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Abstract

Let f be a positive-valued function on the vertices of a graph G.
An f-star subgraph F consists of vertex-disjoint stars, where each
vertex v meets at most f(v) edges of F; a maximum f-star subgraph con-
tains the greatest number of edges possible. Let G be bipartite, with
vertex sets S,T; let f(v) = 1 for all veS. Then there is a maximum
f-star subgraph that contains a maximum matching. Let G have a perfect
matching, let f(v) = 1 for veS, f(v)22 for veT. Then an f-star subgraph
covering all vertices of S can be found in O(E Tog V) time. Also, a
collection of vertex-disjoint paths of length 1 or 2 covering all
vertices can be found in O(E log V) time.
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Much work has been done on finding degree-constrained subgraphs
of bipartite graphs [T,U], and the special case of matchings [HK].
In this note we investigate a notion of intermediate generality,
"f-star subgraphs". We indicate how these subgraphs relate to
matchings, and how, in some cases, they can be constructed efficiently.

We first define some terms and notation. Standard terms not de-
fined here are in [H]. Throughout this note, we 1imit ourselves to a
bipartite graph G = (S,T); here S and T are the two sets that parti-
tion the vertices. The degree of a vertex v is denoted d(v), or
d(v,G) if the graph is not apparent.

Let f be a function assigning a positive integer to each vertex.

A (degree-constrained) f-subgraph is a subgraph F, such that each

vertex v meets at most f(v) edges of F, i.e., d(v,F) < f(v). (Note
we assume f(v) z 1. This is without loss of generality, since if
f(v) = 0, then v can be deleted from G.) If d(v,F) = f(v), v is

saturated; if d(v,F) 2 1, v is covered. A maximum f-subgraph contains

the greatest number of edges possible. A matching is an f-subgraph
where f(v) = 1 for each vertex v. A perfect matching covers every

vertex.

Let F be an f-subgraph. A path P is alternating (with respect
to F) if it is simple (i.e., no vertex is repeated), and its edges are
alternately in F and in G-F. P is augmenting if it is alternating,
the first and last edges are in G-F, and the first and last vertices
are unsaturated. If P is augmenting, the edges in F(®P = FuP-FnP form
an f-subgraph containing one more edge than F. If F is not a maximum

f-subgraph, an augmenting path exists. This follows from network flow

theory [FF].



A star is a tree consisting of a root and a number of sons. We

define an f-star subgraph as an f-subgraph F that consists of vertex-

disjoint stars. A maximum f-star subgraph contains the greatest

number of edges possible. If G=(S,T), then F is rooted in T if the
root of each star is in T. An f-star subgraph rooted in T is
equivalent to'a g-subgraph, where g(v) = 1 for veS and g(v) = f(v)

for veT. So an f-star subgraph rooted in T is a special case of a
degree-constrained subgraph. In particular, the results on augmenting
paths apply.

We begin by showing a relationship between f-star subgraphs and

matchings.

Theorem 1: Let F be a maximum f-star subgraph rooted in T, covering
the greatest number of vertices possible. Then a maximum matching M

on F is a maximum matching on G.

Proof: First observe M is constructed by choosing one edge from each
star of F. Now suppose M is not maximum, so it has an augmenting path
P. We derive a contradiction below.
Let the first and Tast vertices of P be veS and weT. Vertex w
is not covered by M, so it is not covered by F. This implies v meets
some edge vu € F-M. For otherwise, v is not saturated by F (we assume
f(v) > 1 by definition), and P is augmenting for F, a contradiction.
Since veffex ueT is covered by F, it is covered by M. Thus sub-
graph F-vu covers only one Tess vertex than F. The edges in (F—vu)(:)P
form an f-star subgraph with as many edges as F, covering one more

vertex (w). This contradicts the definition of F. QED

Not every maximum matching on G can be obtained, as in Theorem 1,
from a maximum f-star subgraph. This can be seen by Tetting G be the

path (V]’VZ’V3’V4’V5)’ T={vy,V,}, and f(vi)=1 for i#2, f(v2)=2.



A maximum f-star subgraph rooted in T can be constructed by
Dinic's algorithm for network flows [D]. The run time is O(V%E+V).
This can be shown by methods similar to those 1in [HK,T]. Now we
refine this analysis, improving it for graphs with perfect match-

ings.

Theorem 2: Let F be an f-star subgraph rooted in T, where f(v)>2
for all vertices veT. Let m be the number of edges in a maximum
matching on G. If |F|<m, there is an augmenting path of length at
most 2 [log (|F|+2)] -17.

Proof: Choose a maximum matching M so |MnF| is as large as possible
There is a vertex seS, covered by M but not by F. Let C be the con-
nected component of M(+)F that contains s.

Consider a simple path in C that starts at S, (s=v0,v],...,vn).
It is easy to see vertices v2iaS,v21+]sT, and edges v21v21+]eM,
v2i+]v21+st, for a]] i where these vertices and edges exist. So the
path is alternating. It also follows there is a unique simple path
from any vertex in C to s. So C is a connected acyclic graph, i.e.,
C is a tree. : o )

Make s the root of tree C. Let 2#8+1 be the length of the shortest
augmenting path for F. We show by induction that for 0<i<t, level 2i

of tree C contains at least 2! vertices of S, and level 2i+1 contains

at least 2' vertices of T.

