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ABSTRACT

Modeling Process-Resource Activity

Janis P. Osterweil
and
Gary J. Nutt

Many models are present in the literature that have been used for
investigating deadlock avoidance, prevention, and detection algorithms.
In this paper, a model is presented that concentrates on possible con-
ditions that may exist in a system of n processes and k resource types
with varying units of resources. The model is based on a graph in which
each node represents a state of the enﬁire system. It can be shown that
this set of nodes can be partitioned into three sets such that all nodes
in the first set represent the condition that the corresponding system is
guaranteed to be free of deadlock; the second set represents the condition
that the system is deadlocked; the third set represents the condition
that the system may or may not be in a state of deadlock, depending on
how each given node has been reached from the initial node of the graph.
The model has been exercised with various system configurations to obtain
probabilistic estimates of deadlock existing in each node of the third

set, and these results are given, as well as a description of the model.

Key words: deadlock, simulation, detection, deadlock probability

CR categories: 4.35,8.1



INTRODUCTION

Deadlock has been the subject of a significant amount of research in
the last several years, beginning with the work of Dijkstra [3] and con-
tinuing to the present day. Many solutions to the deadlock problem exist
for a variety of systems, [1,5,6], but few of these solutions are
actually implemented in real operating systems. There are two reasons for
this: first, the implementation is costly both in the space required to
maintain tables indicating the current status of the system, and the
amount of processing time required to keep the state of the system current
and to detect or avoid a deadlock state [2]; second, the frequency of
occurrence of deadiocks in current systems has not made the implementation
cost-effective from a management point of view [1]. The deadlock pfob?em
can be expected to become more serious as the number of processes and the
number of resources in a system increase [1,4]. Thus, if computer systems
continue to grow to systems with many processes and resources, one should
carry out more intensive investigations with respect to the expectation
of deadlock in these systems. To date, 1i£tTe data concerning the
characteristics of deadliock has been gathered either from actual operating
systems or from simulation studies.

In this paper, a pragmatic graph model for studying a family of
systems with varying numbers of processes, types of resources, and numbers
of each type of resource is presented. Other Qraph models have been used
to investigate deadlock in operating systems, (e.g., [6]), although most
of these models represent the state of the system with respect to the
activities of processes. The model discussed in this paper represents
the state of resources-~the number of available resource units, the number

of unfulfilled requests. The graph representation is static and does not



change its topology as process activity takes place. The nodes of the graph
are isomorphic to points in a three dimensional Euclidean space, where each

dimension is bounded by the number of resource types, the number of units of
each type, and the number of processes in the system.

Although the model is useful for obtaining analytic results, here it is
used only to explain a simulation study of processes and resources. The model
characterizes resource activity in the class of single unit request operating
systems, allowing one to investigate the probability that deadlock will exist
under varying conditions. If a process requires multiple units of a resource,
then successive requests can be issued, (each request after the first being
preceeded by an allocation). This information is useful in algorithmically
determining the particular set of circumstances under which deadlock detection
should be invoked, or even if a detection or avoidance algorithm should be em-
ployed in an environment determined by the number of processes, units of
resources, and resource types.

In the remainder of the paper, the class of operating systems that can be
represented is first described. Next, the basic graph model is described in
detail, including its interpretation and some examples. The experiment is then
discussed, followed by a summary of the results. Finally, the conclusion pro-
vides criticism of the model and the method, and then indicates the utility of
the results given in this paper.

A more complete treatment of the topics discussed here appears in [7].

THE CLASS OF SYSTEMS

The model represents systems that are composed of k distinct types of re-
sources, with mg units of the type g resource, T1<g<k. The model provides for n
processes all competing for resource units. ~  For example, if a system is con-
figured with 3 line printers (resource type 1), 2 card readers (resource type 2),

and 4 allocatable partitions of memory (resource type 3, )then k=3,m1=3,m2=2,m3=4.



It is assumed that a process will never request more than one unit of any
resource at a time, and that another request cannot be made until the first
has been satisfied by allocation, i.e., the system supports only single unit
requests; it is also required that a process will deallocate its resources
upon completion. A process will not request more units of any resource

than exist in the system. Non-preemption of resources, the possibility of a
circular wait, and exclusive control of a unit of resource are assumed, since
the model must allow deadlock conditions to exist in order to investigate the

circumstances under which deadlock is Tikely to occur.

