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ABSTRACT

Three different operating system strategies for a parallel pro-
cessor computer system are compared, and the most effective strategy
for given job loads is determined. The three strategies compare uni-
programming versus multiprogramming and distributed operating systems
versus dedicated processor operating systems. The level of evaluation
includes I/0 operations, resource allocation, and interprocess communi-
cation. The results apply to architectures where jobs may be scheduled
to processors on the basis of processor availability, memory avail-
ability, and the availability of one other resource used by all jobs.



INTRODUCTION

The increasing complexity of computations in modern computing
systems has led to the use of techniques for decomposing these compu-
tations into a set of parallel tasks to be executed on multiple pro-
cessor computers, [1]. One popular architecture for executing certain
kinds of parallel tasks is the single-instruction-stream-multiple-data-
stream (SIMD) approach, and another approach is through the use of
multiple, identical processing units, [2]. It is possible to combine
the two approaches to obtain an architecture for executing several
SIMD programs in parallel. In this paper, three operating system
organizations for a combination parallel processor are compared with
respect to their relative implementation complexities and effective-
ness. Many of the comparisons made between the strategies transfer to
other multiple processor organizations.

SIMD processors are characterized by the block diagram of Figure
1. The host processor is a conventional uniprocessor system, (a Bur-
roughs B6700 in the case of the ITliac IV, [3], and a PDP-11 in the
case of the Goodyear STARAN, [4]). The purpose of the host processor
is to execute the operating system and other system software; the SIMD
processor is essentially a functional unit of the host processor. The
host loads the instruction memory with a SIMD program, and loads the
processing element memories (PEMs) with data. The control unit (CU)
then fetches and decodes instructions sequentially from the instruc-
tion memory and broadcasts each decoded instruction to an array of pro-
cessing elements (PEs) which execute the given instruction (in parallel)
on data stored in the respective PEMs. Parallel computation takes place
in the PEs on the multiple data streams in a tightly coupled fashion.

SIMD processors are special purpose in the sense that a computa-
tion must be arranged in a manner such that a single instruction can
be simultaneously applied to multiple data elements. Thurber and Wald
list a set of suggested application areas ranging from air traffic con-
trol problems to solutions to differential equations, [5]. Arranging
a computation so that it makes effective use of a SIMD organization can
be a nontrivial task, (e.g. see reference [6]).

Multiprocessor organizations allow much more freedom in synchron-
izing the individual parallel computations, ranging from the organiza-



tion used in the Control Data 6600 where individual units are allowed
to compute machine-level functions, [7], to complete isolation of one
process from another as might be used in Toosely coupled system. In
the case of complete isolation, the parallelism of the machine takes
place at a job level rather than at a process or task level, i.e.,
jobs are executed in parallel, not computations within a process.

The multiple control unit SIMD combination, hereafter MSIMD,
allows each process to be decomposed into parallel SIMD-type tasks
while still providing parallelism at a more loosely coupled level be-
tween control units. The range of synchronization times between con-
trol units can vary from procedure calls up to complete isolation.
There is a loose coupling between control units and a tight coupling
between processing elements. This combination of MIMD and SIMD archi-
tectures is not new in this paper; the original ILLIAC IV design [3]
employed 4 control units. More recently, Radoy and Lipovski have also
used the combination in their switched multiple instruction, multiple
data stream architecture, [8].

The MSIMD organization allows one to make more effective use of
the set of processing elements than a SIMD organization. Since the
set of processing elements is shared by the multiple control units, an
operating system can control the set of active jobs such that some
control units will require large numbers of processing elements while
other jobs require relatively few processing elements. This approach
broadens the scope of jobs that the machine can execute efficiently,
since it is not necessary for all jobs to simultaneously require a
large number of data streams at any given time. The number of pro-
cessing elements required by a job on a control unit corresponds to
the number of data streams. However, an MSIMD architecture is still
special purpose since all jobs are assumed to require multiple data
streams during some point in their execution; the organization cannot
effectively take the place of a general purpose computer for all types
of programs. Although this approach will make processing element
utilization more effective and user programming easier, it is not with-
out its shortcomings. The facility for broadcasting information from
each control unit to its allocated set of processing elements is more
complex, and fast methods of loading/unloading the processing element



memories are not known, (as they are in the ILLIAC IV, [3]). The pro-
blem of information broadcasting has been considered and a design for
a MSIMD architecture has been proposed, [9]; the I/0 problem has not
been solved to the degree that it has been in current SIMD machines.

