxafn]y evident that a € A (n)) =
a & B(n} and that a ¢ C(n) = o §
B.(n). @

Proof Determination of D.(n') is correct
Let a € tok. By step 3 of the algorithm

« € D)) if and only if o € avail(nexic) .
Take the “if”” part first.
Pl o) =

a C avail(neg) = ef-

Computing Surveys, Vol. 8, No. 3, September 1976

324 .

Hence
P(’ﬂ’, a) = P("'")nexit; a)P(nexiL; O!) = pd.

Now using the fact that a € gen(n)
= P(n;a) = pz we conclude that

a € avail(nexie) = P(n'; @) = px; le,
a € D(n').

Now take the “only if” part.
a § avail(Negis) = P(—MNexiv; @) = pk + 3

or P(—nexir; @) = 1.

Since a € kill(n) implies P(n; a) =
oy + o,y # =z, it easily follows that
a § avail(nes) = P(n; a) # px; le,

The last item to be discussed in this sec-
tion is the initiation and progressive de-
termination of the path sets for a program.
Consider the call graph shown in Figure 5.
Since the subprogram FUNB invokes no
other subprogram, the algorithms just
presented are unnecessary in the determina-
tion of the path sets for the nodes of the
flow graph representing FUNB. In this flow
graph each node will represent a simple
statement or part of a statement having no
underlying structure, so the path set de-
termination can be made by inspection.
Once this is done the path sets for the nodes
of the flow graph representing SUBA can be
determined, since the path sets are known
for the only subprogram it invokes. The
same remarks apply to the flow graph repre-
senting FUNA. Finally, after these path
sets are determined it is possible to deter-
mine the path sets for the nodes of the flow
graph representing MAIN. Thus by working
backwards through an acyclic call graph it
is possible to apply the algorithms just
described. We call this backward order the
leafs-up subprogram processing order. We
have restricted our attention to acyclic call
graphs because this procedure breaks down
if a eycle is present in the call graph. One
way to solve this problem if cycles are
present might be to carry out an iterative
procedure, as suggested by Rosen [30], in
which successive corrections are made to
some initial assignment of path sets but we
have not pursued this idea.

Computing Surveys, Vol. 8, No. 3, September 1876

Data Flow Analysis In Software Reliabilily

DETECTING ANOMALOUS PATH EXPRESSIONS

It will be recalled that we have defined an
anomalous path exPression to have one of the
forms: purp, pddp, or pdup’. Let us assume
now that the path sets have been determined
for every node of a flow graph G»(N, E, no).
It should be evident that if (n, n') € E
and a € Fu(n) and a € C.(n'), then there
is a path expression of the form purp’
a € Fu(n), a € Cn') = P(wn'; a) =
purp’ + p”. Note, however, that the un-
definition and reference do not necessarily
oceur on nodes n and 7’ respectively. In-
deed, these data actions may not even occur
on nodes of this flow graph: they might
occur on nodes of other flow graphs repre-
senting invoked procedures. We only know

"that on some path which includes the edge

(n, n') there is an anomalous path ex-
pression. Also this anomalous path expres-
sion may not be on an executable path, but
if @ € Dy(n) and a € A-(n'), then we may
reasonably conclude that the path expres-
sion purp occurs on an executable path.
In this case our assumptions imply that on
every path which includes the edge (7, n')
there must be an anomalous path expression:
a € Du(n), a € A(n) = P(nn'; o) =
purp . We assume at least one of these paths
is executable. In this section these ideas are
expanded to include the detection of
anomalous path expressions on paths which
go through a selected flow graph.

Assume that the path sets have been
constructed for a flow graph Gy, and we
wish to determine whether

P(n; a)P(n—; a) = prye’ + ¢
or

L
= pITYp

i

P(n; a)P(n—; a)

for each n € N and each a € lok. For anom-
aly detection we are interested in those
cases whenz = u,y = rora = d, y = d,
orz = d, y = u, but there is no need to fix
the values of r and y now. A similar, but not
equivalent, pair of problems is to determine
whether

P(—n; a)P(n; a) = pryp + o'

or

’
pTYp

for cach n ¢ N and cach « € lok. The dis-
cussion of the last section should make it
apparent that the first pair of problems can
be attacked with the algorithm LIVE and
the second pair of problems can be attacked
with the algorithm AVAIL. Indeed, the
algorithms presented in the last section have,
in effect, solved these problems.

Consider the algorithm to determine
A.(n'). After execution of step 3, suppose
we construct the sets

A (n—) =

for all n € N. Note that in step 4 we did this
for the entry node only. It is evident that
a € A.(n—) implies P(n—; a) = 2p,
and conversely. Hence if e € Dy(n) and
a € A.(n—) we know that

P(n; a)P(n—; o) =

P(—n; a)P(n; o) =

tok — live(n)

pyap’

and so if y = uand z = r, an anomalous
path expression of the form purp’ is known
to be present.

Now, using the idea and notation sug-
gested in the last paragraph assume that
we augment the last step in the algorithm
for A.(n), C.(n'), De(n'), and F.(n)
described in the last section to construct the
sets A.(n—), C.(n—), D.(—n), F.(—n).
Using them we construct the set intersec-
tions: F.(n) NC,(n—), Di(n) O 4,(n—),
F.(—n) NCn), and D.(—n) N A, (n).
Then it is seen that:

a € F.(n) NC{n—)

@ P(n; a)P(n—; a) =
a € D.(n) NA4,(n—)

e Pln; a) P(n—; a)
o € F (—n) NC,(n)

& P(—m; a) P(n; «)
@ € Do(—n) N 4,(n)

@ P(—=n; a)P(n; o) =

”n
pxyp + o ;

i

i

pyp’;

)
It

' ”
pxyp + P ;

/
pTYp'.

The proofs of these assertions, which we
omit, are essentially the same as those given
in the previous section, Segmentation of
Data Flow, for the determination of the sets
Ax(n'), e

It will be recognized that the segmenta-
tion scheme described in the previous secc-
tion permits exposurce only of the first and

L. D. Fosdick and L. J. Osterweil . 325
last data actions on paths entering or leav-
ing a flow graph. Therefore, if we are to
detect the presence of all anomalous path
expressions in an entire program by the
method just deseribed, we must apply it
systematically to the flow graphs for each
of the subprograms in the entire program.
In practice this would be done in the order
dictated by the call graph, as already dis-
cussed in connection with constructing the
path sets. Indeed, these two processes would
be done together while working through the
subprograms. To illustrate, consider the call
graph shown in Figure 5. The steps per-
formed would be as follows:

1) For FUNB determine the sets -
Au(n') - I(n), Au(n—),
Cx(N“")), DI<M—)")) Fr<%))

2) For FUNB construct the sets
FI(”) n Cy(ﬂ""’), Ty D,(“"?l)

NA4,(n) and report anomalies;
3) Repeat steps 1 and 2 for SUBA;
4) Repeat steps 1 and 2 for FUNA;
5) Repeat steps 1 and 2 for MAIN.

The time required to do the detection of
anomalous path expressions is essentially
controlled by the time required to execute
LIVE and AVAIL. Step 1 of the example
deseribed above requires nine executions of
LIVE (4,, B., C. for x = 1, d, u), and
nine executions of AVAIL (D, , E., F. for
x = r,d,u), plus a small additional amount
of time proportional to the number of nodes
in the flow graph. We are assuming that the
set operations can be done in unit time so
there is no dependence on the number of
tokens. In practice this assumption has only
limited validity. Step 2 of the example
described above requires a time proportional
to the number of nodes (in particular
4(| N | — 2) where the —2 term arises be-
causc we can ignore the entry and exit
nodes). Therefore, if a call graph has | N, |
nodes and | N | is the average number of
nodes in each flow graph represented by a
node of the call graph, the time r to detect
all anomalous path expressions may be ex-
pressed as

To= iNC|(gTLIVE + 97 avarL + AMVD,

where roive and ravarn are execution times

Computing Surveys, Vol. 8, No. 3, September 1676

326 -

for LIVE and AVAIL. If we use the results
given in the section Algorithms to Solve the
Live Variable Problem and the Availability
Problem for the execution times for LIVE
and AVAIL, we see that in practical situ-
ations we can expect to detect the presence
of all anomalous path expressions in a
program in a time which is proportional to
the total number of flow graph nodes. While
the constants of proportionality might be
large and there would be a substantial over-
head to create the required data structures,
the important point is that a combinatorially
explosive dependence on | N | has been
avoided.

The principal reason why a combinatorial
explosion has been avoided is that we have
not looked explicitly at all paths. The loss
of information resulting from this does not
prevent us from detecting the presence of
anomalous path expressions, but it greatly
restricts our knowledge about specific paths
on which the anomalous path expression
oceurs. Thus if a € Fu(n) N Ci(n—), ¥
know that on some path starting at n we
will find an expression of the form purp’, but
we do not know which path and we do not
know which nodes on the path contain the
actions u and r on «. This problem can be
attacked directly by performing a search
over paths starting at node n. This search
can be made quite efficient if we deal with
one token at a time. The idea is to use a
depth first search but to rostrmt it so that
we avoid visiting any node n’ such that
a ¢ C.(n'—). While this strategy does not
preclude backtracking, it tends to reduce it
and generally restricts the number of nodes
visited in the search. It secems certain that
more efficient schemes for localizing the
anomalous path expression can be con-
structed.

The information gathered for the detection
of anomalous path expressions is valuable
for other purposes. For example, it deter-
mines which arguments need initialization
before execution of a procedure—thus 1t
could be used to supply this information as
a form of automatic documentation. Al-
ternatively, this information can be used to
verify assertions by the programmer con-
cerning arguments needing initialization.

Computing Surveys, Vol. 8, No. 3, September 1976

Data Flow Analysis In Software Reliability

Similarly, it is possible to determine the
arguments which are assigned values by a
procedure, i.e., the output arguments. How-
ever, unlike the case for initialization where
the set C:(n') identifies the arguments re-
quiring initialization, none of the path sets is
sufficient for this purpose. Notice in par-
ticular that Fq(n') is not satisfactory be-
cause P(n'; @) = pdr obviously implies
that « is an output for the procedure repre-
sented by 7' yet o § Fa(n'). However, it is
not difficult to construct an algorithm for
this purpose. Indeed, we only need to
modify one step in the algorithm for
F.(n'); in particular, replace gen(n) «
D,(n) U D.(n) by gen(n) 4-Du(n)

Then after step 4, a € Fa(n') implies «
is an output for tht procedure represented
by n'. It will be rocogmzed that this ex-

cludes tokens for which P(n';) = pdr'u.
Thls is reasonable, since the definition is
destroyed by the subsequent undefinition,
and no value is actually returned to the
invoking procedure. Thus we have a mecha-
nism for providing automatic documentation
about procedure outputs, or for verifying
assertions about which procedure arguments
are output arguments.

CONCLUSION

As noted in an earlier section of this paper,
we have implemented a FORTRAN program
analysis system which embodies many of the
ideas presented here. This system, called
Dave, [27, 28] separates program variables
into classes that are somewhat similar to
those shown in Figure 18, Dave also detoct%
all data flow anomalies of type purp’ and
most of the data flow anomalies of types
pddp’ and pdup’. Dave carries out this
analysis by performing a flow graph scarch
for each variable in a given unit, and analyz-
ing subprograms in a leafs-up ordor which
assures that no subprogram invocation will
be considered until the invoked subprogram
has been completely analyzed. An improved
version of Dave would continue to analyze
the subprograms of a program in leafs-up
order, but would use the highly cfficient,
parallel algorithms desceribed here to cither
deteet or disprove the presence of data flow

anomalies. The wvariable-by-variable depth
first search currently used in Dave exclu-
sively, would be used only to generate a
specific anomaly bearing path, once the
more efficient algorithms had shown that an
anomaly was present. Such a system would
have considerably improved efficiency char-
acteristics and, perhaps more important,
could be readily incorporated into many
existing compilers which already do live
variable and availability analysis in order to
perform global optimization.

The apparent case with which our anomaly
detection scheme could be efficiently in-
tegrated into existing optimizing compilers
is a highly attractive feature and a strong
argument for taking this approach. Other
methods for earrying out anomaly detection
can be constructed, but most that we have
studied lack efficiency and compatibility
with existing compilation systems. One such
method, which is quite interesting for its
strong intuitive appeal, involves symbolic
execution of the program. Symbolic execu-
tion, a powerful technique which has
recently: found applieations in debugging,
program verification, and validation {8, 19,
22], involves determining the value of each
program variable at cvery node of a flow
graph as a symbolic formula whose only
unknowns are the program’s input values,
These formulas of course depend upon the
path taken to a given node. A notation simi-
lar to regular expression notation could be
used to represent the set of symbolic ex-
pressions for a variable at a node, cor-
responding to the set of paths to the node.
If these expressions were to be stored at
their respective nodes, a flow graph search-
ing procedure could be constructed which
would be capable of deteeting all the anoma-
lies described here by careful examination of
the way the expressions evolved along paths
traversed by a single flow graph search.
Moreover, because the symbolic execution
carried along far more information than
does our -proposed system, ‘even more
powerful diagnostic results are possible. ™

The relative weaknesses of suehr a method
arc its lack of efficiency and the difliculty of
incorporating it into existing compiling
systems. Although it scems reasonable to

L. D). Faosdick and .. J. Osterweil . 327

suppose that sophisticated representation
schemes could be used to reduce the very
Jarge time and space requirements of the
symboliec exceution system, it also seems
elear to us that even such reduced require-
ments would necessarily greatly exeeed
those of our proposed system. We have
finally concluded that symbolic execution
systems currently seem more attractive as
stand alone diagnostic systems where their
greater level of detall can be used to carry
out more extensive program analysis, but at
greater cost. We believe, moreover, that our
proposed data flow analysis scheme can and
should be integrated into compilers in order
to provide highly useful error diagnosis at
small additional cost. The diagnostic output
of a system such as ours would then be useful
input to a symbolic execution system.

