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An algorithm for coloring the edges of a bipartite mu]tigra?? using
as few colors as possible 1is presented. The algorithm uses o(Vl/2 E 1og v + V)
time and O(E + V) space. It is based on a divide-and-conquer strategy,
using euler partitions to divide the graph. A modification of the algor-
ithm for matching is described. This algorithm finds a maximum matching
on a regular bipartite graph with all degrees 2", for some n, in 0(E + V)
time and O(E +.V) space.






1. Introduction

Many scheduling problems can be viewed as edge coloring problems.

An example is the well-known class-teacher timetable problem [D,G]: The
number of hours each class meets with each teacher is given; we must
schedule the class-teacher meetings, in the fewest number of hours
possible. (In this simple version of the problem, we neglect "preassign-
ments" [D]). This problem is equivalent to finding a minimal edge coloring
of a bipartite multigraph. An edge represents a certain teacher meeting

a certain class; its color represents the hour the meeting takes place.

We present an algorithm that finds a minimal edge coloring of a bipar-
tite multigraph, in O(VV2 E log V+ V) time and O(E + V) space. A pre-
“viousTly known algorithm requires O(VE) time and O(VZ) space. The algorithm
is based on a "divide-and-conquer" strategy; an euler partition and a
matching are used to divide the graph.

We also describe a modification of the algorithm that finds a matching
that covers all maximum degree vertices, in a bipartité graph with maximum
degree 2", For a regular bipartite graph with all degrees 2n, the matching
is maximum. The algorithm runs in O(E + V) time and O(E + V) space. So in
this special case, the algorithm improves the best known time bound,
O(V]/Z(E + V)), for bipartite matching. |
Section 2 gives definitions from graph theory. Section 3 describes

the edge coloring algorithm and its modification for matching.



2. Definitions

A graph G is a collection of vertices and edges; an edge (v,w) is an
(unordered) set of two distinct vertices. V denotes the number of vertices
in G, and E denotes the number of edges. If an edge (v,w) occurs more
than once, then G is a multigraph. Edge (v,w) is incident to v and to w,
and vertices v and w are adjacent.

A subgraph of G is a graph whose vertices and edges are in G. To

delete edge e from G means to form the subgraph G-e, consisting of al]

vertices of G and all edges of G except e. To delete vertex v from G

means to form the subgraph G-v, consisting of all vertices of.G except v,
and all edges of G except those incident to v.

A graph is bipartite with vertex sets (31’32)’ if S] and 52 partition
the vertices so each edge is incident to a vertex in S] and a vertex in 32.

The degree of a vertex v is the number of edges that are incident to
v. A graph is regular if all vertices have the same degree.

A path P is a sequence of edges (V?’VZ)’<V2’V3)""’(Vn-1’vn)' The
ends of P are vertices v, and Vi If v] # Vn’ P is open; otherwise, P is
closed. A graph is connected if there is a path between any two distinct

vertices. A connected component of a graph is a maximal connected subgraph.

A matching M on G is a set of edges, no two of which are incident to
the same vertex. M covers a vertex incident to an edge in M. An edge
coloring of G is an assignment of a color to each edge in G, so all edges

~of a given color form a matching. A minimal edge coloring uses the fewest

number of colors possible.



A tree T is defined recursively as a finite set of nodes, where one
node r is chosen as the root, and the remaining nodes are partitioned into
disjoint trees, T]""’Tm' Trees Tq”"’Tm are the subtrees of r. Fach
node s in T is the root of some subtree S contained in T. The sons of s are
the roots of the subtrees of s (in tree S). The nodes of T partition into

levels: the root of T is on level 05 if a node is on level 1, its sons are

on level (i + 1).



3. Edge Coloring Algorithm

This section describes an edge coloring algorithm EC and related
algorithms. First Vizing's coloring algorithm is discussed. Next EC

is presented. Finally, a modification of EC for matching is described:

We begin by citing a fundamental result.

Lemma 1: Let G be a bipartite multigraph, and let a be-theAmaximym;degree
of a vertex..: Then a minimal edge coloring of-G uses exactly A colors.

Proof: See [B]. "QED

The edge coloring algorithms described here use this result. We
first describe a construction due to Vizing [G], which gives an algor-
ithm for edge coloring.

The edges are to be colored with A colors. Edges are colored one
at a time. Suppose edge (v,W) is uncolored. At most A-1 edges (v,x)
are colored, so some color a is missing in all edges (v,x); similarly,
some color Q_is‘missing in all edges (w,y). Construct an "alternating
(a,b) path" starting at w, as follows. The path begins with the edge
(w,y) that is colored a (if it exists). Consecutive edges 1in the path
are alternately colored a and b. The path ends at a vertex Z, where the
next color is missing. It is easy to see z # vsw, if the graph is bipartate.