An important asset of the MSIMD architecture over the SIMD archi-
tecture is the ability to execute system software directly on the
machine rather than using a host processor. The machine becomes a
separate entity rather than an extension to a sequential processor.
System software, and in particular the operating system, can be written
to take advantage of the (M)SIMD organization. Although an operating
system is 1likely to be written as a sequential (SISD) program for most
tasks, there are some phases that can be implemented as parallel algo=
rithms, e.g. a preemptive scheduling algorithm can be written to also
advantage of the SIMD organization, [10]; deadlock detection and avoid-
ance algorithms illustrate inherent parallelism; most table searching
operations can be done in parallel; etc. The number of processing
elements required by the operating system during its parallel computa-
tion phases would correspond to the number of processes in the system
in the first two examples, and to the number of table entries in the
third example. For sequential operation, only one processing element
is required.

In the following, three strategies for operating systems that
execute on a MSIMD machine are considered. The simp]est strategy is
for one control unit to execute the operating system while the remain-
ing control units operate as conventional SIMD machines sharing proces-
sing elements. The second strategy again uses a dedicated control unit
for the operating system, but the remaining control units are multi-
programmed. The third strategy is for all control units to be multi-
programmed, with the operating system processes being executed on any
control unit that requires system service, i.e., a distributed operat-
ing system. The dedicated uniprogrammed system is the simplest to con-
Struct, but has the disadvantage of no control unit sharing and the
overhead of one control unit. The dedicated multiprogrammed solution
is more difficult to implement, and has exorbitant control unit over-
head. The distributed system utilizes the control units more effective-
ly at the cost of complexity.



In the next section, a more specific environment for comparing
the three operating systems is discussed, and the components that enter
into the comparison are given. Next, the three strategies are des-
cribed in more detail and then the results of the experiment are pro-
vided.

THE ENVIRONMENT OF THE OPERATING SYSTEM

The context of the experiment is a hypothetical MSIMD machine
called the Multi Associative Processor (MAP), [11]. The system is com-
posed of eight control units, (CUs), and 1024 processing elements, (PEs).
Figure 2 illustrates the organization of the MAP system, where the in-
dividual units of the machine correspond to those discussed in the in-
troductory section with the following exceptions. The host processor
is replaced by an Input/Output system composed of channels, devices,
and controllers. An I/0 transaction takes place when a CU invokes a
channel with an appropriate channel program. The instruction memory
is replaced by eight main memory (MM) modules. Instructions and data
for each SIMD program are stored in MM. Each CU has a preferred MM
module, meaning that the CU can access that module without using a
shared memory bus; the CU can access any other MM module via the
shared memory bus, although bus conflicts may arise if multiple CUs
attempt to simultaneously access modules other than their preferred
module. Program sharing and message passing are permitted, but indis-
criminant memory sharing is discouraged by the memory access oraniza-
tion. The broadcast switch is used to route information from each CU
to the set of PEs currently allocated to that CU, and to route informa-
tion among the set of PEs allocated to a common CU. PE sharing among
processes is not allowed at the hardware level, but is implemented by
the software. Details of the memory organization and the broadcast
switch are discussed elsewhere, [12], and are not reflected by the
model used to compare MAP operating system strategies. For example,
the model requires that each job allocated to a control unit also be
allocated memory only in the preferred module for the CU. The possi-
bility of a program overlapping MM modules was ignored since the model
is not sufficiently detailed to represent memory bus conflicts.