Much has been learned from our exper-
iences with the current version of Dave.
Believing that similar systems should be
used in state-of-the-art compilers, we now
summarize these experiences in order to
place in better perspective the problems and
benefits to be expected.

Certain programming practices and con-
structs which are present in FortraN and
common to a number of other languages
cause difficulties for data flow analysis
systems such as Dave. The handling of
arrays, as mentioned earlier, is one such
example. Problems arise when different ele-
ments of the same array are used In in-
herently different ways and hence have
different patterns of reference, definition,
and undefinition. Static data flow analysis
systems such as Dave are incapable of
evaluating subseript expressions and hence
sannot determine which array element is
being referenced by a given subscript ex-
pression. Thus, as stated carlier, in Dave
and in many other program analysis systems
arrays are treated as though they were
simple variables. This avoids the problem of
being unable to cvaluate subscript expres-
sions, but often causes a weakening or
blurring of analytic results. As an example,
consider the program shown in Figure 19
Suppose 7' is the node of Gyan(N, E, n),
the flow graph of the main program, which
invokes SQUARIS. Denote by R(-, 1) and

Computing Surveys, Vol 8, No. 3, September 1976

328 .

DIMENSION R(100,2)

READ(S,]O)(R(I,1),If1,100)
10 FORMAT(F10.2)

CALL SQUARE(R)

WRITE(6,20)(R({1,2),1=1,100)
20 FORMAT(1X,F10.2)

STOP

EHND

SUBROUTINE SQUARE(R)

DIMENSION R(100,2)

D0 10 I=1,100

10 R(I,1)=R(1,2)**2
RETURN
END

Fraure 19. A program in which failure to dis-
tinguish between the differing patterns of
reference, definition and undefinition of differ-
ent array elements prevents the detection of
data flow anomalies.

R(-, 2) arbitrary elements of column 1
and column 2 respectively of array R. Now
clearly R(-, 1) € Aq(n') and R(-, 2) €
A.(n'). In addition, it is clear that R(-,1) €
Da(—n') and R(-, 2) € Dy(-n'). Hence
P(—n'; R(-, D)P(n; R(+, 1)) = pddp,
and P(—n'; R(-, 2))P(n’; R(-, 2)) =
purg’, and we see there are two data flow
anomalies present. Dave, however, treats
R as a simple variable and determines that
R e Ad(n’), R ¢ Dd(nl), R ¢ Dd(-m’)
and R € A,(n'—). Thus P(—n'; R)P(n'; R)
= pdrp’ and P(n'; R)P(n'—; R) = pdrp,
and no data flow anomalies will be detected.
This loss of anomaly detection power is
worrisome, and it is seemingly avoided only
when programmers call functionally distinet
subarrays by separate names.

There are also certain difficulties involved
in determining the leafs-up subprogram
processing order referred to earlier. This
order is important, because it ensures that
cach subprogram will be analyzed exactly
once, yet that data flow anomalies across
subprogram boundaries will be detected.
If subprogram names are passed as argu-

Computing Surveys, Vol. 8, No. 3, September 1078

Data Flow Analysis In Software Reliability

ments, this order may become difficult to
determine. This difficulty can arise because
the name used in a subprogram invocation
may not be the name of a subprogram, but
rather can be a variable which has received
the subprogram name, perhaps through a
long chain of subprogram invocations, All
such chains must be explored in order to
expose all subprogram invocations and then
determine the leafs-up order. Recent work
by Kallal and Osterweil [20] indicates that
the AVAIL algorithm can be used to effi-
ciently expose all such invocations.

Recursive subprograms pose another ob-
stacle to determining leafs-up order. Al-
though recursion is not allowed in FORTRAN,
it is a capability of many other langusages.
Moreover, it is possible to write two
ForTrRAN subprograms such that each may
invoke the other, but such that no program
execution will force a recursive calling se-
quence. Such a program would be legal in
FortraN, but would not appear to have
sufficient leaf subprograms (i.e., those that
invoke no others) to allow construction of
the complete leafs-up order. This problem
is not adequately handled by Dave, how-
ever no FORTRAN programs with this con-
struction have been encountered. In any case
current work indicates that recursive pro-
grams can be analyzed using the methods
described here.

Finally it should be observed that sub-
program invocations involving the passing
of a single variable as an argument more
than once may be incorrectly analyzed.
This occurs because DAVE assumes that all
subprogram parameters represent different
variables as it analyzes subprograms in
leafs-up order.

Despite these limitations, the DAvE sys-
tem has proven to be a useful diagnostic
tool. We have used Dave to analyze a
number of operational programs and it
has often found errors or stylistic short-
comings. Among the most common of these
have been: variables having path ex-
pressions equivalent to purp’ (referencing
uninitialized variables), and pdup’ (failing
to use a computed value) occurring simul-
tancously, usually due to a misspelling;
subprogram parameters having path ex-

L. D. Fosdick and L. J. Osterweil .

pressions equivalent to 1, caused by naming
unused parameters in parameter lists; and
COMMON variables having path expres-
sions equivalent to purp’ or pdup’ usually
due to omitting COMMON declarations
from higher level program units.

The cost of using DavEe has proven to be
relatively high, partly due to the fact that
it is a prototype built for flexibility, and not
speed, and partly due to the failure to use
the more efficient algorithms described here.
We have observed the execution speed of
the system to average between 0.3 and 0.5
seconds per source statement on the CDC
6400 computer for programs whose size
ranged from several dozen to several thou-
sand statements. The total cost per state-
ment has averaged between 7 and 9 cents
per statement for these test programs using
the University of Colorado Computing
Center charge algorithm. It is, of course,
anticipated that these costs would decline
sharply if a production version of Dave
were to be implemented.

Based on these experiences and observa-
tions, we believe that systems like Dave
can serve the important purpose of auto-
matically performing a thorough initial scan
for the presence of certain types of errors.
It scems that the most useful characteristics
of such systems are that 1) they require no
human intervention or guidance and 2) they
are capable of scanning all paths for possible
data flow anomalies. A human tester need
not be concerned with designing test cases
for this system, yet can be assured by the
system that no anomalies are present. In
case an anomaly is present, the system will
so advise the tester and further testing or
debugging would be necessary. Clearly such
a system is capable of detecting only a
limited class of errors. Hence further testing
would always be necessary. Through the
use of a system such as Dave, however, the
thrust of this testing can be more sharply
focussed. It seems that these systems could
be most profitably employed in the early
phases of a testing regimen (e.g., as part of a
compiler) and used to guide and direct later
testing efforts involving more powerful
systems that employ such techniques as
symbolic exceution. Towards this end, fur-

329

ther work should be done to widen the
class of errors detectable by means such as
those desceribed in this paper.

ACKNOWLEDGMENTS

We want to close with a grateful recognition of
the stimulating and valuable discussions we have
had on this subject with our colleagues and
students—especially Jim Boyle, Lori Clarke, Hal
Gabow, Shachindra Maheshwari, Carol Miesse,
and Paul Zeiger—and the helpful comments of the
referees. Finally, we gratefully acknowledge the
financial assistance provided by the National
Seience Foundation in this work.

REFERENCES

1] Amo, A. V.; anp UrLmas, J. D. “Node
listings for reducible flow graphs,” in Proc.
of the 7th Annual ACM Symposium on Theory
of Computing, 1975, ACM, New York, 1975,
pp. 177-185.

2] AvLen, F. E. “Program optimization,” in
Annual Review in Automatic Programming,
Pergamon Press, New York, 1969, pp. 239~
307.

3] ArLen, F. E. ‘A basis for program o timi-
zation,” in Proc. IFIP Congress 1971, orth-
Holland Publ. Co., Amsterdam, The Nether-
lands, 1972, pp. 385-390.

4] Aiwen, F. E.; anp Cocks, J. Graph-
theoretic construcls for program control flow
analysis, IBM Research R%})ort RC3923, T. J.
Watson Research Center, Yorktown Heights,
New York, 1972.

5] Aiien, F. E. “Inter rocedural data flow
analysis,” in Proc. IFIP Congress 1974,
North Holland Publ. Co., Amsterdam, The
Netherlands, 1974, pp. 398-402.

6] Avren, F. I.; ano Cocke, J.
data flow analysis procedure,”
ACM 19, 3 (March 1976), 137-147.

[7] Bavzer, R. M. “RXDAMS: Extendable
debugging and monitoring system,” 1n
Proc. AFIPS 1969 Spring J{. Compuler
Conf., Vol. 34, AFIPS Press, Montvasle,
N.J., 1969, pp. 567-580.

8] Crarke, L. A system lo generale test data
and symbolically execule programs, Dept. of
Computer Science Technical Report #Cu-
C8-060-75, Univ. of Colorado, Boulder,
1975.

9] Dennis, J. B, “First version of a data flow

procedure language,”’ in Lecture noles wn

compuler science 19, G. Goos and J. Hart-
manis (Eds.), Springer-Verlag, New York,

1974, pp. 241-271.

Farrrey, R. E. “An experimental program

testing facility,” in Proc. Furst National

Conf. on Software Engineering, 1975, IEEE

%75CH0092-8C, TEEE, New York, 1975,

pp. 47-55.

Goupsting, H. H.; anp voN NEUMANN, J.

Planning and coding problems for an elec-

tronic computing instrument,”’ in John von

Neumann, collected works, A. H. Taub (Ed.),

“A program
Comm.

{10]

(1]

Computing Surveys, Vol. 8, No. 3, September 1976

330

{1

(18]

[19]

(20]

(22}

(23]

. Data Flow Analysis In Software

Pergamon Press, Londen, England, 1963,
%)‘ 80-235.
ABERMANN, A. N. Path expressions, Dept.
of Computer Science Technical Report,
Carnegie-Mellon Unmv,, Pittsburgh, Pa,,
1075.
Harary, F. Graph theory, Addison-Wesley
Publ. Co., Reading, Mass., 1969.)
Hecnr, M. 8.; anp ULLMAN, J. D. “Flow
graph reducibility,” SIAM J. Compuling
1, 8972), 188-202.
Hecar, M. S.; anp ULLMan, J. D. “Char-
aeterizations of reducible flow graphs,”’
J. ACM 21, 3 (July 1974), 367-375.
Hecur, M. S.; axp ULLMaN, J. D. “A
simple algorithm for global data flow analysis
problems,” SIAM J. Computing ¢ (Dec.
1975), 519-532.
Horcrorr, J.; AND TARIAN, R. BE. “Effi-
cient algorithms for graph manipulation,”’
Comm. ACM 18 (June 1973), 372-378.
Horecrorr, J. E.; anp ULLuMan, J.D. For-
mal languages and their relation (o automola,
Addison Wesley Publ. Co., Reading, Mass.,
1969.
Howpen, W. E. «Automatic case analysis
of programs,’’ in Proc. Compuler Science and
Statisiics: 8th Annual Symposium on the
Interface, 1975, pp. 347-352.
KannaL, V.; AND OSTERWELL, L. J. Con-
structing flowgraphs for assembly language
programs, Dept. of Computer Science Tech-
nical Report Univ. of Colorado, Boulder,
(to appear 1976).
Kaire, R. M. “A note on the application of
graph theory to digital computer program-
ming,” Information and Control 3 (1960),
179-190.
King, J. C. “A new approach to program
testing,” in Proc. Internatl. Conf. on Ie-
liable Software, 1975, IEEE # 75CH0940-
708R, IEEE, New York, 1975, pp. 228-233.
Kennepy, K. W, “Node listings applied to
data fow analysis,” in Proc. of 2nd ACM
Sympostum on Principals of Programmang
Languages, 1975, ACM, New York, 1975,
pp. 10-21.

Computing Surveys, Vol. 8, No. 3, September 1976

Reliability

(24]

[25]

(26}

(28]

KnurtH, D.E. The art of computer program-
ming, Vol. I Jundamental aig‘orit}};ms, (2d
I2d.), Addison Wesley pPubl. Co., Reading,
Mass., 1973.

KwutH, D. E. An em irical study of
FORTRAN programs, Software—FPractice
and Ezperience 1, 2(1971), 1056-134.

MiLLer, E. F., Jr RXVP, FORTRAN
aulomated verification sysiem, Program Vali-
dation Project, General Research Corp.,
Santa Barbara, Calif., 1974, pp. 4.
OstERwWEIL, L. J.; AND FOSDICK, L. D.
APAVE—a FORTRAN program analysis
system,” in Proc. Computer Science and
Statistics: Sth Annual Symposium on the
Interface, 1975, pp. 320-335.

OsTERWEIL, L. J.; AND FOSDICK, L. D
G AVE-—a validation, error detection and
documentation system for FORTRAN pro-
grams,”’ Software—Practice and Ezxpertence
(to appear 1976).

Ttooricurz, J. D. A graph model for paraliel
computation, Report MAC-TR-64, Project
MAC, MIT, Cambridge, Mass., 1569.
Rosen, B. Data flow analysis for recursive
PL/I programs, 1BM Research Report
RrCs211, T, J. Watson Research Center,
Yorktown Heights, New York, 1975.
ScHARFFER, M. A mathematical theory of
global program oplimization, Prentice-Hall
Ine., Englewood Cliffs, N. J., 1973.