A GRAPH MODEL FOR RESOURCE ACTIVITY

The directed graph model, Gnm1m2...mkk, is used to model a system composed

of n processes, k different resource types, such that my represents the number
of units of resource type i. The model consists of the vertex set V and the
edge set E = Er U Ea U Ed’ where
V= {(i,3.q) | O<izn, 0sjsmg-1, T<g<k} U {(O,mg,g) | 1<g<k}
Er;«{((u],uz,g),(v1,v2,g)) | ViUl votu, for O<up=n-1, OSUZSmg-1,
T<gs<k}
E= {((u],uz,g),(v1,v2,g)) ] vi=up-Ts Vo=u,tl for T<u <n, OSUZSmg—Z
or else u]=1 and u2=mg-1,
and T<g<k}
Eq= {((ug5U,,9)5(vy5v5,9)) | V,=Ups Vp=Up=1 for O<uj<n and 1su2£mg—1
or else u1=0 and u2=mg,
and 1<g<k}.
Less formally, the set of vertices roughly correspond to the allocation status
of a system at any given time. The ordered triples, (i,j,g) define a discrete
three dimensional space where the particular point (i',j',g') represents the

fact that there are i' outstanding requests for units of resource type g',



while j' of those units have previously been allocated to some processes.
Thus the plane, g, is a state transition diagram for resource type g.

The edge sets (Er’Ea’ and Ed) represent allowable state transitions within
each of the g transition diagrams. Some examples can clarify the discussion.

Figure 1 is a representation of the graph G 633243-—a system

nm]mzmsk -
of n = 3 processes, k = 3 resource types, my = 3 units of resource type 1,
m, = 2 units of resource type 2, and my = 4 uynits of resource type 3
(similar to the system mentioned in the previous section). The graph model
can be used to describe resource allocation and deallocation under the fol-
lowing interpretation: Al1 edges which belong to the set Er are labelled
”rg” for 1<g<k which denotes a request of resource type g; all edges which
belong to Ea are labelled “ag” for 1=g<k which denotes an allocation of a

unit of resource g; and all edges which belong to Ed are labelled "dg" for

1<g<k which denotes a deallocation of a unit of resource type g. We are only

interested in the paths initiating from vertex (0,0,g), for all g where
T<g<k (corresponding to the state transition for each resource type).

The set of all paths from vertex (0,0,g) back to vertex (0,0,g9) represents
the set of possible actions, taken by the resource scheduler and the n pro-
cesses, which are guaranteed to avoid deadlock regardless of the processes
involved in each action, [7].* In the example shown in Figure 1 (633243), a
path is represented by Tisting the edge labels on the path. For example,
“rzrzazdzazazdz" represents a traversal from node (0,0,2) through (1,0,2),
(2,0,2), (1,1,2), (1,0,2), (0,1,2), to (0,0,2). Concurrent path traversals
are represented by interleaving symbols with different subscripts, e.qg.
”q,aTr2r3a3d1a2d2d3“ represents request, allocation, and deallocation of

each resource type by anonymous processes.

Node (n,m _-1,g) represents deadlock freedom although there is no path from
this node? back to (0,0,9). The node allows cycles in the augmented graph
discussed in the next paragraph, where the semantic interpretation given
here 1is consistent.



Gnm]mz...mkk consists of dé% ((n+1)*mg +1) vertices, where each vertex
is labelled td indicate the number of single unit requests and allocated
resource units of resource type g represented by the vertex. Thus vertex
(p,q,g) represents p requests for a resource unit of type g which have not
yet been allocated, and g resource units of resource g which are currently
allocated to a subset of the n processes. Notice that the single unit request
assumption allows one to bound the value of i in (i,3,g), since it permits a
maximum of one outstanding request per process. The extension to multiple
unit request models increases the size of the graphs substantially.

Although the set of cycles through (0,0,g) in Gnm1m2...mkk represents
sequences of actions that are ensured of being free from deadlock, it is
also desirable to be able to represent sequences of actions in which dead-

lock is possible. G can be modified to.include these other paths

nm]mz...mkk
by adding vertices corresponding to (1,mg,g) for 1<i<n and for all g, 1=<g<k.