In order for a job to be executed, all instructions must be
Toaded in MM, PEs must be allocated to the CU on which the job is
scheduled, and the PE memories must be loaded with the multiple data
streams. Once Toading has taken place, the process corresponding to
the job can compete for the CU if it is multiprogrammed, or it will
have been a]]oéated the CU in the uniprogramming case. Al11 I/0 opera-
tions take place through channels in the I/0 subsystem, and the pro-
cess requesting the operation is blocked during that operation. This
ignores the possibility of I/0-compute overlap accomplished by buffer-
ing; it also ignores file organizations and interrupt handling. Chan-
nel queues are modeled, and delays due to busy channels are reflected
in the results. The approach is realistic if random access files are
assumed; otherwise, the simplified strategy will tend to favor multi-
programmed organizations over a uniprogrammed system since the latter
strategy will idle a CU for the duration of an I/0 operation. A more
detailed study would include buffering.

There are two forms of process communication incorporated into
the MAP system: passive and active communication. Passive communica-
tion, called synchronization, represents message passing; the sending
process generates a message and passes it to the CU logically executing
the receiving process. If the receiving process is not currently phy-
sically running on that CU, the sender is blocked until the receiver
becomes physically active, and then both processes continue execution,
i.e., the sender is blocked until the receiver is physically running
and can receive the message. Active communication, called preemption,
represents a higher priority process temporarily preempting the PEs
allocated to a given process on a given CU. The effect is that the
preempted process is blocked and its PEs are used by the preempting
process; the preempting process temporarily deallocates a resource from
a lower priority process for its own use. In partfcu]ar, when process
P; preempts process pj, P; issues commands directed toward pj. If pj
is not currently active, then Py is temporarily blocked until pj can
receive the preemption commands. Once pj receives the preemption com-
mands, then pj and the CU executing pj become dormant while p; uses the
PEs allocated to pj. At the conclusion of the preemption period, P;
and pj resume operation on their respective CUs.




In this environment, a job is allocated to a CU whenever suffi-
cient main memory and PEs are available. (The specific scheduling
algorithms are discussed in the next section.) However, memory is
allocated to a process (job in execution), while PEs are allocated to
the CU and then shared among the set of processes that use that CU.
The PEs are multiplexed and the PE memories are divided among the set
of processes that share the CU allocated to the processes, i.e. PE
memory blocks are allocated to processes rather than CUs.

The assumptions made about the hardware environment of the opera-
ting system do not necessarily restrict the results to the MAP system.
A similar environment might exist in a multiprocessor system which in-
corporates eight processors, and which schedules jobs (SIMD or SISD)
to those processors on the basis of the availability of two distinct
resource types corresponding to main memory and PEs. The PE-type re-
source must be allocated to a processor and then muTtiplexed among the
set of processes that share that processor. One example of such a
system might be a multiprocessor that allocates jobs to processors on
the basis of memory and disk drive availability, where the drive is
allocated exclusively to a given processor and then shared among pro-
cesses executed on that processor. Another example is a multiprocessor
system with virtual memory. The MM resource corresponds to the ad-
dress space allocated to each process, and the PE resource corresponds
to the number of page frames allocated to a given mu]tiprogramméd pro-
cessor. Page frames in the physical memory are multiplexed among the
set of processes that share a given processor.

THE OPERATING SYSTEM STRATEGIES

The basic considerations for the MAP operating system are whether
or not multiprogramming should be incorporated, and whether or not the
operating system should be distributed. Since a distributed operating
system without multiprogramming is not a plausible consideration, that
leaves the three strategies mentioned in the introduction as possibili-
ties.

Examples of distributed and centralized operating systems for
multiprocessors currently exist. Fabry describes a "control processor"



and "problem processors" in the PRIME system, [13], used to centralize
operating system computations. Similarly, the Control Data 6000 series
computers employ a single peripheral processor to execute the primary
portions of the operating system, with some operating system code being
executed on the central processor. On the other hand, Multics [14] and
HYDRA [15] both support multiple processors by distributing the opera-
ting system over all available processors, each process calling the
operating system as needed. Gonzalez and Ramamoorthy consider the exe-
cution time of parallel programs under centralized and decentralized
strategies and find that decentralized control favors their environment,
[16]. In this study, the three strategies are compared in a MAP en-
vironment, with the measures of quality being batch job turnaround time,
throughput rates, and average input queue lengths. '