Srockr, L. G. “Automatie generation of
self-metric software,”” in Proc. IEEE Sym-
posium on Computer Software Reliability,
1973, 1EEE % 73CH0741-9CSR, IEEE, New
York, 1973, pp. 94-100.

Tarsan, R. B. “Depth-first gearch and
linear graph algorithms,” SIAM J. Compul-
ing (Sept. 1972), 146-160.

Tarsan, R. E. “Testing flow graph re-
ducibility,” J. Computer and System Sciences
9, 3 (Dee. 1974), 355-365.

Urwman, J. D, “Fast algorithms for the
elimination of common subexpressions,”’
Acta Informatica & (1873}, 191-213.

ABSTRACT

This paper describes the ways in which the methods of data flow
analysis can be applied to improve software reliability. Basic
terminology from graph theory and from data flow analysis in global
program optimization is reviewed. The notation of regular expressions
is used to describe actions on data for sets of paths. These expres-
sions are the basis of a classification scheme for data flow which
represents patterns of data flow along paths within subprograms and
along paths which cross subprogram boundaries. Fast algorithms,
originally introduced for global optimization, are described and it
is shown how they can be used to implement the classification scheme.
It is then shown how these same algorithms also can be used to detect
the presence of data flow anomalies which are symptomatic of programming
errors. Finally, some characteristics and experience with DAVE, a

data flow analysis system embodying some of these ideas, is described.

I. Introduction

For some time we have believed that a careful analysis of the use of
data in a program, such as that done in global optimization, is a powerful
means for detecting errors in software and otherwise improving its quality.
Our recent experience [27,28] with a system constructed for this purpose con-
firms this belief. As so often happens on such projects, our knowledge
and understanding of this approach were.deepened.considerably by our
experience in constructing this system. The pressures of meeting various
deadlines made it impossible to incorporate»a11 of our developing ideas
into this system, moreover during the construction of the system advances
were made in global optimization algorithms, useful to us, which for the
same reasons could not be incorporated in the system. Our purpose in
writing this is to draw these various ideas together and present them for
the instruction and stimulation of others who are interested in the problem
of software re]iability.

| The phrase "data flow ana]ysisdwbecame firmly established in the
Titerature of global program optimization several years ago through the
work of Cocke and Allen [2,3,4,5,6]. Considerable attention has also been
given to data flow by Dennis and his co-workers [9,29] in a different con-
text, advanced computer architecture. Our own use of the phrase "data
flow analysis" is Tike that used in the literature of global program
optimization but our emphasis and objectives are different. Let us be
specific about the way we use this phrase. Execution of a computer
program normally implies input of data, operations on it, and output of
the results of these operations in a sequence determined by the program
and the data. We view this sequence of events as a flow of data from

input to output in which input values contribute to intermediate results,

and these in turn contribute to other intermediate results,

and so forth until the final results, which presumably are output, are
obtained. It is the ordered use of data implicit in this process
that is the central object of study in data flow analysis.

Data flow analysis does not imply execution of the program being
analyzed. Instead the program is scanned in a systematic way and informa-
tion about the use of variables is collected so that certain inferences
can be made about the effect of these uses at other points of the program.
An example from the context of global optimization will illustrate the
point. In this example, known as the live variable problem, it is
required to determine whether the value of some variable is to be used
in a computation after some designated computation step. If not, space
for that variable may be reallocated, or an unnecessary assignment of a
value can be deleted. To make this determination it is necessary to look,
in effect, at all possible execution sequences starting at the designated
execution step to see if the variable under consideration is ever used
again in a computation. This is a difficult problem in any practical
situation because of the complexity of the execution sequences, the.
aliasing of variables, the use of external procedures, and other factors.
Thus a brute force attack on this problem is doomed to fail. Clever
algorithms have been developed for dealing with this and related problems.
They do not require explicit consideration of all execution sequences in
the program in order to draw correct conclusions about the use of variables.
Indeed the effort expended in scanning through the program to gather
information is remarkably small. We will discuss some of these algorithms
in detail Tater because they can be adapted to deal with our own set of

problems in software reliability. We turn to these now.

Data flow in a program is expected to be consistent in various ways.
If a value of a variable is needed at some computation step, say the

variable o in the step
Yyeat+ 1,

then it is normally assumed that at an earlier computation step a value
was assigned to a. If a value is assigned to a variable in a computation
step, for example to vy above, then it isvnormally assumed that value will
be used in a later computation step. When the pattern of use of variables
is abnormal, so that our expectations of how variables are to be used in

a computation are violated, we say there is an anomaly in the data flow.
Examples of data flow anomalies are illustrated in the following FORTRAN

constructions. The first is

It is clear that the first assignment to X is useless. Why is the statement

there at all? Perhaps the author of the program meant to write

- =<
0o
ws)

Another data flow anomaly is represented by the FQRTRAN construction

SUBROUTINE SUB(X,Y,Z)
Z=Y +U

Here W is undefined at the point that a value for it is required in the
computation. Did the author mean X instead of W, or W instead of X, or
was W to be in COMMON? We do not know the answers to these questions but
we do know that there is an anomaly in the data flow.

As these examples suggest, common programming errors cause data flow
anomalies. Such errors include misspelling, confusion of names, ihcorrect

’parameter usage in an external procedure invocation, omission of state-
ments, and so forth. The presence of a data flow anomaly does not imply
that execution of the program definitely will produce incorrect results,
only that it may produce incorrect results. It may produce incorrect
results depending on the input data, or depending on the operating system,
or other environmental factors. It may always produce incorrect results
regardless of these factors, or it may never produce incorrect results.
The point is that the presence of a data flow anomaly is at least a cause
for concern because it often is a symptom of an error. Certainly soft-
ware containing data flow anomalies is less likely to be reliable than
software which does not.

Our primary goal in using data flow analysis is the deﬁection of data
flow anomalies. The examples above hardly require very sophisticatéd
techniques for their detection. However, it easily can be imagined how
similar anomalies could be embedded in a large body of code in such a way
as to be very obscure. The algorithms we will describe make it possible
to expose the presence of data flow anomalies in large bodies of code
where the patterns of data flow are almost arbitrarily complex. The
analysis is not limited to individual procedures, as is often the case in
global optimization, but it extends across procedure boundaries to include

entire programs composed of many procedures.

The search for data flow anomalies can become expensive to the point
of being totally impractical unless careful attention is given to the
organization of the search. OQur experience shows that a practical ap-
proach begins with an inital determination of whether or not any data
flow anomalies are present, leaving aside the question of their specific
location. This determination of the presence of data flow anomalies is
the main subject of our discussion. We will see that fast and effective
algorithms can be constructed for making this determination and that
these algorithms identify those variables involved in the data flow
anomalies and provide rough information about location. Moreover these
algorithms use as their basic constituents the same algorithms used in
global optimization and require the same information so they would be
particularly efficient if included within an optimizing compiler.

Localizing an anomaly consists in finding a path in the program
containing the anomaly, and this raises the question of whether the path
is executable. For example, consider Figure 1.1, and observe that al-
though there is a path proceeding sequentially through the boxes
1,2,3,4,5 this path can never be followed in any execution of the
* program. An anomaly on such a non-executable path is of no interest.
The determination of whether or not a path is executable is particularly
difficult, but often can be made with a technique known as symbolic execution
[8,19,22], In symbolic execution the value of a variable is represented
as a symbolic expression in terms of certain variables designated as
inputs, rather than as a number. The symbolic expression for a variable
carries enough information so that if numerical values were assigned to
the inputs a numerical value could be obtained for the variable. Sym-

bolic execution requires the systematic derivation of these expressions.

Y<+-X2 | YeA+X

Figure 1.1: The path in this segment of a flow diagram represented
by visiting the boxes in the sequence 1,2,3,4,5 is not
executable. Note that Y>0 upon leaving box 1 and this
condition is true upon entry to box 4, thus the exit
labelled T could not be taken.

Symbolic execution is very costly, and though we believe further study
will lead to more efficient implementations it seems certain that it
will remain relatively expensive. Therefore a practical approach to
anomaly detection should avoid symbolic execution until it is really
necessary. In particular, with presently known algorithms it appears
to be least expensive to first determine whether an anomaly is present,
then find a path containing this anomaly, and then attempt to determine
whether the path is executable.

Our discussion will show that the algorithms presented here do
provide information about the presence of anomalies on executable paths.
While they do not identify the paths the fact that they can report the
presence of an anomaly on an executable path without resorting to
symbolic execution is of considerable practical importance.

While an ahohaiy can béwdetéctéd mechanically by the techniques we
will describe, the detection of an underlying error requires additional
effort. The simple examples of data flow anomalies given earlier make it
clear that a knowledge of the intent of the programmer is necessary to
identify the error. It is unreasonable to assume that the prégrammer will
provide,in advance, enough additional information about intent so that
the errors too can be mechanically detected. We visualize the actual
error detection as being done manually by the programmer, provided with
information about the anomalies present in his program. Obviously many
tools could be provided to make the task easier, but in the end it must
be a human who determines the meaning of an anomaly. We Tike to think of
a system which detects data flow anomalies as a powerful, thorough,
tireless critic, which can inspect a program and say to the programmer--

"There is something unusual about the way you used the variable o in this

statement. 'Pérhaps youwshbuid check it." The critic might be even more
specific, and say--"Surely there is something wrong here. You are trying
to use o in the evaluation of this expression but you have not given a
value to a."

The data flow analysis required for detection of anomalies also provides
routine but valuable information for the documentation of programs. For
example, it provides information about which variables receive values as
a result of a procedure invocation and which variables must supply values
to a procedure. It identifies aliasing that results from the multiple
definition of COMMON blocks in FORTRAN programs. It identifies regions
of the program where some variables are not used at all. It recognizes
the order in which procedures may be invoked. This partial list illustrates
that the documentation information provided by this mechanism can be useful,
not only to the person responsible for its construction, but also to
users, and maintainers.

wg are ready now to enter the details of this discussion. We begin
with a presentation of certain definitions from graph theory. Graphs are
an essential tool in data flow analysis, being used to represent the exe-
cution sequences in a program. We follow this with a discussion of ex-
pressions we use to represent the actions performed on data in a program.
The notation introduced here greatly simplifies the later discussion of
data flow analysis. Next, we discuss the basic algorithmic tools required
for data flow analysis. Then we describe a technique for segmenting the
data flow analysis, and then the systematic application of this technique
to detect data flow anomalies in a program. We conclude with a discussion

of experience we have had with a prototype system based on these ideas.

IT. Basic definitions--graphs

Formally a graph is represented by G(N,E) where N is a set of nodes

{n],nz...,nk}, and E is a set of ordered pairs of nodes, called the
edges, {(n, sn,),(n, sn. J,...,(n. ,n.)} where the n. 's are not
Ji 92 J3 g Im-1" In Ji
necessarily distinct. For example, suppose

=
!

= {0,1,2,3,4},
- {(Osl)9(092)5(292),(233)9(492)a(1’4)5(431)}9

m
I

then this is ﬁhe graéh of Figuré 2.1; Thé humber of nodes in the graph
is represented by |N|, and the number of edges by |E|. For the graph in
Figure 2.1 |N| = 5 and |E| = 7. For any graph |E| < [N{Z, since a
particular ordered pair of nodes may appear at most once in the set E.
For the graphs which will be of interest to us it is usually true that |E]
is substantially less than INIZ; in fact it is customary to assume that
|E| < k|N| where k is a small integer constant. |

For an edge, say (n.,nj), we say that the edge goes from n; to nj;

i
n. is called a predecessor of nj, and nj is called a successor of ns-

i
The number of predecessors of a node is called the in-degree of the node,
and the number of successors of a node is called the out-degree of the
node. For the graph shown in Figure 2.1, 0 is a predecessor of 1 and 2,
the out-degree of 0 is two; O is not a successor of any node, it has in-
degree zero. Also in this figure we see that 4 is both a successor and
predecessor of 1, 2 is a successor and predecessor of itself. A node
with no predecessors (i.e., in-degree = 0) is called an entry node, a

node with no successors (i.e., out-degree = 0) is called an exit node;

in Figure 2.1, 0 is the only entry node and 3 is the only exit node.

Figure 2.1:

Pictorial representation of a directed graph. The
points, labeled here as 0,1,2,3,4, are called nodes,
and the Tines joining them are called edges.

11

A path in G is a sequence of nodes “j ’"j ,...,nj » such that every
1 V2 k
adjacent pair (nj ’"j]) is in E. We say that this path goes from
i i+l
n; to ng - In Figure 2.1, 0,2,3 is a path from 0 to 3; 1,4,1, is a path
1 k
from T to 1. There is an infinity of paths from 1 to 1: 1,4,1; 1,4,1,4,1;
etc. The length of a path is the number of nodes in the path, less one
(equivalently, the number of edges); thus the length of the path
0,1,4,1,4,2,3 in Figure 2.1 is six. If n., ,n. s...,n. is a path, p,
J1 2 Ik
then any subsequence of the form n, ,n, »eeesn. , for 1 <1 <k and
Jim 441 i+m
1 <mg k=i is also a path, p'; we say that p contains the path p'.

If p is a path from n. to nj”and i=j then p ié a cycle. In
Figure 2.1 the paths 1,4,1 and 1,4,1,4,1 and 2,2 are cycles. The path
0,1,4,1,4,2,3 contains a cycle. A path which contains no cycles is
acyclic, and a graph in which all paths are acyclic is an acyclic
graph.