The base step i=0 is trivial. For the inductive step, suppose
the above assertion is true for some i<a. Let v be a vertex on level

2i+1. Vertex v is saturated by F; for otherwise, the tree path from

T Throughout this note, all logarithms are to the base 2.



v to s is augmenting for F, with length less than 22+1, a contradic-
tion. So v has at least f(v)>2 sons on level 2i+2. Thus there are

at least 21+1

vertices on level 2i+2.

Now let w be a vertex on level 2i+2. Vertex w is covered by M;
for otherwise, if P is the tree path from w to s, M(*¥)P is a matching
of the same cardinality as M, containing more edges of F, a contradic-
tion. So w has a son on level 2i+3. Thus there are at least 21+]
vertices on level 2i+3. This completes the induction.

22+1

2 .
Levels 2i, i=1,...%, of C contain = 2' = - 2 vertices of S.

Each of these vertices is covered by a ;gltinct edge in F. Thus

2 _ < |F|, from which the desired inequality follows. QED
Dinic's algorithm constructs a maximum f-star subgraph by repeat-

edly augmenting, using shortest length augmenting paths. A1l augment-

ing paths of length % are found together in time O(E) [D]. So we have

the following time bounds. As above, let m be the number of edges in

a maximum matching, and assume f(v)>2 for all vertices veT.

Corollary 1: Dinic's algorithm constructs an f-star subgraph rooted

in T with at Teast m edges, in O(E Tog V+V) time.

Corollary 2: If a maximum matching covers all the vertices of S, then
Dinic's algorithm coxstructs a maximum f-star subgraph rooted in T in
O(E Tog V+V) time.

Sometimes the hypothesis of Corollary 2 can be verified without
actually finding a maximum matching. For example, if
min {d(v)|veS} 2 max {d(w)|weT}, then Hall's Theorem [FF] guarantees a
maximum matching covers all vertices of S.

As an application of Corollary 2, consider a communications net-

work composed of transmitter stations and relay stations. A message



goes from a transmitter to a relay and then to its destination. Each
relay r handles up to f(v)>2 messages simultaneously. The network
operates as follows. When one or more previously idle transmitters
get new messages, a graph is constructed. It contains a vertex for
each previously active or newly active transmitter (S) and for each
relay (T), and an edge for each possible transmission path.  Then a
maximum f-star subgraph rooted in T is found, and used to route messages.
Note this subgraph may switch a previously active transmitter from one
relay to another; presumably this does not harm transmission of the
message. Note also if the possible transmission paths between all
transmitters and all relays satisfy the degree constraint given above
for Hall's Theorem, then all graphs constructed do too. So the

f-star subgraph is found in the time bound of Corollary 2.

Now we consider general f-star subgraphs of a bipartite graph
with a perfect matching. A maximum matching is an f-star subgraph that
covers all vertices; it can be found in O(E%V+V) time [HK]. The fol-
lowing algorithm improves this time bound when f>2.

procedure C;

comment This algorithm finds an f-star subgraph covering all

vertices of a bipartite graph G=(S,T) with a perfect
matching;

begin
1. construct H, a maximum f-star subgraph rooted in T; comment use

Dinic's algorithm;

2. construct M, a maximum matching on H; comment choose an edge from

each star of H;

3. construct F, a maximum f-star subgraph rooted in S, covering all



vertices covered by M; comment use Dinic's algorithm, starting
with M as the initial subgraph;

4.  for each vertex veT do

begin
5. let A be the star of all edges vweH, where w is not covered
by F;
6. if A has at Teast one edge then
begin
7. let B be the star in F containing v;
8. if B has at Teast two edges then
delete the edge of B containing v from F;
9. add A to F;
end;
end;

end;

Theorem 3: Let G be a bipartite graph with a perfect matching; let
f(v)z2 for all vertices v. Algorithm € constructs an f-star subgraph

F covering all vertices, in 0(E log V) time.

Proof: First we show F is constructed correctly. Line 1 constructs

a maximum f-star subgraph H rooted in T. H covers all vertices in S,
since G has a perfect matching. Similarly, line 3 constructs an
f-star subgraph F covering all vertices in T. F also covers all
vertices covered by M, assuming M is the initial subgraph in Dinic's
algorithm. For Dinic's algorithm works by repeated]y augmenting M,
and in an augment, no covered vertex gets uncovered. So after line 3,
F covers all vertices except possibly vertices weS not covered by M.

Now we show the loop in lines 4-9 covers these vertices.



Vertex w is in a star of H. So at some point, lines 4-5 choose
v and A so edge vw is in star A. Vertex v is covered by exactly
one edge, vu, of a star B in F. If B contains no edge besides vu, then
line 9 adds A to F; this covers w, without violating any contraints.
(In particular, v meets at most f(v) edges, since v meets fewer than
f(v) edges of A). If B has at least two edges, then 1ine 8 deletes
vu, and Tine 9 adds A; this covers w, without uncovering u or
violating any constraints. So in both cases, F is modified correctly
to cover w. After the Toop, F covers all vertices. So algorithm €
is correct.

| Now consider the run time. Lines 1 and 3 use O(E Tog V) time,

by Corollary 2. Lines 2, 4-9 use O(E+V)=0(E) time, with the appro-
priate choice of data structures. So the total time is O(E Tog V). QED

In the special case where f(v)=2 for all vertices v, algorithm C
covers all vertices by a collection of vertex-disjoint paths of

length 1 or 2.
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