Figure 2 is the extended graph, G m ok corresponding to Figure 1.

nm.m, .

These additional vertices allow par11§1 paths to exist that may correspond

to deadlock, depending on which particular processes performed the requests
and acquired units of the resource. In the unaugmented model, process
identity is irrelevant, but in the model which includes vertices representing
deadlock states, the identity of process which cause resource state changes
is pertinent. The vertex labelled (n,mg,g) for any g represents a situation
in which all n processes have a pending request for a unit of resource type g
and all mg units are currently allocated. Hence, any partial path Teading

from (0,0,9) to (n,mq,g) represents a sequence of resource requests and

allocations that is guaranteed to put the system in a state of deadlock.



(3]

Consequently, there is no exit edge from vertex (n,mg,g) since resource
preemption is not allowed, and there exists no path from (0,0,9) to

(0,0,9) that passes through vertex (n,mq,g).

Now consider the set of vertices

{(1,mq,g) | 0<i<n, T=g=k}.

Each of these vertices represents a situation in which all mg units of the
resource g are allocated and there exists i outstanding requests for the
resource (by i distinct processes, since only single unit request systems are
represented by the model). Thus the possibility of deadlock exists in those
states, depending on the identity of the processes which changed the resource
state into (i,mé,g). Let superscripts identify the process associated with a
resource activity (subscripts still identify the resource type),and consider
the graph 653243 of Figure 2. The string ”r]1r12a]]r13a]2a]3r11r12" corresponds
to a path from (0,0,1) to (1,0,1,) since process 1 requested a unit of resource
type 1 (r}), then to (2,0,1) since process 2 requested a unit of resource

type 1 (r%), then to (1,1,1) since process 1 was allocated a unit of resource
type 1 (a]]), etc. to (2,3,1). In this situation, process 3 has been allocated
one unit of resource 1 (a?) but it is not blocked on resource 1 nor resource 2,
j.e., the system is not in a state of deadlock. Alternatively, the string
"r]]r12a11r11a12a]1r11r12

from (0,0,1) to(2,3,1), but in this case processes 1 and 2 are deadlocked since

" in the same configuration traverses the same path

all three units of the resource are allocated to processes 1 and 2 and these

two processes have outstanding requests which can never be satisfied (unless pre-
emption is allowed). From these two examples, it can be observed that the
vertices (1,mg,g), 1<g<k, for 0O<i<n, correspond to situations in which dead-

Tock may exist,(depending on the processes involved) but it is



not guaranteed to exist as it is at vertex (n,mg,g},

It is also possible for a path such as “r]r}a}rTr]a}agrl“ to lead to
vertex (2,3,1) in the example; however, the sequence of activities will
never represent a state of deadlock on resource 1 under any process
numbering. The key points in recognizing that this statement is true are
that only single unit requests are allowed in the system and that a
process cannot request more than mg units of resource type g.

The model is used to identify the possibility of deadlock across
resource types, as well as within a given resource type as discussed
above. for example, the sequence “rlir}za?xrzir13a12r22a2]a]3r23a22r22r31"
describes a path leading from (0,0,1) to (1,3,1) = (19m],1) and another
path leading from (0,0,2} to (2,2,2) = (2§m2,2) in the system shown in
Figure 2. Now, the sequence indicates that process 1 is requesting a
unit of resource type 1 while holding a unit of type 1 and a unit of
type 2; process 2 is requesting a unit of type 2 while holding a unit
of type 1 and a unit of type 2; process 3 is requesting a unit of type 2
while holding a unit of type 1. The system is deadlocked across resource
types, even though the sequence of actions only on type 1 or only on
type 2 would indicate blocking and not deadlock. It has been shown that
this deadlock across resource types can only exist when paths in two or
more of the g (sub)graphs simyltaneously lead to (i,mg,yg‘) and,{j,mgu,g")
for i # 0 and j # 0, [7].