If every node of a connected graph has in-degree one, and thus has
a unique predecessor, éxcept for one node which has in-degree zero, the
graph is a tree T(N,E). The graph in Figure 2.2 is a tree, and if in_
Figure 2.1 the edges (4,1), (4,2), and (2,2) are deleted, then the result-
ing graph is also a tree. The unique entry node 1is called the root of
the tree and the exit nodes are called the leafs. It will be recog-
nized that there is exactly one path from the root to each node in a tree,
thus we can speak of a partial ordering of the nodes in a tree. In
particular, if there is a path from n, to nj in a tree, then n, comes
before ”j in the tree: we say that n. is an ancestor of nj and nj is a
descendent of n;- In Figure 2.2 every node, except 0, is a descendent
of 0 and 0 is the ancestor of all of these nodes. Similarly 1 is an

ancestor of the nodes 2,3,4,5,6, on the other hand 7 is not an ancestor

of these nodes. A tree which has been derived from a directed graph by

12

Figure 2.2: Pictorial representation of a tree rooted at O.
Each node has a unique predecessor except the root
which has no predecessor.

13

the deletion of certain edges, but no nodes, is called a spanning tree
of the graph.

These elementary definitions are commonly accepted but they are
not universal. Graph theory Seéms to be notorious for its non-standard
terminology. Additional informati@n\on this subject can be found in
various texts, such as Knuth [247], and Harary [13]. = <

The uée of flow charts as a pictoria] fepfeseniation ~clearly -
representing the flow of control in a computer program dates back at
Teast to 1947 in the work of Goldstine and von Neumann [11], and the
advantage of the systematic application of graph theory to computer
programming was pointed out in 1960 by Karp [21]. In recent years this
approach has been actively developed with numerous articles appearing
in the SIAM Journal on Computing, the Journal of the ACM, and many con-
ference proceedings especially those of the ACM Special Interest Group on
the Theory of Computing. We now introduce some ideas and definitions
drawn from this Titerature pertinent to the subsequent discussion.

When a graph is used to represent the flow of control from one state-
ment to another in a program it is called a flow graph. A flow graph must
have a single entry node, but may haVe more than one exit node, and therex
must be a path from the entry node to every node in the flow graph.
Formally, a flow graph is represented by GF(N,E,nO) where N and E are
the node and edge sets, respectively, and Nps an element of N, is the
unique entry node.

Generally, thé nodes of a flow graph represent statements of a program
and the edges represent control paths from one statement to the next. In
data flow analysis the flow graph is used to guide a search over the state-
ments of a program to determine certain relationships between the uses of

data in various statements. Thus before data flow analysis can begin a

14

'correspondence between the statements of a program and the nodes ofka flow
graph needs to be established. Unfortunately, difficulties arise in
trying to establish this correspondence because of the structufe of the
language and the requirements of data flow analysis.

Statements in higher level languages can consist of more than one

part, and not all parts may be executed when the statement is executed.

This is the case with the FORTRAN logical IF, as in
IF(A.LE.1.0)J=d+1 ,

where execution of the statement does not necessarily imply fetching a
value of J from storage and changing it. For the purpose of data flow
analysis it is desirable to separate such statements into their constituent
parts and let each part be represented by a node in QF as illustrated in
Figure 2.3 for this IF statement.

Statements which reference external procedures pose a far more serious
problem. Such statements actually represent sequences of statements. If
a node in a flow graph is used to represent an external procedure, then
some ambiguities in the data flow analysis arise because the control
structure of the represented external procedure is, so to speak, hidden.
On the other hand if we permit this control structure to be completely
exposed by placing its flow graph at the point of appearance of the
referencing statement, then we invite a combinatorial explosion. Later
we will discuss mechanisms for propagating critical data flow information
across procedure boundaries in such a way as to avoid a combinatorial
explosion, but at the price of losing some information. An important con-
struction used here is the call graph.

Formally a call graph, which we represent by GC(N,E,nO) is identical

to a flow graph. However the nodes and edges have a different interpre-

15

X=X+1.0
IF(X.LT.Y) J=d+1
A=X*X
: n g
Ny
ni+2
Ni+3
Y
Figure 2.3: Graph representation of a segment of a FORTRAN program.

Node n; represents the statement X=X+1.0, node Ni]

represents the first part of the IF statement IF(X.LT.Y),

node Ni42 represents the second part of the IF statement

J=J+1, and node Nit3 represents the statement A=X*X.

16

tation: the nodes in a call graph, using FORTRAN terminology, represent

program units (a main program, and subprograms); an edge (ni,n.) repre-

J
sents the fact that execution of the program unit n; will directly

invoke execution of the program unit nj. This is illustrated in

Figure 2.4. 1In data flow analysis the call graph is used to guide the
analysis from one program unit to another in an appropriate order.

In data flow anaTysis transformations are sometimes applied to a

flow graph to reduce the number of nodes and edges, with nodes in the
Iresulting graph representing larger segments of the program. One of
these transformations is illustrated in Figure 2.5. Here all nodes
along paths from a node with a single exit to a node with a single
entry and containing only paths with this property are collapsed into

a single node. The nodes in the transformed graph are called basic
blocks [4,6,31]. The important and obvious fact about a basic block is
that it represents a set of statements which must be executed sequen-
tially, and, in particular, if any statement of the set is executed
then every statement of the set is executed in the prescribed sequence.
Maximality is implicit in the definition of a basic block; i.e. no
additional nodes can be collapsed into the node representing a basic
block, preserving the single entry, single exit condition. It follows
easily that in a flow graph in which every node is a basic block,
either E = ¢ (the empty set) or for every (“1’nj) ¢ E either the out-
degree of n; > 1 or the in-degree of ng > 1, or both of these condi-
tions are satisfied.

Since there are no branches or cycles in a basic block the analysis

of data flow in it is particularly simple. In some situations the re-

duction of a flow graph in which nodes are statements to one in which

C--MAIN PROGRAM
CALL SUBA(---)

Y=X+FUNA(- . -)
END MAIN
SUBROUTINE SUBA(---)

z=hme--M4.0 SUBA FUNA

END

FUNCTION FUNA(---)
: FUNB

Y=FUNB(---)-1.0

END
FUNCTION FUNB(---)

END

Figure 2.4: TITlustration of the call graph for a FORTRAN program.
The nodes have been Tabeled to identify the program
unit represented.

18

@ &9

Figure 2.5:

ITlustration of a transformation which replaces paths
consisting of a single entry and a single exit by a
node. In the transformed graph open circles have been
used to identify nodes representing paths in the
original graph.

19

the nodes are basic blocks results in a significant reduction in the
number of nodes. In such cases there is a practical advantage in per-
forming the data flow analysis on the basic blocks first, then reducing
the flow graph to one in which the nodes are the basic blocks and con-
tinuing the data flow analysis on the reduced graph. However we have
found that the reduction in the node count for FORTRAN programs is about
0.56 on the average. Thus for FORTRAN it is not clear that a significant
advantage can be obtained by this initial preprocessing of basic blocks
and reduction of the graph. In global optimization it is customary
[4,6,31] to use basic blocks since an intermediate language, close to
assembly language, is used and the reduction in node count is signi-
ficant.

Knuth [24] is the standard reference for data structures to repre-
sent graphs. Hopcroft and Tarjan [17] describe a structure which is
particularly efficient for the search algorithms described here. This
structure is illustrated in Figure 2.6. In this structure there is an
ordered list of |N| elements, each representing a node and pointing to
a linked sublist of successors of that node. The storage cost for
this structure is |N|+2|E| words if we assume that one word is used to
store an integer. In practice it is necessary to associate information
of variable Tength with each node so we need to allow for a second
pointer with each of the nodes, bringing the storage cost to‘

2(|N[+|E]), and if |E|<k|N| the cost is < 2(1+k)|N]|.

Figure 2.6:

< 11¢] [2]0
@~ —g-] ‘4 ’;—’~s
T {2[¢] [3]@
E S
o—— | " 210

Data structure for the graph in Figure 2.1. This is a
linked successor 1list representation. The numbered
entries could be replaced by pointers to a node table
carrying ancillary information for each node.

20

21

III. Basic definitions--path expressions to represent data flow.

When a statement in a program is executed the data, represented by
the variables, can be affected in several ways which we distinguish by the
terms reference, define, and undefine. When execution of a statement
requires that the value of a variable, say a, be obtained from memory we
say that o is referenced in the statement. When execution of a statement
assigns a value to a variable, say o, we say that o is defined in the -

statement. In the FORTRAN statement
A=B+C

B and C are referenced and A is defined, and in the FORTRAN statement
I=1+1

I is referenced and defined. In the statement
A(I) =B + 1.0

B and I are referenced and A(I) is defined. The undefinition of variables

is more complex to describe and we note here only a few instances. In

FORTRAN the DO index becomes undefined when the DO is satisfied, and local

variables in a subprogram become undefined when a RETURN is executed.

In ALGOL Tocal variables in a block become undefined on exit from the block.
We will want to associate nodes in a flow graph with sets of variables

which are referenced, defined, and undefined when the node is executed.*

In doing this the undefinition operation requires special attention.

* Here and elsewhere we speak of nodes as if they were the objects they
represent, thus. avoiding cumbersome phrasing such as-- "...when the
statement represented by the node is executed."

22

Frequently undefinition of a variable occurs not by virtue of executing a
particular statement, butcby virtue of executing a particular pair of

statements in sequence. Consider, for example, the FORTRAN segment below:

DO 10 K=1,N
X=X+A(K)
Y=Y+A(K)**2
10 CONTINUE
WRITE---

The DO index K becomes undefined when the WRITE statement is executed after
the CONTINUE statement but it does not become undefined when the statement
X=X+A(K) is executed after the CONTINUE statement. Thus it would be more
appropriate to associate the undefinition with an edge in the flow graph
rather than with a node. However, for consistency we prefer to associate
undefinition with nodes, therefore in the example above we would introduce
a new node in the flow graph on the edge between nodes for the CONTINUE and
the WRITE and would associate with this node the operation of undefinition
of K. Similar situations in other Tanguages can be handled in the same way.
In the discussion which follows, we will always assume that the undefini-
tion of variables takes place at specific nodes introduced for that purpose
and that at such nodes no other operation, reference or definition, takes
place. Thus, in particular, for a flow graph representation of a FORTRAN
subroutine we would introduce a node which would not cerrespond to any
statement but would represent the undefinition of all local variables on
entry to the subreutine. Similarly, at the subroutine exit a node

representing undefinition of local variables would be introduced.

23

Array elements pose a problem, too. While it is obvious that the first

element of A is referenced in the FORTRAN statement
B=A(1)+1.0

no particular conclusion can be drawn about which element is referenced in

the statement
B=A(K)+1.0.

without looking elsewhere. That may be hopeless if the program includes

READ(5,100)K
B=A(K)+1.0

For this reason we adopt the convenient, but unsatisfactory, practice
of treat1ng all e1ements of an array as if they were a single variable.
The abbrev1at1ons r,d, and u d;é used here to stand for reference,
define, and undefine, respectively. To represent a sequence of such
actions on a variable these abbreviations are written in left-right

order corresponding to the order in which these actions occur; for

example, in the FORTRAN statement

A=A+B,

the sequence of actions on A is rd, while for B the sequence is simply

r. In the FORTRAN program segment

A=B+C
B=A+D
A=A+1.0
B=A+2.0
G0 TO 10

24

the sequence of actions on A is drrdr and on B it is rdd. We call

these sequences path expressions. Habermann [12] has used this same

terminology in a different context. The path expressions purp', oddo',
odup', where p and p' stand for arbitrary sequences of r's, d's, and u's,
are called anomalous because each is symptomatic of an error as dis-
cussed earlier. Our goal is to determine whether such path expressions
are present in a program.

The problem of searching for certain patterns of data actions is
common in the field of global program optimization, a subject which
receives extensive treatment in a recent book by Schaeffer [31]. Recent
articles by Allen and Cocke [6], and Hecht and Ullman [16] discuss aspects
of this problem of particular relevance to our discussion. We focus on
two problems in global optimization: the Tive variable problem and the
availability problem. We will show that algorithms used to solve these
problems can also be used for the efficient detection of anomalous path
expressions.

The Tive variable problem has already been sketched in the intro-
duction to this paper. The availability problem arises when one seeks
to determine if the value of an expression, say a+B8, which may be heeded
for the execution of a selected statement actually needs to be computed,
or may be obtained instead by fetching a previously generated and stored
value for it. Since our specific interest in these problems arises in
the context of software reliability rather than global optimization we
prefer to characterize and define these problems in a general setting
which we now develop.

Consider a flow graph GF(N,E,ﬁO). With this flow graph we associate

a set known as the token set, denoted by tok, consisting of elements

25

®sBs... . With every node, neN, we associate three disjoint sets:

gen(n), kill(n), and null(n), subsets of tok, with gen(n) u kill(n)u

null(n) = tok. This association is illustrated in Figure 3.1. Inform-

ally, one may think of the tokens as representing variables in a program,

and the sets ggg(n); k111(h);‘éﬁdwﬁﬁi1(h) as'representing certain actions

performed on the tokens; for example, if the first action performed on a«
at node n is a definition then aegen(n), if no action is performed on o

at node n then aanu]1(n), etc. The specific association of these sets

with elements of the program will depend on the problem under considera=.
as we will illustrate later. For the time being we simply assume that
the sets gen(n), kill(n) and null(n) are given.