The dedicated uniprogrammed operating system, called UDED, allows
a maximum of seven processes to be in execution. Each process can have
from one to approximately 1000 PEs allocated to it, with the constraint
that the total number of allocated PEs for all CUs does not exceed 1024.
This does not preclude a process from dynamically requesting and releas-
ing PEs during its 1ifetime. The organization of the system includes an
input queue for jobs to be executed and each job has an initial request
for PEs. The job scheduling algorithm inspects the input queue in a
first come, first served fashion, selecting the first job that can be
allocated to a vacant CU, with the currently available PEs. In UDED,
it is assumed that the job will not request more main memory than exists
in a single memory module*. Once a job has been allocated a CU and PEs,
then the corresponding process may request I/0, request or release PEs,
synchronize with another process, or preempt another process. The idle
time introduced by one of these actions leaves the CU inactive until
the requested operation has completed.

The dedicated multiprogrammed operating system, called MDED, al-
Tows a maximum of four processes to compete for a given CU, with the
operating system remaining on a uniprogrammed CU. The CU scheduling
algorithm becomes considerably more complex since the processes that
share a CU must also share the same main memory module and the same
‘subset of PEs and their respective PEMs. The philosophy of the

* This constraint does not hold for the MAP design, but is used to
simplify the model.



scheduling algorithm is that PEs are a more valuable commodity than
main memory, thus a variant of a best fit algorithm is employed with
respect to PEs. CU Deallocation is described as follows:

Let R1 = number of PEs currently allocated to CUi’ (1<i<8)
Mi = pumber of main memory locations in MMi allocated to CUi’
i.e., in use
R = number of PEs configured into the machine
M = number of main memory locations in each module
rij T number of PEs required by process j on CU, (1<j<4)*
mij = number of main memory locations in MMi allocated to
process j
Then,
Ri = max (rij)
1<j<4
S
M, = m. .

Suppose process J completes execution on CUi, then
1. CUi can service a new job

2. Mi < Mi - m;

1J
3. Ri <~ max (rik) :
1<k<4d
k#J
if Ri < Ri then begin dea]]ecate (Ri—Ri) PEs from CU.;
R'i <+ R1.
end

That is, the number of PEs allocated to CUi is the maximum number of
PEs allocated to any process executing on CUi. If CUi has Tess than
4 processes currently executing, then:

* Processes on CU1 are numbered 1 to 4; when process j leaves the sys-

tem, the new process assigned to the CU takes the index of the com-
pleted process.



Choose a process, s, from the input queue such that s requests
re PEs and mg main memory location where

rs is the largest PE request such that rszi and mssﬁﬁMi;

process s is allocated the CU vacancy, i.e. process s

is chosen as the best fit with respect to the number of PEs
allocated to the CU.

If no such process s exists (i.e. best fit is not possible),
then the following actions take place:
1. Choose process s such that mgn(rs) and m35ﬁ¥M1
8

2. 1f r -R.<R —k§1 Ry then

begin allocate (rs'Ri) PEs to CUi;

Ri rs load and activate process s
end

When no best fit is possible, the job which requires the fewest
additional PEs be allocated to the CU is chosen. The reason for choos-
ing this job is that the other jobs already allocated to the CU do not
require the additional PEs; hence whenever they are using the CU, the
additional PEs are idle. The algorithm attempts to keep jobs that re-
quire similar numbers of PEs on the same control unit. It also tends
to keep the number of PEs allocated to a CU static. The algorithm
initially attempts to run jobs requesting few PEs, but as the system
continues to run, some CUs begin to execute those jobs with larger PE
requirements.

The four processes that reside on the CU are serviced by a round
robin scheduler, where the time quantum may be used for preemption, or
optionally, scheduling only takes place when the job currently running
becomes blocked.

The distributed multiprogramming operating system, called MDIS,
employs the same schduling philosophy as MDED. The difference is that
the operating system does not use any of the multiprogramming levels
assigned to the CU, and the operating system code is either distri-
buted over the eight memory modules or else stored in a ninth memory
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module not shown 1ﬁ Figure 2. Additionally, the operat{ng system pro-
cesses have higher priority than any of the user processes on the CUs.
A supervisor call blocks the calling process and activates the opera-
ting system on the same CU. Note that when two or more CUs request the
operating system, then the code is being shared among the CUs. Al-
though critical sections must be handled, the only adverse effect
is that the probability of memory cohf]icts increases. An unresolved
problem with the MDIS that does not occur with either MDED or UDED is
interrupt handling. The particular CU that should receive an inter-
rupt is not defined in this study.