The critical issue in using the graph model 1s the determination of
deadlock existence when a path leads to one of the vertices (i,m_,q) in

g
one of the parallel (sub)graphs.* Since these vertices sometimes represent

* In the special case of a single resource system, (k = 1), vertex (1,m,7)
is always a non-deadlock vertex since deadlock cannot exist on a single
resource type with only one pending request for an unavailable unit of
the resource,



a state of deadlock, it is desirable to determine either the circumstances

under which a path causes deadlock in one of these gray vertices, or to be

able to attach a probability that deadlock exists whenever a path leads
to one of the vertices. No set of sufficient conditions have been found
to shed light on the problem:; instead, the concentration has been on
determining probabilities of deadlock for the gray vertices. The
activity of a set of systems was simulated under varying conditions and

probabilities of deadlock for each gray vertex were obtained.

THE EXPERIMENT
The primary reason for simulating the process/resource activity is
to determine the probability that the systeﬁ is in deadlock when at-
least one path in one of the k parallel graphs leads to a vertex (i,mg,g)
for O<i<n, l<g<k. The set of parameters that vary for different tests
is the number of processes, n; the number of types of resources, k; and
the number of units of each type of resource, mg (for i<g<k). Additionally,
the simulation program can indicate other properties of the configuration:
- Under varying conditions, how does the mean number of
action steps, (i.e., requests, allocations, and dealloca-
tions), to deadlock change?
- How does the fregquency with which processes request and
deallocate resources affect the probability of that
process being involved in a deadlock?
The approach used in defining the test cases was to specify n, mg,
and k; for each process, define a frequency rate, (based on a Poisson
distribution), for resource request and deallocation; specify a maximum

number of trials in the test, where each trial ends by the system coming



to a deadlock state or some maximum number of requests and deallocations
have taken place. During each test run, the number of times that each gray
vertex was entered was recorded, the number of times that deadlock was de-
tected was recorded, and in the case of deadlock existence, the number of
activity steps leading to the deadlock was recorded. From this information,
the probability of deadlock of each vertex, (i,mg,g) was computed and the
mean number of activity steps to deadlock was available.

Thirty cases were tested where each case was composed of 1,000 trials.
Most trials allowed a maximum of 100 to 200 steps, causing deadlock to be
encountered about 25,000 times. The summary of all of thése tests is given

in reference [7] and in the next section a few cases are described.

RESULTS

First, Figure 3 shows how the probability of deadlock varies as n changes;
this set of test cases uses 3 resource types, with 3 units of each resource.
Since there are 3 vertices corresponding to (1,mg,g) for each i, the average
probability of deadlock in all 3 graphs is plotted. The unorthodox abscissa
labelling is required to allow easier comparison of curves under varying values
of n, i.e., the probability that deadlock exists when at (1,mg,g) is one if
i=n for all values of n. In order to compare the probabilities for varying n,
the abscissa origin is adjusted as a function of n. Two conclusions can be
drawn from this figure ( and others not given in this paper due to space
Timitations): The probability of deadlock increases with i for the vertex

g) being deadlock

L)

Tabelling, (1,mg,g). The probability of vertex (n-i,mg
instance increases as the number of processes, n, increases.

In Figure 4, data are plotted to show the probability variation as the
number of resources of a single type is increased. Again, the probability

of deadlock is greater for vertex (i,m1,1) than for (1',m1,1) whenever isi'.
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Although the probability of vertex (1,m],1) being in deadlock increases as the
number of units of the single resource type decreases in most cases, two contra-
dictions occur at vertex (n-],m1,1) = (8,m1,]). No explanation for these dis-
crepancies has been discovered. In each case, however, there is a sharp
increase in deadlock probability at node (n—1,m1,1) relative to the previous
node (n—2,m],1). Also, rarely does node (n-],m1,1), for any value of n or my s
exceed 0.5 probability and yet node (n1m1,1) represents a deadlock probability
of 1.0.

Data was gathered from 8 out of the 30 cases with more than one resource
type (k>1) to indicate the percentage of deadlock occurrences involving only
one resource type. In most cases (6 out of 8) more than 50% of the deadlocks
that occurred involved one resource type only. (The average percentage of
deadlocks involving one resource type over all 8 cases was 57.3%.) Thus it
appears to be worthwhile to study the deadlock situation on a resource
system of only one resource type.