For a path, p, and a token o wekare interested in the sequence of
sets containing « along the path. Thus assume we traverse the path
and as each node, n, is visited write down a g if aegen(n), a k if
aekill(n), and 1 if aenull(n). The resulting sequence of g's, k's, and
1's is a path expression for o on p which we denote by P(psa). Here
the alphabet used is {g,k,1} instead of {r,d,u}. Referring to Figure 3.1

the path expression for o on p=0,1,2,4,2,5 1is
P(0,1,2,4,2,5;a)=Tkgkgk

and similarly
P(0,1,2,5;8)=1k1k.

We use the notation of regular expressions* to represent sets of path

expressions. For example, the set of path expressions for a on the set of

* See, for example, p. 39 of Hopcroft and Ullman [12].

26

| n gen kill null Tive avail
0 a,B
> 3 1 a,B o, B
2 a B
3 B a
4 a,sB a a
5
5 a,B

Figure 3.1: TIllustration of gen, kill and null sets assigned to the
nodes of a simple flow graph. The derived live and avail
sets are shown in the last two columns. '

27

all paths Teaving node 1 in Figure 3.1 is
*
P(1+5a)=g(kg) k+1k,

where it is to be noted that the k associated with node 1 is not included.
Similarly, the set of path expressions for o on the set of all paths

entering node 5 in Figure 3.1 is
*
P(+5;0)=1kg(kg) +1k1,

where it is to be noted that the k associated with node 5 is not included.
These, too, are called path expressions and when a distinction is import-
ant we say a path expression is simple if it corresponds to a single
path. It is evident that a simple path expression will not contain the
symbols * or +.

Path expressions are concatenated in an obvious way. Thus, refer-

ring again to Figure 3.1,
P(130)P(1+3a)=k(g(kg) k+1k)
and
P(55;0)P(550)=(1kg(kg) +TK1)k.

Two path expressions representing identical sets of simple path
expressions are equivalent. Thus, using the Tast path expression above,

it is easily seen that
* *
(Tkg(kg) +1k1)k=1kg(kg) k+1kTk.

Furthermore, two path expressions differing only by transformations of

28

the form
1g+g, Tk>k, gl-g, kl-k, 11=1, and 1+1+]
are equivalent. For example
T+1*gk+kk1+11=gk+kk+1.

The final step in this general development is to introduce the sets
Tive(n) and avail(n), subsets of tok. For each aetok and each neN of

GF(N,E,nO)

aelive(n) if and only if P(n>ja)=go+p',
and

acavail(n) if and only if P(-n3a)=pg,

where p and p' stand for arbitrary path expressions. In words,
aclive(n) if and only if on some path from n the first "action" on o,
other than null, is g; and acavail(n) if and only if the last action on
a, Other than null, on all paths entering n is g. These definitions

are illustrated in Figure 3.7, where the live and avail sets are shown.

The Tlive variable problem is: given GF(N,E,nO), tok, and, for every

neN, kill(n), gen(n), and null(n) determine live(n) for every neN. The

availability problem is: given GF(N,E,nO), tok, and for every neN,

kill1(n), gen(n), and null(n) determine avail(n) for every neN. While

one might solve these two problems directly in terms of the definitions,
that is by deriving the path expressions and determining if they have
the correct form, such an approach would be hopelessly slow except in

the most trivial cases. Instead these problems are attacked by using

29

search algorithms directly on GF which avoid explicit determination of

path expressions, but which do provide enough information about the

form of the path expression to solve the live variable problem and the

availability problem. These algorithms are discussed in the next section.
Before closing this section we show how thése tools are helpful

with a simple example. In this example the problem is to detect the

presence of path expressions (now in terms of references, definitions,

and undefinitions) of the form pddp'. Assume that we can construct a

flow graph for the program in which the nodes are statements or parts

of statements so that the following rules of membership for tokens

representing variables can be trivially applied at every node:

1. aekill(n) if o is referenced at n, or undefined at n;

2. oaegen(n) if o is defined at n and afkill(n);

3. aenull(n) otherwise.

After these sets have been determined, suppose the live variable prob1ém
is solved. Now if o is defined at n and if aclive(n) it follows easily
that there is a path expression of the form pddp' in the flow graph.

The truth of this conclusion is seen from the fact that aelive(n)

implies P(n->;a)=gp+p' and since g stands for a definition
P(n>s0)=doto’,
hence

P(nsa)P(n>ja)=ddotp'".

Conversely, if at every node at which o is defined af¢live(n), then one
may similarly conclude there is no path expression of the form pddp';

i.e. there are no data flow anomalies of this type.

30

31

IV. Algorithms to solve the live variable problem and the availability

problem.

In the last section the Tive variable problem and the availability
problem were defined and a simple example was given to show how a solu-
tion to the live variable problem can be used to determine the presence
or absence of data flow anomalies. In this section we describe parti-
cular algorithms for solving the live variable problem and the avail-
ability problem. Several of these have appeared in the literature
[6,16,23,31,35]. The pair of algorithms we have chosen for discussion
do not have the Towest asymptotic bound on execution time. However,
they are simpler and more widely applicable than these others and their
speed is competitive.

The algorithms involve a search over a flow graph in which the
nodes are visited in a specific order derived from a depth first
search. This search procedure is defined by the following algorithm,
where it is assumed that a flow graph GF(N,E,nO) is given, and a push

down stack is available for storage.

Algorithm (depth first search)

1. Push the entry node on a stack and mark it (this is the first

node)visited; nodes are marked to prevent visiting them more than
oncej, ‘

2. While thé stack is not empty do the following:

2.1 While there is an unmarked edge from the node at the top of
the stack, do the following:

2.1.1 Select an unmarked edge from the node at the top of
the stack and mark it (edges are marked to prevent
selecting them more than once);

2.1.2 If the node at the head of the selected edge is
unmarked, then mark it and push it on the stack (this
is the next node visited);

32

2.2 Pop the stack;
3. Stop.

In Figure 4.1 the nodes of the flow graph are numbered in the order
in which they are first visited during the depth first search. We fol-
Tow the convention that the left-most edge (as the graph is drawn) not
yet marked is the next edge selected in step 2.1.7, thus the numbering
of the successor nodes of a node increases from left to right in the
figure. The ordering of the nodes implied by this numbering is called
preorder [24]. The order in which the nodes are popped from the stack
during the depth first search is called postorder [16,24]. In Figure 4.2
the nodes are numbered in postorder. This numbering could be generated
in the following way. Introduce a counter in the depth first search
algorithm and initialize it to O in step 1. 1In step 2.2, before popping
the stack, number the node at the top of the stack with the counter
value and then increment the countér. If each postorder node number,
say k, is complemented with respect to |N|, i.e., k' < |[N| - k, then
the new numbering represents an ordering known as r-postorder [16].

This numbering is shown in parentheses in Figure 4.2.

The depth first spanning tree [33] of a flow graph is an important
construction for the analysis of data f16w. This construction can be
obtained from the depth first search algorithm in the following way. Add
a set E' to this algorithm which is initialized to empty in step 1. In
step 2.1.2 put the selected edge in E' if the head of the selected edge is
unmarked. After execution of the depth first search algorithm, modified in
this way, the tree T(N,E') is the depth first spanning tree of GF(N,E,nO),

the flow graph on which the search was executed. The depth first spanning

Figure 4.1:

Numbering of the nodes of a graph in the order in which
they are first visited during a depth first search.
This numbering is called preorder.

33

0(I0)

Figure 4.2:

ITTustration of postorder and r-postorder numbering of
the nodes of a graph. The r-postorder numbers are in
parentheses.

34

35

tree of the flow graph in Figure 4.1 is shown in Figure 4.4. The edges
in the set E - E' fall into three distinct groups:
1. forward edges with respect to T--e ¢ E - E', is in this group if
this edge goes from an ancestor to a descendant of T;

2. back edges with respect to T--e ¢ E - E', is in this group if
this edge goes from a descendant to an ancestor of T, or if this
edge goes from a node to itself;

3. cross edges with respect to T--e ¢ E - E', is in this group if
this edge goes between two nodes not related by the ancestor-
descendant relationship.

These edges are shown in Figure 4.4 for the flow graph in Figure 4.1 and
the tree shown in Figure 4.3 derived from it. Tarjan [34] has shown that
it is possible to perform a depth first search, number the nodes in preorder,
determine the number of descendants for each node in the depth first
spanning tree, determine the backedges, forward edges, and cross edges,
all in O(|N| + |E]) time. |

This way of characterizing the edges in a flow graph is particu-
larly valuable for an analysis of data flow patterns. It is to be
noted in particular that if the back edges are deleted in Figure 4.4
then the resultant graph is acyclic. This is true in general. The
cycles in a graph cause the major complication in the analysis of
data flow. A1l of the data flow analysis algorithms would have O(|E|)
execution times if cycles were absent, but with cycles present they
have execution times which generally grow faster than linearly in |E|
as |E| » =. By focusing attention on back edges one can more easily
see how cycles add to the complexity of a data flow analysis algorithm.

Some data flow analysis algorithms require the flow graph to be

reducible. This property is characterized in the theorem below which

Figure 4.3:

4 7\
2 . 8\
: N

10

Depth first spanning tree of the flow graph shown in
Figure 4.1. Nodes are numbered in preorder.

36

Figure 4.4:

Forward edges, back edges, and cross edges marked by
dashed lines and lettered f, b, c, respectively.
This grouping is with respect to the tree shown in
Figure 4.3.

37

36

follows from results of Hecht and Ullman [15]:

Theorem. GF is reducible if and only if ﬁi dominates nj

in GF for each back edge (nj,ni), where j#i, with respect

to a depth first spanning tree of GF.

The notion of dominance which is introduced here is defined as follows.
Given a pair of nodes n; and nj in GF’ ns dominates nj if and only if

» every path from Ny to nj “contains n,. It can be easily seen from this
theorem that the flow graph in Figure 4.1 is not reducible. Notice

that the edge (5,4) is a back edge (cf Figure 4.4) with respect to the
spanning tree in Figure 4.3. On the other hand node 4 does not dominate
node 5: notice the path 0,7,8,5. If this back edge is deleted, then
the remaining graph is reducible. The frequently mentioned paradigm

of a non-reducible flow graph is shown in Figure 4.5.

Some experiments [6,25] have led to the general belief that flow
graphs derived from actual programs often are reducible. For flow
graphs with this property particularly fast algorithms have been
developed [1,23,35] for the 1live variable problem and the availability
problem. Recently two algorithms for solving these problems on any
flow graph were presented by Hecht and Ullman [16]. While these
algorithms are not always as fast as the others, they are competitive
and they have the distinct advantages of simplicity and generality
(they are not restricted to reducible flow graphs). These algorithms
are described below.

The following algorithm [16] determines the live sets of a flow
graph. This algorithm assumes that the nodes have been numbered

0,T,...,n in postorder and refers to the nodes by the postorder number.

Figure 4.5:

Paradigm of a non-reducible graph.

39

40

Here S(j) denotes the set of successors of node j, and ¢ denotes the

empty set.

Algorithm (LIVE)

for j < 0 to n dg Tive(j) < ¢ ;

v

change « true ;
while change g%
begin
change < false ;
for 3«0 tondg
begin
previous < 1ive(J) ;.

(*) Tive(J)

U ((Live(k)n (tok - kill(k)))ugen(k));

if previous # live(j) then change <« true ;

end
(2 V.Y)

stop

We refer to the paper by Hecht and Ullman [16] for a proof of
correctness of this algorithm. Its operation is illustrated in
Figure 4.6 where the live sets are indicated before each execution of
the step labelled by (*). It is easily verified that the total number
of times step (*) is executed in this example is twelve: first the
ﬁg& Toop is executed six times, making bne pass over the six nodes, then
since there was a change to the live sets a second pass is made, during

which no change occurs to the live sets, and this completes execution.

node gen kill null
J a,B
23 3 1 o, B
2 a B
3 B a
4 a,sB
5 a,B
live sets before Kt execution of step * in LIVE
k= 1 2 3 4 5 6 7
node™\
0 ¢ a o a o o a
1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ no
2 ¢)) a a a a further
3 ¢ ¢ ¢ ¢ ¢ ¢ ¢ changes
4 ¢ ¢ ¢ o ¢ a,B a,8
5 ¢ ¢ ¢ ¢ ¢ U ¢
Figure 4.6 ITlustration of the steps in the creation of the Tive

sets by algorithm LIVE for a simple flow graph. Nodes

are numbered in postorder.

obtained after five executions of step

The correct live sets are
*, however seven

more executions are required before no change to the sets

s recognized which then terminates execution.

41

42

The correctness of the algorithm does not depend on the order in
which the nodes are visited, but the execution time does. In the
simple example just considered it is easily verified that if the nodes
were visited in the order 5,4,2,3,0,1 then eighteen executions of step
(*) would be required; note that in this case o is not put in the
Jive set of node 2 during the first pass. The reason why the nodes
are visited in postorder is because it insures a relatively rapid
termination of the algorithm. Notice, in particular, that if the flow
graph is acyclic then after the ﬂﬂi&ﬁ Toop 1is executed once all live
sets are correct; one more execution of the yﬂil% loop 1is required to
establish that there are no further changes to the live sets. Thus
for an acyclic flow graph the step (*) is executed 2|N| times. If
there is one back edge then the effect of a gen can be piropagated to
a lower numbered (in postorder) node and it is not too difficult to
see that upon completion of the second (at most) execution of the
g&i&g Toop all Tive sets will be correct. Thus for a flow graph with
one back edge the step (*) is executed 3|N| times at most. Hecht and
UlTman [16] have shown that if t is the number of times the step (*)

is executed, then
T < (2+¢d) |N| ,

where d is the Targest number of backedges in any acyclic path in the
graph. For a reducible flow graph it has been shown [15] that the

back edges are unique, but if the flow graph is not reducible then the
back edges will depend on the depth first spanning tree. The d appear-
ing above refers to the back edges with respect to the spanning tree

generated to establish the postorder numbering of the nodes.