The three operating system strategies do not exhaust all possi-
biTities for a design--they only represent three broad classes. There
are a variety of other scheduling strategies that could be tested, but
for the level of comparison discussed here it is felt that a proper .
perspective of relative performances can be obtained.

THE COMPARISON METHOD AND MEASURES

The comparison of the performance of the three operating systems
is accomplished through simulation. A model has been constructed to
exercise the MAP system under the control of the different strategies
using the same load. The system parameters to the model are listed in
Table 1, and the job load description parameters are listed in Table 2.
A1l time units are one hundredths of seconds. A single program has
been written so that the operating system being modeled is determined
by system parameters 1, 2, and 9; the same simulation code is used to
test all three options. The remaining parameters have been chosen to
allow the simulation program to represent various memory sizes, I/0
rates, PE allocation times, and synchronization times.

The round robin time slicing algorithm is used in all cases,
where a time quantum of zero indicates that a process relinquishes the
CU only if it requests an I/0, PE allocation/deallocation, synchroniza-
tion, or preemption. (UDED should always be executed with a time
quantum of zero, otherwise at time quantum expiration the model would
deallocate the CU from a process and then immediately reallocate it to
the same process for another nonzero time quantum.) The I/0 operation
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time is determined to be afy/x]+b where x is the number of words in a
mass storage physical record unit, a is a transfer rate, b is a latency
time, and y is the number of words to be transferred by the operation.
Since the job scheduling algorithm for UDED is a degenerate case of the
Job scheduling algorithm for both MDED and MDIS, the same scheduling
algorithm is used in all three systems. The amount of time required
to accomplish dynamic PE allocation and deallocation is determined as
follows: Deallocation and allocation of n PEs required cn+d time units,
where c and d are input parameters. If an insufficient number of PEs
are currently available for an allocation request, the request is
queued and the process is blocked until PEs become available. Opera-
ting system execution times (items 9 in Table 1) refer to the amount
of time required for the distributed system to carry out the given
function on the requesting CU; e.g., if a process requests an I/0 in
MDIS, parameter 9c describes the amount of time for which that CU is
being used by the operating system to set-up the I/0 operation and the
CU cannot be scheduled to another prcess during the given time period.

The job load is described by the distributions Tisted in Table.2.
Each distribution is described by defining a mean value, a standard de-
viation, and whether the distribution is normal or of the exponential
family. If an exponential-type distribution is specified with the mean
value equal to the standard deviation, then the distribution type is
exponential; if the mean value exceeds the standard deviation, then the
distribution type is Erlang; if the mean value is less than the stand-
ard deviation, the type is hyperexponential. The job characteristics
shown in Table 2 reflect the Tevel of detail at which each job is
modeled. (The effects of a job on the system are described by resource
requirements, I/0 operations, and the pattern of interprocess communi-
cations.) Input parameters for job load parameters 4-9 specify a dis-
tribution for the mean value of the given characteristic. For example,
if the distribution type for parameter 4 is normal, then the distribu-
tion describes a normal distribution of mean time between I/0 opera-
tions, and an individual job's inter I/0 time distribution is normal
with a mean value determined by sampling the parameter 4 distribution
with a standard deviation of one fourth the mean value. Each job has
a unique distribution generated from job load parameters 4-9.

The distributions derived from job Toad parameters 8 and 9 deter-
mine the time between synchronization and preemption operations, but
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they do not determine the 1dentity of receiver processes for these opera-
tions. Receiver processors are determined by randomly generating pro-
cess identifications. If a process that is to receive a synchronization
or preemption does not exist, then another process identification is
generated. This can lead to early termination of the simulation of a
system when only one process is active in the entire system and it is
attempting to execute a synchronization or preemption. It also causes
the amount of blockage due to process communication to increase with
the number of processes currently active in the system. Although pre-
cautions have been taken to eliminate the possibility of deadlock on
communication operations, this too can occasionally occur.