Figure 5 plots the number of processes, n, versus the mean transition to
deadlock; it illustrates two things. First, as resource units (mg) are added
to a resource type (g), the probability of deadlock decreases, irrespective
of the number of processes (n) involved. Second, the figure illustrates the
mean number of activity steps that were taken before a deadlock was encountered.
under varying number of processes. The data indicates that this mean number
increases with the number of processes, n. The reason for this apparent anomaly,
(i.e., one might expect the number of activity steps to decrease with increas-
ing n), is that deadlock can can occur only when processes request resources
at a time that they already hold other resources. As the number of processes
increases, the likelihood of this circumstance occurring decreases, and the
mean number of activity steps increases. Several other test cases not shown

in the figure also yielded the same result, even when the number of resource



11

types was increased k>1), and the numbers of units of each type differed.
Figure 6 shows the effect of uniformly adding processes (n) and units

of one resource (mg) to a system; the mean number of transition steps to

deadlock increases with n and mg,* Hence in a fixed resource system of

one resource type, if the number of processes acting on this system

increases and/or more units of the resource are added, then the probability

of deadlock decreases.

The frequency of process requests and deallocations was used as an
input parameter to the model. For each process, i, (1<i<n) Ri speéif?es
a request frequency and Qi specifies a deallocation frequency, where
0<R1<1 and O<Di<]. The time interval between a request or dea110ca£iom
is Poisson distributed; the values of Rﬁ and Di determine the choice of
request or deallocation as follows:

1. Generate a random number, x, from a uniform
distribution between 0 and 1.

2. If

n
<
2 B )

then the event is a request. Otherwise it is a deallocation.
Now, large Ri relative to Di cause more frequent allocation than dealloca-
tion.
Figure 7 plots Ri against the probability that any given process
will be involved in deadlock for a system of 9 processes with 5 resource
types, each with 9 units of resource. Processes which request resources

frequently are often involved in deadlock, while processes that require

* Total transitions include requests, deallocations, and allocations;
process transitions are only requests and deallocations.
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resources less frequently are involved in deadlock much less often. It is of
interest to note that the processes which deallocate resources frequently are
involved in deadlock only about 10% less often than those processes which de-
allocate resources Tess frequently, irrespective of the request frequency of
the processes (this can be seen by a vertical inspection of the graph of

figure 7). Hence it appears that requests correlate to a deadlock condition

more than deallocation.

CONCLUSTIONS

The graph model described in this paper has been used to describe the status
of an operating system with respect to deadlock. The vertices of the model are
partitioned into classes such that the first class represents system states that
are free from deadlock regardless of the path leading to that vertex; the second
class represents system states in which it is certain that deadlock exists; the
third class represents system states where deadlock might exist.

Although one might be able to obtain a closed form solution to determine
the probability of deadlock for each vertex in this Jatter class, estimates of
those probabilities have been obtained for a variety of system parameters by
simulation.

The primary criticism of the model might be that it only applies to single
unit request allocation strategies. The model could be extended to handle
multiple unit requests, but many of the results would no Tonger hold and the
model may become intractable. A simple extension to the model would allow
single unit requests for each resource type to be pending.

Other criticisms have to do with the simulation technique: no scheduling
algorithm was explicitly modeled; instead, Poisson distributions were used to

generate random scheduler activity. This approach was taken in order to avoid
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special-case studies involved with each scheduling algorithm. Thus the
results may be more pessimistic then might be experienced with particular
schedules. Similarly, there was no system monitoring to generate resource
request (deallocation) sequences in deriving the Toad on the resource system;
Poisson distributions were used to simulate random demand in order to obtain
general measures that did not reflect particular workloads.

The significant results from the study indicate that a deadlock detection
algorithm should be invoked with every resdurce request when the system reaches
a point of having n-h, O<hs<n, outstanding resource requests for a given resource
type, and that as h decreases, the invokation of the detection algorithm be-
comes more and more important. There is Tittle need to invoke the detection
algorithm if all units of the given resource type are allocated and there is
only a relatively small number of outstanding requests.

A surprising result is that the number of resource types involved in
deadlock, in a multiple resource system, is frequently only one. Thus, in a
computer system where deadlock may be particularly disastrous for some single
resource type, (e.g., tape drives), it is worthwhile to detect or avoid dead-

lock on that particular resource even if others are ignored.
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