43

We now present an algorithm [16] to determine the avail sets of a
flow graph. This algorithm assumes that the nodes have been numbered
0,1,...,n in r-postorder and refers to the nodes by the r-postorder
number. Here P(j) denotes the set of predecessors of node j, and ¢

denotes the empty set.

Algorithm (AVAIL)

avail (0) < ¢ ;
for 3«1 tgndgavail(j) « 2ok ;
change « true ;
while change gg
beg'n
change < false

for j <« 1 to n do
w2 — A

begin

wananV

previous <« avail(j) ;

avail(j) < n ((avail(k) n (tok - kil1(k)))u gen(k)) ;

keP(J)
if previous # avail(j) then change < true
end
AR
end,
stoE

We refer again to the paper by Hecht and Ullman [16] for a proof
of correctness of this algorithm. Its operation is illustrated in
Figure 4.7 where the avail sets are indicated before each execution

of the step labelled by (*). Here, as with the example for LIVE it is

| node gen kill null
0 R Q
3 2 1 0B
2 osf
3 a B
@ 4 o, B
4 |
5 0,8
avail sets before kth execution of step * in AVAIL
1 2 3 4 5 6 7
0 ¢ ¢ ¢ ¢ ¢ ¢ ¢
1 a, B 8 B B B B no
2 a,B o, B ¢ ¢ ¢ $ ¢ further
3 a,B a,B o, B ¢) ¢) changes
4 a,B o, B o,B o, B o a a
5 o,p a,B a,B 0,B a, B a a

Figure 4.7

ITlustration of the steps in the creation of the avail
sets by algorithm AVAIL for a simple flow graph.
are numbered in r-postorder.

Nodes
The correct avail sets are

obtained after five executions of step *, however seven
more executions are required before no change to the sets
is recognized which then terminates execution.

44

45

easy to verify that step (*) is executed twelve times. With the excep-

tion of the entry node, which is treated separately, it does not matter

in what order the remaining nodes are'visited in the while loop so far
LAAANAN

as correctness is concerned but it does matter for the execution time.

Again the back edges are a critical factor. With t and d as defined

before Hecht and Ullman [16] show that
v < (2+d)(|N]-1).

Empirical evidence obtained by Knuth [25] Tead Hecht and Ullman
[16] to the conclusion that in practice one can expect d < 6 and on the
average d < 2.75 for FORTRAN programs. However, it is to be noted that
there are pathological situations, as shown in Figure 4.8, for which

the execution time is much larger than these numbers indicate.

Figure 4.8:

Pathological situation in which the execution time for
the availability algorithm is unusually long. Here
d=|N|] - 3, T = (INI-])Z assuming a e ggg(ni) and

o€ Eillﬂ“j) and is not in any other gen or kill sets.

46

47

V. Segmentation of data flow.

Normally a program consists of a main program and a number of
subprograms or external procedures. This segmentation of the program
is a natural basis for the segmentation of the data flow analysis.

Here we describe how this is done in such a way as to permit detection
of data flow anomalies on paths which cross procedure boundaries. We
will see that the system for doing this naturally includes the detection
of data flow anomalies on paths which do not cross procedure boundaries.
In this section we describe the identification and representation of

the data flow and in the next section we describe the detection of
anomalous data flow.

We make several assumptions at the outset. The first concerns
aliasing, the use of different names to represent the same datum. In
crossing a procedure boundary the name of a datum typically changes from
the so-called actual name used in the invoking procedure to the so-called
dummy name used in the invoked procedure. It is assumed here that the
aliases for a datum are known and that a single token identifier is
used to represent them. Thus, in particular, in our notation for repre-
senting actions on a token o along some path p we will use P(p;a) even
when p crosses a procedure boundary and the datum represented by o is
known by different names in the two procedures. The second assumption
we make is that the procedures under consideration have a single entry
and a single exit. We could permit multiple entries and multiple
exits but it would complicate the discussion without adding anything
really important to it. While we will discuss the segments as if they
were procedures, it will be obvious that the discussion applies equally

well to any single-entry, single-exit segment of a program. Our most

48

restrictive assumption is that the call graph for the program is
acyclic. This excludes recursion. We will discuss this restriction
later.

Let us consider a flow graph GF(N,E,nO) in which some node, as
illustrated in Figure 5.1, invokes an external procedure. In order to
analyze the data flow in GF(N,E,nO) it is necessary to know certain
facts about the data flow in the invoked procedure. In particular we
need to know enough about the data flow in the invoked procedure to be
able to detect anomalous patterns in the flow across the procedure
boundaries. Refering to GF in Figure 5.1 and considering a single
token «a, it becomes evident that we need to recognize three cases to
detect anomalous patterns of the form purp' on paths crossing the

procedure boundary:

(a) P(>nja) = putp', P(nsa) = roto' 3

(b) P(nsa) = putp', P(n>sa) = rotp’ 3

i

(c) P(>nsa) = putp', P(nsa) = T+p', P(n>s0) = rpt+p'.

i

Thus all we need to know about the data flow in the invoked procedure

is whether P(n;a) has one of the following three forms: vro+o', putp’,
1+o'. The Tast form represents the situation in which there is at

least one path through the invoked procedure on which no reference, no
definition, and no undefinition of o takes place. It is evident that

a particular P(nja) could have more than one of these forms; e.g. rutl
has all three forms. Similar consideration of the problem of detecting
anomalous path expressions of the form oddp' and odup' Teads to the con-
clusion that the following additional forms for P(n;a) need to be

recognized: dp+p', pd+o', upto'.

49

Ge (N, E, ny) | Gy (N, E, n,')

Figure 5.1: At node n in GF(N,E,nO) an external procedure is invoked.
The flow graph of the invoked procedure is represented by
GF‘(N,’E',nOI)o

50

We now wish to extend these ideas to permit recognition of situa-
tions where an anomalous path expression exists on all paths entering
or leaving a node. This recognition is important because it permits
us to conclude something about the presence or absence of anomalous
path expressions on executable paths. Figure 1.1 makes it clear that
some paths in a flow graph may not be executable and it is evident
that anomalous path expressions on them are not important. Only
anomalous path expressions on executable paths are important as
indicators of a possible error. Unfortunately the recognition of
executable paths is difficult*, but if we make the reasonable assump-
tion that every node is on some executable path then if all paths
through a node are known to be anomalous we may draw the very useful
conclusion that there is an anomalous expression on an executable path.
Certain additional forms for path expressions need to be distinguished

to achieve this. We observe, for example, that if

i

P(»n3a) = pu and P(nza) = rp'

then on every path in GF of the form Ngseneshsee. there is an anomalous
path expression ourp'. Thus it would be desirable to be able to dis-

tinguish the form rp. Notice also that if
P(+n3a) = pu, P(nsa) = rp'+1, P(n>30) = ro'',

then the same conclusion can be drawn, so it is also desirable to dis-
tinguish the form rp+l1. Similar considerations show the need for

recognizing the forms pu, putl, 1 and similar consideration for

*Indeed this problem is not solvable in general, for if we could solve
it we could solve the halting problem [18].

51

anomalous expressions of the form pddp', and pdup' lead to corresponding
forms involving d and u.

Collecting these results leads to the seven forms for path expres-
sions shown in Figure 5.2. Corresponding sets Ax(n),B;(ﬁ);...,I(n)

which are subsets of the token set are defined as follows:

o € Ax(n) if P(nsa) = xp

o € Bx(n) if P(nsa) = xp+l

a e I(n) if P(n;a) = I(n) .

These sets are called path sets. Although this classification scheme
was developed for situations in which n represents a procedure invoca-
tion as illustrated in Figure 5.1, it will be recognized that it applies
when n is a simple node representing, say, an assignment statement.

For example if n represents a«a+g and tok = {o,B,Y}, then
o € Ar(n),;B e Ar(n),‘a £ Dd(n), v e I(n).

In such simple cases membership in the sets can be determined by
rather obvious rules. On the other hand, when the node represents a
procedure invocation determination of membership in the path sets
requires an analysis of the data flow in the procedure. It 1is this
problem to which we now direct our attention.

Suppose the path sets for node n' are to be determined. We
assume that n' represents the invocation of an external procedure with
flow graph GF and that the path sets for the nodes of GF have been

determined already. (Our focus of attention now shifts to the invoked

Figure 5.2:

label path expression

AX Xp

BX xp+1

CX Xptp !

DX oX

EX ox+]

Fy pxtp'

I 1

Seven forms for path expressions in single-entry,
single-exit flow graphs and labels used to identify
them. The parameter x stands for r, d, or u.

52

53

procedure and to avoid an excess of primes we have switched the role of
primed and unprimed quantities shown in Figure 5.1) We also assume
that no data actions take place at the entry node and exit node of GF’
thus

I(no) = tok and I(n_ ..) = tok.

"~ This assumption is not restrictive since we can augment GF by attaching
a new entry node and new exit node with these properties without affect-
ing the data flow patterns. The algorithms for determining the path
sets are presented informally below. They are presented in alphabetic
order, however, as will become apparent, a different order is required
for their execution. A satisfactory execution order is Ax(n'), Cx(n‘),

B (n')s D (n"), F (n'), E (n*), I(n').

Algorithm (Determine Ax(n’))

1. for all n such that neN - { } do

fexit
null(n) « I(n)u B, (n) 3
kill(n) < A (n) 3 |
gen(n) <« tok - (kill(n)u null(n)) ;

)

4

2. nuH(nexit ¢ s

ki]](nexit)

< ¢ .
3. execute LIVE on GF H
4, Ax(n') « tok - 11ve(n0) ;
{comment - the null sets are not explicitly needed

but are included here for clarity}.

54

Algorithm (Determine Bx(n')).

1. for all n such that nelN do

null(n) < I(n)u B,(n) 3

kill(n) < Ax(n) ;
gen(n) < tok - (kill(n) U null(n))

2. execute LIVE on GF 5

3. B,(n') « (tok - Tive(n)) N (tok - A (n")) n C (n").

Algorithm (Determine C (n')).
1. for all n such that neN do
~rgen(n) < € (n) 3
ki) < (Ay(n) u Ay(n)) 5
{comment - x,¥,Z is any permutation of r, d, u}

null(n) « tok - (gen{n) u kili(n)) '

2. execute LIVE ON GF 5

3. C,(n') « Tive(n).

X 0

Algorithm (Determine D (n')).

1. for all n such that neN do
gen(n) <D (n) 3
kill(n) <« (Fy(n) U Fz(n)) ;
{comment - x, y, Z is any permutation of r, d, u}

null(n) < tok - (gen(n) u kill(n)) ;

2. execute AVAIL on GF 5
) .

3. Dx(n) <« avaﬂ(neXit

Algorithm (Determine E (n')).

1. for all n such that neN - {no} do
gen(n) <D (n) ;
kill(n) « F (n)u F,(n) ;
{comment - x, y, 2 is any permutation of r, d, u}
null(n) « tok - (gen(n) u kill(n)) ;
2‘ @_(no) <« .I’._O_E >
ki]](no) <~ ¢ 3
nu11(no)‘+ b 3

3. execute AVAIL:
4. Ex(n) +"ava11(nexit)rw (tok - Dx(n))n Fx(n).

Algorithm (Determine Fx(n')).

1. for all n such that neN - {no} do
gen(n) <D (n)u Dy(n) 3
{comment - X, y, % is any permutation of r, d, u}
kill(n) <« Fx(n) ;
null(n) < tok - (kill(n)u gen(n)) ;
2. gen(n) <« tok ;
kﬂ'l(no) <~ ¢ 3
nu]1(n0) « ¢

3. execute AVAIL;

)

4, Fx(n) <« tok - avaﬂ(nexit

55

56

Algorithm (Determine I(n')).

1. I(n') « n I(n).
neN

Since LIVE and AVAIL terminate it is obvious that these
algorithms terminate. Proofs of correctness for some of these

algorithms are presented below.