The most obvious comparison measures are the mean throughput
rate and the mean turnaround time of jobs. It is also useful to deter-
mine the maximum and mean input queue lengths induced by a job load.
Other comparison measures are the amount of CU blockage due to I/0 re-
quests, PE allocation, synchronization, and preemption. The simulation
models provide these data as well as the number of jobs input, the
number of jobs output, status of CUs at termination time, amount of CU
time spent in operating system execution in the case of MDIS, channel
utilization, and histograms of job allocation to CU time, CU blockage
time, job active on a CU, I/0 blockage, PE allocation blockage, syn-
chronization blockage, and preemption blockage. In the next section,
the results of testing various configurations and job load is discussed.

EXPERIMENTAL RESULTS _

“More than 75 different runs of the simulation model were made,
and data from only a subset of those runs are presented here. The
specific system parameter values used in the simulation runs were deter-
mined by the MAP architecture in most cases. The job Toad parameter
values were chosen partially by observations of MAP programs, [9], and
partially by the results of other simulation runs (e.g. in the case
of interarrival times). The job load is, to a large degree, hypothet-
ical since no real job load for MAP currently exists.
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Stabi]ization Times

The first experiment was to determine the time required for the
program to stabilize for each of the three systems, i.e. as the simula-
tion is initiated, all CUs are idle, all resources are unallocated, and
the input queue is empty. As jobs arrive in the system, the CUs begin
operation and resources are allocated. The amount of time for the
system to reach a state where the queue length and resource utilization
tend toward a constant figure is referred to as the stabilization time.
The job Toad was first déscribed as having a mean job interarrival
time of 3.0 seconds, each job required a mean CU computation time of
25.0 seconds, (the interarrival time was exponentially distributed,
and the service time was normally distributed). The main memory con-
figuration included 32K words per module and each job had a mean main
memory request of 8K words (normally distributed with a standard
deviation of 2K words). The MM configuration and request figures are
hypothetical. PE interrequest times were normally distributed with a
mean of 12.5 seconds, the number of PEs on each request determined by
a normal distribution with mean value of 64 and a standard deviation
of 32 PEs. PE request figures are based on actual MAP programs. The
I/0 request pattern is determined by a mean time between I/0 operations
of 2.5 seconds and a mean number of words on each transfer equal to 512.
Mean time between synchronizations was 6.0 seconds and mean time be-
tween preemptions was 12.5 seconds, both exponentially distributed.

Each system was then run for 300, 450, 600, and 750 seconds of simu-
~ lated time. As might be expected, UDED had stabilized before 300
seconds, while MDED and MDIS both stabilized at some time greater than
300 seconds but less than 450 seconds. Most succeeding runs use a
simulated time of 450 seconds of execution.

Maximum Arrival Rate Comparisons

The next experiment was to determine the maximum arrival rate
each system could support, i.e., what is the maximum throughout rate
for each system. In order to remove the effect of excessive synchoniza-
tion and preemption due to the number of active processes, job Tload
parameters 8 and 9 (in Table 2) were set so that the mean time between
these activities was much larger than the expected CU service time,
i.e., synchronization and preemption occur so infrequently that all
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processes are essentially independent of one another. Although it was
expected that the multiprogramming configurations would perform better
than the uniprogram configuration, especially since I/0-compute overlap
was disallowed, a comparison of relative performance was desired. The
mix was tested with mean interarrival times (exponentially distributed)
between 1.0 and 2.5 seconds in increments of 0.25 seconds. Figure 3
indicates the observed throughput rates for all three systems under

the various arrival rates. UDED became saturated at a mean interarrival
time between 1.75 and 2.00 seconds (about 0.55 jobs/second); MDED ap-
pears to reach saturation when the mean interarrival time is about 1.50
seconds (the corresponding arrival rate is about 0.67 jobs/second);
MDIS begins to saturate at a mean interarrival time of 1.00 to 1.25
seconds, (the rate is about 0.80-1.0 jobs/second). Figure 4 describes
the percentage of jobs that arrived in the system that were either
served or were in service when the simulation halted. It is somewhat
surprising to see that MDED resembles UDED more than it does MDIS in
these results. To check the consistency of the observed phenomena,