Proof (Determination of Ax(n') is correct).
Let o e tok. By step 4 of the algorithm a ¢ A_(n') if and only

X
ifad 1ive(n0). Take the "if" part first. a £ 1ive(n0):>

P(no*;u) £ gotp' = P(n0+;u) = ko or P(n0+;a) = ko+1, or

P(no+;a) = 1. The Tast two alternatives are ruled out because

by step 2 of the algorithm gen(n) = tok. Consequently,

exit
because of the construction of the kill sets in step 1,
o ¢ liygjno):i>P(nO+;u) = Xp. We observe P(n';a) = P(no;a) P(no+;a) =
P(no+;a) the last equality following from the fact |
that no data action takes place at Ny Thus o £ li!éﬁ“o) =>
P(n';a) = xo3 i.0. a € Ax(n'). Now consider the "only if"

part. o € 11ve(no)::>P(n0+;a) = goto'. Consequently, because

of the construction of the gen sets P(n0+;a) = yo+p' where
y#x. (Note that o e gen(n) implies, by step 1, P(nja) = xp,
P(nsa) = xp+1, P(n3a) = 1) Consequently, o gélivefné):>

“P(n'sa) = yoto' £ xps i.e. o f Ax(n')-EQ

Proof (Determination of Bx(n') is correct).
Let o e tok. By step 3 of the algorithm o ¢ Bx(n‘) if and only
if o f 1ive(no) and o £ Ax(n’) and o € Cx(n'). Take the "if"

part first. o £ live(no) = P(no+;u) = ko, or P(no+;a) = kp+1,

or P(no+;u) = 1. The first and Tast alternatives are excluded

by the conditions o £ Ax(n') and o s‘Ci(n'). "This leaves only

1]

P(no+;a) ko+1 and using o e kill(n) =P(n;a) = xp gives

P(no+;a) = xp+t1. Finally P(n';a) = P(no;a) P(n0+;a) = P(n0+;a)

=P(n'ja) = xp+l; i.e. a ¢ Bx(n'). Now consider the "only if"

part. o ¢ 1ive(n0) #>P(n0+;a) = gp+p'. From step 1 it is seen

that o ¢ gen(n) = P(nsa) = yp+p', y#x. Hence a ¢ Tive(n,)=
P(n0+;u) = Ypt+p', y#x, and from this it is easily concluded that
o £ Bx(n'). It is immediately evident that o ¢ Ax(n'):>

o £ Bx(n') and that o £ Cx(n‘) =q ¢ Bx(n').ééé'

Proof (Determination 6f Dx(n') is correct).
Let o e tok. By step 3 of the algorithm o ¢ Dx(n') if and only

if a e avail(). Take the "if" part first. o e avail(n

Nexit exit),:>

) P(nexit;a) = pg. MNow

Pé»ﬂexit;a) = pg. Hence P(n';a) = ?(+nex1t;a

using the fact that o e gen(n) =P(nja) = px we conclude that

o ¢ avail(n y=>P(n';a) = px; i.e. a ¢ Dx(n'). Now take the

exit

"only if" part. o ¢ avail(n)=>P(>n) = pk+p!' or

exit®®

) = 1. Since a ¢ kill(n) implies P(nja) = py+p' or

eXit
l) >N . 20

P(nsa) = pz+p' it easily follows that a ¢ avail(n

P(n'sa) Zox; i.e. a f Dx(n').

exit):>

The Tast item to be discussed in this section is the initiation
and progressive determination of the path sets for a program. Consider

the call graph shown in Figure 2.4. Since the subprogram FUNB invokes

no other subprogram, the algorithms just presented are unnecessary in

the determination of the path sets for the nodes of the flow graph

representing FUNB. In this flow graph each node will represent a simple

58

statement or part of a statement having no underlying structure so the
path set determination can be made, as it were, by inspection. Once
this is done the path sets for the nodes of the flow graph representing
SUBA can be determined, since the path sets are known for the only sub-
program it invokes. The same remarks apply to the flow graph represent-
ing FUNA. Finally, after these path sets are determined, it is possible
to determine the path sets for the nodes of the flow graph representing
MAIN. Thus by working backwards through an acyclic call graph it is
possible to apply the algorithms just described. We call this backward
order the leafs-up subprogram processing order. We have restricted

our attention to acyclic call graphs because this procedure breaks

down if a cycle is present in the call graph. One way to solve this

. problem if cycles are present might be to carry out an iterative procedure,
as suggested by Rosen [30], in which successive corrections are made

to some inital assignment of path sets but we have not pursued this

idea.

59

VI. Detecting anomalous path expressions.

It will be recalled that we have defined an anomalous path expres-
sion to have one of the forms: ourp', pddp', or pdup'. Let us assume
now that the path sets have been determined for every node of a flow
graph GF(N,E,nO). It should be evident that if (n,n')e E and o ¢ Fu(n)
and a ¢ Cr(n‘) then there is a path expression of the form purp':

o € Fu(n), a e Cr(n') =P(nn';a) = purp'+p''. Note, however, that the
undefinition and reference do not necessarily occur on nodes n and n'
respectively. Indeed these data actions may not even occur on nodes
of this flow graph: they might occur on nodes of other flow graphs
representing invoked procedures. We only know that on some path
which includes the edge (n,n') there is an anomalous path expression.
Also this anomalous path expression may not be on an executable path,
but if a & Du(n) and o ¢ Ar(n') then we may reasonably conclude that
the path expression purp' occurs on an executable path. In this case
our assumptions imply that on every path which includes the edge
(n,n')”there must be an anomaTOUé'péth expression: a e Du(n),
o € Ar(n')=> P(nn';a) = purp'. We assume at least one of these paths
is executable. In this section these ideas are expanded to include
the detection of anomalous path expressions on paths which go through
a selected flow graph.

Assume that the path sets have been constructed for a flow

graph GF and we wish to determine whether

P(ns;a)P(n>3a) = pxyp'+p'’

60

or

P(ns;a)P(n>;0) = pxyp'

for each neN and each o e tok. For anomaly detection we are interested
in those cases when x=u, y=r or x=d, y=d, or x=d, y=u but there is no
need to fix the values of x and y now. A similar, but not equivalent,

pair of probléms is to determine whether

P(+n3a)P(nsa) = oxyp'+p""

or

i

P(+n3a)P(nsa) = oxyp'

for each neN and each o e tok. The discussion of the last section should
make it apparent that the first pair of problems can be attacked with
the algorithm LIVE and the second pair of problems can be attacked with
the algorithm AVAIL. Indeed, the algorithms presented in the last
section have, in effect, solved these problems.

Consider the algorithm to determine Ax(n‘). After execution of

step 3 suppose we construct the sets

Ax(n$) = tok - Tive(n)

for all neN. HNote that in step 4 we did this for the entry node only.
It is evident that a ¢ Ax(n+) implies P(n>;a) = xp, and conversely.

Hence if o ¢ Dy(n) and o € Ax(n+) we know that

P(nsa)P(n+30) = pyxp'

and so if y=u and x=r an.anomalous path expression of the form purp'

is known to be present.

61

Now using the idea and notation suggested in the last paragraph
C.(n"),

Dx(n'), and Fx(n') described in the last section to construct the sets

assume that we augment the last step in the algorithms for Ax(n'),

Ax(n+), Cx(ne), DX(%H), FX(+n). Using them we construct the set inter-

sections: FX(n)r1Cy(n+), Dx(n)n Ay(n»), FX(+n)r1Cy(n), and DX(+n)nAy(n).

Then it is seen that:

o e F (n)n (n+)< =>P(n;a)P(n+30) = pxyp'+p'' ;
o e D (n)n A (H*J<—>P(n,u) (n>3a) = oxyp'

o e F (>n)n Qy(n) <>P(-nz0)P(nsa) = pxye'+p'' 3
o e D (>n)n A (n)<=P(onsa)P(nia) = oxyp'

The proofs of these assertions, which we omit, are essentially the same as
those given in section 5 for the determination of the.sets Ax(n'),..

It will be recognized that the segmentation scheme described in the
last section permits exposure only of the first and last data actions on
paths entering or leaving a flow graph. Therefore, if we are to detect
the presence of all anomalous path expressions in an entire program by
the method just described we must apply it systematically to the flow
graphs for each of the subprograms in the entire program. In practice
this would be done in the order dictated by the call graph, as already
discussed in section 5 in connection with constructing the path sets.
Indeed these two processes would be done together while working through
the subprograms. To illustrate, consider the call graph shown in
Figure 2.4. The steps performed would be as follows:

1. For FUNB determine the sets Ax(n')...I(n'), Ax(n+),

CX(YH), DX(—m), FX(—m) 5

62

2. For FUNB construct the sets FX(n)n Cy(n+),...,DX(+n)n Ay(n)
and report anomalies;

3. Repeat steps 1 and 2 for SUBA;

4. Repeat steps 1 and 2 for FUNA;

5. Repeat steps 1 and 2 for MAIN.

The time required to do the detection of anomalous path expressions
is essentially controlled by the time required to execute LIVE and AVAIL.
Step 1 of the example described above requires nine executions of LIVE
(AX,BX,CX for x=r,d,u) and nine executions of AVAIL (Dx’Ex’Fx for x=r,d,u)
plus a small additional amount of time proportional to the number of
nodes in the flow graph. We are assuming that the set operations can
be done in unit time so there is no dependence on the number of tokens.
In practice this assumption has only limited validity. Step 2 of the
example described above requires a time proportional to the number of
nodes (in particular 4(|N|-2) where the -2 term arises because we can
ignore the entry and exit nodes). Therefore if a call graph has 1Ncl
nodes and |N| is the average number of nodes in each flow graph
represented by a node of the call graph the time ¢ to detect all

anomalous path expressions may be expressed as

© = N9 7 pygt9 mpyap PRIND

where TLIVE and TaAyATL 2re execution times for LIVE and AVAIL.

If we use the results given in section 4 concerning the execution times
for LIVE and AVAIL we see that in practical situations we can expect to
detect the presence of all anomalous path expressions in a program in a
time which 1is proportional to the total number of flow graph nodes.
While the constants of proportidnality might be large and there would

be a substantial overhead to create the required data structures, the

63

important point is that a combinatorially explosive dependence on [N|
has been avoided.

The principal reason why a combinatorial explosion has been
avoided is that we have not Tooked explicitly at all paths. The loss
of information resulting from this does not prevent us from detecting
the presence of anomalous path expressions but it greatly restricts our
knowledge about specific paths on which the anomalous path expression
occurs. Thus if o e Fu(n)n Cr(ne) we know that on some path starting
at n we will find an expression of the form purp' but we do not know
which path and we do not know which nodes on the path contain the
actions u and r on a. This problem can be attacked directly by perform-
ing a search over paths starting at node n. This search can be made
quite efficient provided we deal with one token at a time. The idea
is to use a depth first search but to restrict it so that we avoid
visiting any node n' such that o ¢ Cr(n'+). While this strategy does
not preclude backtracking it will tend to reduce it and will generally
restrict the number of nodes visited in the search. It seems certain
that more efficient schemes for localizing the anomalous path expres-
sion can be constructed.

The information gathered for the detection of anomalous path
expressions is valuable for other purposes. For example it determines
which arguments need initialization before execution of a procedure--
thus it could be used to supply this information as a form of automatic
documentation. Alternatively this information can be used to verify
assertions by the programmer concerning arguments needing initialization.

Similarly it is possible to determine the arguments which are

assigned values by a procedure; i.e. the output arguments. However,

64

unlike the case for initialization where the set Cr(n') identifies
the arguments requiring initialization, none of the path sets is
sufficient for this purpose. Notice, in particular, that Fd(n‘) is not

satiéfactory because
P(n';a) = pdr

obviously implies o is an output for the procedure represented by n'
yet a £ Fd(n'). However, it is not difficult to construct an algorithm
for this purpose. Indeed we only need to modify one step in the

algorithm for Fx(n‘); in particular, replace

gen(n) « Dy (n) u D_(n)
by
gen(n) < D (n)

Then after step 4, a ¢ Fd(n') implies « is an output for the procedure
represented by n'. It will be recognized that this excludes tokens

for which

*
P(n'sa) = pdr u.

This is reasonable since the definition is destroyed by the subsequent
undefinition and no value is actually returned to the invoking procedure.
Thus we have a mechanism for providing automatic documentation about
procedure outputs, or for verifying assertions about which procedure

arguments are output arguments.

65

VII. Conclusion

As noted in an earlier section of this paper, we have implemented

a FORTRAN program analysis system which embodies many of the ideas pre-
sented here. This sytem, called DAVE, [27,28] separates program
variables into classes that are somewhat similar to those shown in
Figure 5.2. DAVE also detects all data flow anomalies of type purp'
and most of the data flow anomalies of types pddp' and pdup'. DAVE
carries out this analysis by performing a flow graph search for each
variable in a given unit, and analyzing subprograms in a Teafs-up
order, which assures that no subprogram invocation will be considered
until the invoked subprogram has been completely analyzed. An improved
version of DAVE would continue to analyze the subprograms of a program
in Teafs-up order, but would use the highly efficient, parallel algorithms
described here to either detect or disprove the presence of data flow
anoma]iés. The variab]e—bynvariable depth first search currently used
in DAVE exclusively, would be used only to generate a specific anomaly
bearing path once the more efficient algorithms had shown that an
anomaly was present. Such a system would have considerably improved
efficiency characteristics and, perhaps more important, could be readily
incorporated into many existing compilers which already do live variable
and availability analysis in order to perform global optimization.

The apparent ease with which our anomaly detection schemé coQ]d
be efficiently integrated into existing optimizing compilers is a
highly attractive feature and a strong argument for taking this approach.
Other methods for carrying out anomaly detection can be constructed,

but most that we have studied lack efficiency and compatibility with

66

existing compilation systems. One such method, which is quite interest-
ing for its strong intuitive appeal, involves symbolic execution of the
program. Symbolic execution, a powerful technique which has recently
found applications in debugging, program verification and validation
[8,19,22], involves determining the value of each program variable at
every node of a flow graph as a symbolic formula whose only unknowns

are the program's input values. These formulas of course depend upon
the path taken to a given node. A notation similar to regular expres-
sion notation could be used to represent the set of symbolic expres-
sions for a variable at a node, corresponding to the set of paths to

the node. If these expressions were to be stored at their respective
nodes a flow graph searching procedure could be constructed which

would be capable of detecting all the anomalies described here by care-
ful examination of the way the expressions evolved along paths traversed
by a single flow graph search. Moreover, because the symbolic execution
carries along far more information than does our proposed system, even
more powerful diagnostic results are possible.