the model was again exercised with the same interarrival rates, but

for 600 and 750 second runs. The results were the same for all three
versions of the system. The conclusion is that once a system reaches

a saturation load, performance declines rapidly, regardless of the con-
figuration. In Figure 5, the maximum queue lengths and mean queue
lengths for the input queue are plotted against the interarrival time
for each system. Note that data points for UDED at 1.25-1.75 second
interarrival times (and at 1.25-1.50 seconds for MDED) is determined
primarily by the length of simulated time, since both systems are

then experiencing an arrival rate greater than can be handled. Fig-
ure 6 illustrates the percentage of utilization of CUs allocated to user
programs, (i.e., the fraction of the total time during which the CU was
allocated to a job). UDED reaches over 90% utilization at 1.75 second
interarrival times; MDED approximates 90% utilization at 1.75-1.50 sec-
ond interarrival times, and MDIS becomes saturated between 1.25 and 1.50
second interarrival time. '

The Effect of Synchronization

The next experiment employed the job mix described at the begin-
ning of this section, i.e., synchronization and preemption times were
allowed to affect the results. As discussed previously, the number of
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lTogically active processes partially determines the frequency of syn-

chronizations; when more processes coexist, communication requests are
more frequent and each "conversation" results in longer periods of CU

blockage due to the possibility of chains of CUs waiting for some pro-
cess to become active. Even though circular waits are possible, they

are avoided in the simulation whenever the model can easily detect

them.* Figure 7 indicates the observed throughput rates for this ex-
periment, using a simulated time of 450 seconds. For the mean inter-

arrival times between 1.50 seconds and 2.50 seconds, the results.are
similar to the previous experiment. For smaller interarrival times,
the effect of synchronization and preemption begins to override the
throughput rate. For the higher rate, more processes simultaneously
exist:and CU blockage begins to drastically reduce the throughput rate
for MDED and MDIS. UDED is not effected much, since there is a maximum
of only 7 Togically active processes and the communication blockage
that exists is not severe. For example, at the 1.25 second interarri-
val time tests, the average amount of time a process is blocked due to
both forms of communication is about 0.15 seconds in UDED, 11.25 sec-
onds in MDED, and 12.55 seconds in MDIS. For this job load, the effec-
tive saturation load for each system is reached with mean interarrival
times of 1.50, 1.75, and 2.0 seconds for MDIS, MDED, and UDED respec-
tively. The amount of interprocess communication is a sensitive per-
formance parameter, especially for the multiprogrammed operating systems.
Any development of these classes of systems must pay careful attention
to the policies employed in implementing interprocess communication;
deadlock detection or avoidance cannot be ignored.

Operating System Overhead

The final phase of experimentation is concerned with the amount
of operating system overhead with respect to CU utilization. Both
UDED and MDED require a dedicated CU for implementing the operating
system, and so the amount of the CU resource is easy to quantify; it
is 12.5% of the total resource. In the experiments with MDIS, it is

* Deadlock occurred in only one run, and that was under a load with mean
intersynchronization time of 3.0 seconds, mean 1nterpreempt1on time of
7.0 seconds, after 300 seconds of simulated time.
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assumed that the time to remove a'process from a CU is 10 ms, the time
to schedule a new process to a CU is 20 ms, and the time to initiate

an I/0 operation is 10 ms (in addition to the channel transfer time).
PE allocation requires 20 ms of overhead plus 10 ms for each PE allo-
cated or deallocated. Synchronization overhead time is ignored and
preemption overhead time is 20 ms. MDIS was tested with normally dis-
tributed CU active times where the mean value ranged from 20.0 seconds
to 35.0 seconds and the mean interarrival times of 1.25, 1.50, and

1.75 seconds. In all cases, the percent of the total simulated time
ranged between 0.6 and 0.9%. The amount of CU time spent on operating
system overhead is negligible, indicating that the use of a dedicated
CU for the operating system is wasteful of that resource. The operating
system does not require enough time to justify dedicating a CU for its
exclusive use, although the complexity of the design may be more diffi-
cult.

CONCLUSION

The same simulation program was used to test all three versions
of operating systems in this study. Input parameters to the model
determined the configuration being tested. The results of the study
indicate that for an environment that does not make excessive demands
on the machine, the uniprogrammed approach with a dedicated CU for the
operating system is an attractive solution. Actual UDED performance
would be better than predicted by the model if 1/0 buffering were in-
corporated to allow I/0-compute overlap. As the job Toad increases to
a point of saturation, the distributed, multiprogrammed operating sys-
tem appears to have a performance edge over the dedicated multiprogrammed
system that makes the added complexity worthwhile. There is little data
to justify the implementation of MDED, since its complexity may approach
that of MDIS, but its performance falls far short.

The comparative studies also indicate the importance of using a
sound policy for process communication in a system simultaneously sup-
porting a Targe number of processes. As the number of processes garows,
the performance of the system may be degraded by processes involved in
busy waits or other forms of CU blockage; deadlock becomes important
to consider in these cases. |
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Although the model was derived to represent the MAP computer
system, it could equally well be applied to any multiprocessor system
where processor scheduling is determined by processor availability,
memory availability, and the availability of at least one other system
resource by each job. The Tevel of modeling does not make the array
processor architecture a primary point other than that PEs are the
"other system resource". The SIMD portion of the architecture does
not place additional constraints on the simulation.

In any simulation study, validation of the model is an important
consideration. There is really no way to validate the model by analytic
techniques, since it is too detailed. It is also not possible to vali-
date by measurement since no real hardware for MAP exists.

An important lesson that was learned from the work was that, at
Teast in simulation, multiprogramming is more difficult to implement
than distribution. -Upgrading the program from UDED to MDED required
approximately 2 man months, while incorporating MDIS into MDED required
only an additional week or two. Since these modification problems re-
flect actual operating system implementation considerations, it appears
that software development for real operating systems would require the
same proportions of effort. '
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Figures

SIMD Organization

MuTti Associative Processor Organization
Throughput Rate for INdependent Job Load
Percent of Jobs Served or in Service
Mean and Maximum Input Queue Lengths
Average Percent of Time User CU Active
Throughput Rate for Cooperating Job Load

Tables

System Parameters
Job Load Parameters.



Description

Number of user CUs

Number of Tevels of
multiprogramming/CU

CU time slice*
Main memory module size

Factors determining
time to do I/0**

Number of I/0 Channels

Factors determing time to
accomplish PE allocation

Mean preemption time
(Uniform distribution)

Operating System execution
time to

a. 'déa11o§éte a CU
b. schedule job to CU

c. initiate I1/0

* Time slicing is not used in UDED.

UDED

1

arbitrary.

arbitrary

1-8

arbitrary

arbitrary

Range of Values

MDED
7

4
arbitrary

arbitrary

arbitrary

1-8

arbitrary

arbitrary

MDIS

4
arbitrary

arbitrary

arbitrary

1-8

arbitrary

arbitrary

A value of zero indicates that

there is no time quantum used in MDED and MDIS; a process relin-
quishes the CU when it is blocked.

** 1/0 time is determined to be a[y/x]+b, where a, b, and x are
input parameters, and y is the number of words to be read/
written in a given operation.

SYSTEM PARAMETERS

Table 1



Description

1. Mean, standard deviation of hyperexponential or Erlang distribu-
tion describing job interarrival time.

2. Mean, standard deviation of normal, Erlang, or hyperexponential
distribution describing job processing time.

3. Mean, standard deviation of normal, Erlang, or hyperexponential
distribution describing job main memory requirements.

The next 6 distributions describe the mean and standard deviation of
means for distributions of individual jobs. The standard deviation
of each is 25% of the mean used for the particular job. Each class
is either normal or Erlang, determined by input parameters.

4. Distribution class for time between I/0 operations.

5. Distribution class for number of words in I/0 operation.

6. Distribution class for time between PE allocations.

7. Distribution class for number of PEs currently allocated to a CU
(always a normal distribution; initial value for any job is
mean + 2 * (standard deviation)).

8. Distribution class for time between synchronizatijons.

9. Distribution class for time between preemptions.

JOB LOAD PARAMETERS
Table 2
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