The relative weaknesses of such a method are its Tack of
efficiency and the difficulty of incorporating it into existing compiling
systems. Although it seems reasonable to suppose that sophisticated
representation schemes could be used to reduce the very large time and
space requirements of the symbolic execution system, it also seems
clear to us that even such reduced requirements would necessarily
greatly exceed those of our proposed system. We have finally con-
cluded that symbolic execution systems currently seem more attractive
as stand alone diagnostic systems where their greater level of detail

could be used to carry out more extensive program analysis, but at

67

greater cost. We believe, moreover, that our proposed data flow
analysis scheme can and should be integrated into compilers in order
to provide highly useful error diagnosis at small additional cost.
The diagnostic output of a system such as ours would then be useful
input to a symbolic execution system.

Much has been Tearned from our experiences with the current
version of DAVE. Thus, because we believe that systems similar to
it should be used in state-of-the-art compilers, we shall now summarize
these experiences in order to place in better perspective the problems
and benefits to be expected.

Certain programming practices and constructs which are present
in FORTRAN and common to a number of other languages cause difficul-
ties for data flow analysis systems such as DAVE. The handling of
arrays, as mentioned earlier, is one such example. Problems arise
when different elements of the same array are used in inherently dif-
ferent ways, and hence have different patterns of reference, defini-
tion and undefinition. Static data flow analysis systems such as DAVE
are incapable of evaluating subscript expressions and hence cannot
determine which array element is being reference by a given subscript
expression. Thus, as stated earlier, in DAVE, and in many other
program analysis systems, arrays are treated as though they were simple
variables. This avoids the problem of being unable to evaluate sub-
script expressions, but often causes a weakening or blurring of
analytic results. As an example, consider the program shown in
Figure 7.1. Suppose n' is the node of GMAIN(N,E,nO), the flow graph
of the main program, which invokes SQUARE. Denote by R(+,1) and

R(-,2) arbitrary elements of column 1 and column 2 respectively of

DIMENSION R(100,2)

READ(5,10)(R(I,1),I=1,100)
10 FORMAT(F10.2)

CALL SQUARE(R)

WRITE(6,20)(R(I,2),I=1,100)
20 FORMAT(TX,F10.2)

STOP

END

SUBROUTINE SQUARE(R)

DIMENSION R(100,2)

D0 10 I=1,100
10 R(I,1)=R(I,2)**2

RETURN

END

Figure 7.1: A Program in which failure to distinguish between the
differing patterns of reference, definition and un-
definition of different array elements prevents the

detection of data flow anomalies.

68

69

array R. Now clearly R(-,1) e Ad(n') and R(.,2) ¢ Ar(n'). In addition
it is clear that R(-,1) ¢ Dd(%n'), and R(-,2) ¢ Du(+n'). Hence
P(-n"3R(+,1))P(n";R(*,1)) = pddp', and P(=n';R(+,2))P(n';R(+,2)) = purp'
and we see there are two data flow anomalies present. DAVE, however,
will treat R as a simple variable and determine that R e Ar(n'),

R ¢ Dd(n'), R ¢ Dd(an') and R ¢ Ar(n'+). Thus P(=n';R)P(n';R) = odrp'

and P(n';R)P(n'>;R) = pdrp and no data flow anomalies will be detected.
This loss of anomaly detection power is worrisome, and is seemingly
avoided only when programmers call functionally distinct subarrays by
separate names.

There are also certain difficulties involved in determining the
leafs-up subprogram processing order referred to earlier. This order
is important because it insures that each subprogram will be analyzed
exactly once, yet that data flow anomalies across subprogram boundaries
will be detected. If subprogram names are passed as arguments, this
order may become difficult to determine. This is because the name
used in a subprogram invocation may not be the name of a subprogram,
but rather a variable which has received the subprogram name, perhaps
through a long chain of subprogram invocations. A1l such chains must
be explored in order to expose all subprogram invocations and then
determine the leafs-up order. Recent work by Kallal and Osterweil [20]
indicates that the AVAIL algorithm can be used to efficiently expose
all such invocations.

Recursive subprograms pose another obstacle to determining
leafs=up order. Although recursion is not allowed in FORTRAN, it is
a capability of many other languages. Moreover, it is possible to

write two FORTRAN subprograms such that each may invoke the other, but

70

such that no program execution will force a recursive calling sequence.
Such a program would be legal in FORTRAN, but would not appear to have
sufficient leaf subprograms (i.e. those that invoke no others) to allow
construction of the complete leafs-up order. This problem is not
adequately handled by DAVE, however no FORTRAN programs with this con-
struction have been encountered. In any case current work indicates
that recursive programs can be analyzed using the methods described here.

Finally it should be observed that subprogram invocations involving
the passing of a single variable as an argument more than once may be
incorrectly analyzed. This occurs because DAVE assumes that all sub-
program parameters represent different variables as it analyzes sub-
programs in leafs-up order.

Despite these limitations, the DAVE system has proven to be a use-
ful diagnostic tool. We have used DAVE to analyze a number of opera-
tional programs and it has often found errors or stylistic short-
comings. Among the most common of these have been: variables having
path expressions equivalent to purp' (referencing uninitialized
variables), and pdup' (failing to use a computed value) occuring
simu1taneou§1y, usually due to a misspelling; Subprogram parameters
having path expressions equivalent to 1, caused by naming unused
parameters in parameter Tists; and COMMON variables having path expres-
sions equivalent to purp' or pdup', usually due to omitting COMMON
declarations from higher level program units.

The cost of using DAVE has proven to be relatively high, partly
due to the fact that it is a prototype built for flexibility, and not
speed, and partly due to the failure to use the more efficient algorithms

described here. We have observed the execution speed of the system to

71

average between 0.3 and 0.5 seconds per source statement on the CDC 6400
computer, for programs whose size ranged from several dozen to several
thousand statements. The total cost per statement has averaged between
seven and nine cents per statement for these test programs using the
University of Colorado Computing Center charge algorithm. It is, of
course, anticipated that these costs would decline sharply if a produc-
tion version of DAVE were to be produced.

Based on these experiences and observations, we believe that
systems 1ike DAVE can serve the important purpose of automatically
performing a thorough initial scan for the presence of certain types
of errors. It seems that the most useful characteristics of such systems
are 1) that they require no human intervention or guidance and
2) that they are capable of scanning all paths for possible data flow
anomalies. A human tester need not be concerned with designing test
cases for this system, yet can be assured by the system that no
anomalies are present. In case an anomaly is present, the system will
so advise the tester and further testing or debugging would be necessary.
Clearly such a system is capable of detecting only a limited class of
errors. Hence further testing would always be necessary. Through the
use of a system such as DAVE, however, the thrust of this testing can
be more sharply focussed. Hence it seems that these systems could be
most profitably employed in the early phases of a testing regimen
(e.g. as part of a compiler) and used to guide and direct later testing
efforts involving more powerful systems using such techniques as
symbolic execution. Towards this end, further work should be done to
widen the class of errors detectable by means such as described in this

paper.

72

VIII. Acknowledgments

We want to close with a grateful recognition of the stimulating
and valuable discussions we have had on this subject with our
colleagues and students--especially Jim Boyle, Lori Clarke, Hal Gabow,
Shachindra Maheshwari, Carol Miesse, and Paul Zeiger, and the helpful
comments of the referees. Finally, we gratefully acknowledge the
financial assistance provided by the National Science Foundation in

this work,

(1]

[2]

[3]

[4]

[5]

[6]

(7]

[8]

[9]

(10]

[11]

73

REFERENCES

Aho, A. V. and Ullman, J. D., "Node listings for reducible flow
graphs," Proceedings of the 7th Annual ACM Symposium on Theory
of Computing (May 1975) pp. 177-185.

Allen, F..E., "Program optimization," Annual Review in Automatic
Programming, Pergamon, New York, 1969, pp. 239-307.

Allen, F. E., "A basis for program optimization," Proceedings IFIP
Congress 1971, North-Holland Publishing Co., Amsterdam, 1972,
pp. 385-390.

Allen, F. E. and Cocke, J., "Graph-Theoretic constructs for pro-
gram control flow analysis," IBM Research Report RC3923, T. J.
Watson Research Center, Yorktown Heights, NY (July 1972) pp. 65.

Allen, F. E., "Interprocedural data flow analysis," Proceedings
IFIP Congress 1974, North Holland Publishing Co., Amsterdam,
1974, pp. 398-402.

Allen, F. E. and Cocke, J., A program data flow analysis procedure.
CACM 19,3 (March 1976), pp. 137-147.

Balzer, R. M., "EXDAMS: Extendable debugging and monitoring system,"
AFIPS 1969 SJCC, 34, AFIPS Press, Montvale, N.J., pp. 567-580.

Clarke, L., "A system to generate test data and symbolically
execute programs," Department of Computer Science Technical
Report #CU-CS-060-75, University of Colorado, Boulder, CO
(February 1975) pp. 31.

Dennis, J. B., "First version of a data flow procedure language,"
Lecture Notes in Computer Science 19, G. Goos and J. Hartmanis

(Eds.) Springer-Verlag, 1974, pp 241-271

Fairley, R. E., "An experimental program testing facility,"
Proceedings First National Conference on Software Engineering,

Washington, D. C. (Sept. 1975) IEEE #75CH0992-8C, pp. 47-55.

Goldstine, H. H. and von Neumann, J., "Planning and coding
problems for an electronic computing instrument," in John von -
Neumann, Collected Works, A. H. Taub (Ed.), Pergamon, London

(1963) pp. 80-235.

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

74

Habermann, A. N.,-Path expressions. Department of Computer
Science Technical Report, Carnegie-Mellon University, June, 1975.

Harary, F., Graph theory, Addison-Wesley, Reading, Mass., 1969.

Hecht, M. S. and Ullman, J. D., "Flow graph reducibility,"
SIAM J. Computing 1 (1972) pp. 188-202.

Hecht, M. S. and Ullman, J. D., "Characterizations of reducible
flow graphs," JACM 21 (July 1974) pp. 367-375.

Hecht, M. S. and Ullman, J. D., "A simple algorithm for global
data flow analysis problems," SIAM J. Computing 4 (Dec. 1975)
pp. 519-532.

Hopcroft, J. and Tarjan, R. E., "Efficient algorithms for graph
manipulation,” CACM 16(June 1973) pp. 372-378.

Hopcroft, J. E. and Ullman, J. D., Formal Languages and Their

Relation to Automata, Addison Wesiey, Reading, Mass., 1969

Howden, W. E., "Automatic case analysis of programs," Proceedings
Computer Science and Statistics: Eight Annual Symposium on the
Interface, Los Angeles, CA (February 1975) pp. 347-352.

Kallal, V. and Osterweil, L. J., "Constructing flowgraphs for
assembly language programs," Department of Computer Science
Technical Report (to appear 1976) University of Colorado,
Boulder, CO.

Karp, R. M., "A note on the application of graph theory to
digital computer programming," Information and Control 3 (1960)
pp. 179-190.

King, J. C., "A new approach to program testing," Proceedings
International Conference on Reliable Software, Los Angeles, CA
(April 1975) IEEE #75CH0940-7CSR, pp. 228-233.

Kennedy, K. W., "Node Tistings applied to data flow analysis,"
Proceedings of 2nd ACM Symposium on Principals of Programming
Languages, Palo Alto, CA (January 1975) pp. 10-21.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

75

Knuth, D. E., The Art of Computer Programming, V.1 - Fundamental

Algorithms, Second Edition, Addison Wesley, Reading, Mass., 1973.

Knuth, D. E., An Empirical Study of FORTRAN Programs, §pftware'-
Practice and Experience 1 2(1971), pp. 105-134.

Miller, E. F., Jr., "RXVP, Fortran automated verification system,"
Program Validation Project, General Research Corporation,
Santa Barbara, CA (Oct. 1974) pp. 4.

Osterweil, L. J. and Fosdick, L. D., "DAVE - A FORTRAN program
analysis system," Proceedings Computer Science and Statistics:

Eight Annual Symposium on the Interface, Los Angeles, CA
(Feb. 1975) pp. 329-335.

Osterweil, L. J. and Fosdick, L. D., "DAVE - A validation,
error detection and documentation system for FORTRAN programs,"
Software-Practice and Experience (to appear 1976).

Rodriguez, J. D., "A graph model for parallel computation,"
Report MAC-TR-64, Project MAC, Massachusetts Institute of
Technology, Cambridge, Mass. (September 1969) 120 pp.

Rosen, B., "Data flow analysis for recursive PL/I programs,"
IBM Research Report RC5211, T. J. Watson Research Center,
Yorktown Heights, NY (January 9, 1975) pp. 40.

Schaeffer, M., A Mathematical Theory of Global Program Optimiza-
tion, Prentice-Hall, Englewood Cliffs, N. J., 1973.

Stucki, L. G., "Automatic generation of self-metric software,"
Proceedings IEEE Symposium on Computer Software Reliability,
New York, NY (April 1973) IEEE #73CHO741-9CSR, pp. 94-100.

Tarjan, R. E., "Depth-first search and linear graph algorithms,"
SIAM J. Computing (September 1972) pp. 146-160.

Tarjan, R. E., "Testing flow graph reducibility," J. Computer
and System Sciences 9, 3 (December 1974) pp. 355-365.

Ullman, J. D., "Fast algorithms for the elimination of common
subexpressions," Acta Informatica 2 (1973) pp. 191-213.