Now interchange colors along the path: edges colored a are colored b,

and edges colored b are colored a. MWhen this is done, color a is missing

at both v and w, since z # v,w. Now edge (v,w) can be colored a.

This algorithm uses O(VE) time, since to color an edge, 0(V) time

2)’

is needed to find the alternating path. The space is O(E + VA) = 0(V
since an array of size 0(VA) is needed. (The array specifies which edge,
if any, has a given color at a given vertex. It is used to find the next

edge in the alternating path.)
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Now we describe an algorithm EC that improves the time and space
bounds to O(V‘I/2 Elog ¥ + V) and Q(E + V), respectively. The algorithm
uses procedures EP and MD that are based on standard graph theory
constructions. We describe these procedures, and then describe EC.

Procedure EP finds an euler partition. An euler partition is a

partition of the edges of a graph into open and closed paths, so each
vertex of odd degree is the end of exactly one open path, and each vertex
of even degree is the end no open paths. An euler partition can be
found -as foi¥lows [B]: Choose any vertex of odd degree; if none
exists, choose a vertex of even, non-zero degree. Traverse aﬁ edge from
that vertex to another; erase the edge. Continue traversing and erasing
edges, until a vertex with zero degree is reached. Then choose a new
start vertex, and repeat the process. Do this until no start vertex of
non§zero degree remains.
Procedure EP implements this construction.
procedure EP;
comment EP (Euler Partition) finds an euler partitioh P for a multi-
graph G. P is a list of paths p that partition the edges;
begin
1. make P an empty list;
2. make S an empty queue; comment S contains all possible start vertices
for new paths; |
3. put all vertices of odd degree in S;
4, put all vertices of non-zerc even degree in S;
5. while S is non-empty do
begin
6. let s be the first vertex in S;

7. delete s ﬂ@mS;



comment vertex s may have degree 0, since edges are deleted

from G in line 13;

8. if vertex s has non-zero degree then
begin
9. make a new path p empty;
10. Vi = s,
11. ‘while vertex v has non-zero degree do
begin
12. let (v,w) be an edge in G;
13. delete (v,w) from G;
14. put (v,w) in p;
15. Vo= W
end;
6. put path p in P;
17. if vertex s has non-zero degree then put s in S;
end;
end;
end EP;

Lines 2-4 put all non-zero degree vertices in S, as possible start
vertices of paths. 0dd degree vertices are put first, so the open
paths in the partition are generated first.

The Toop in Tines 5-17 generates each path in the partition. Lines
6-10 choose a start vertex s. The body of thei]oop in Tines 11-15
chooses the next edge in the path. Line 13 deletes that edge from G,
so it is not put in another path.

If the start vertex s has odd degree, path p is open. When line 17 is

reachad, s has even degree; if 3t has non-zero degree, it is put at the end

of queue S.



If the start vertex s has even degree, every vertex in G has even
degree, and p is a closed path. When line 17 is reached, s has zero degree,
and is not put in S.

For the graph in Figure 1, EP finds the two paths shown in Figure 2.

Now we describe the data structure used by EP. The graph G is
represented as a collection of adjacency lists. Each vertex v has a
list containing all edges incident to v. So an edge is on two adjacency
lists. Adjacency lists are doubly-Tinked. This facilitates deleting an

~edge from G, by removing it from the two adjacency Tists.

The euler partition P is stored as a linked Tist of paths. A path .

p is a Tinked 1ist of edges. The queue S is a linked list of vertices.

Lemma 2: Procedure EP finds an euler partition, in O(E + V) time and
0(E + V) space.
Proof: The correctness of EP follows from the remarks above. Now we

discuss the time bound.

Lines 1-4 use O(V) time. Line 6 chooses a vertex s as the start
vertex at most twice (once when the degree of s is odd, and once when
it is even). So the total time in lines 6-10 is o(v).

Lines 12-15 are executed once in time 0(1): }Line 12 chooses the
first edge in v's adjacency list; line 13 deletes the edge from the two
adjacency 1ists it is on; line 14 puts it in the Tinked list for p. Since
lines 12-15 are executed once for each edge, the total time is 0(F).

Lines 16-17 use a total of O(V) time. So EP uses 0(E + V) time..

EP uses O(E + V) space for G, O(E) space for P, and 0(V) space for

S. So the space is O(E + V). QED.



Procedure MD finds a matching. Let G be a bipartite mu1ﬁi9raph,
with vertex sets S, 52,'and let A be the maximum degree of a vertex. A
matching M, that covers every vertex of degree A, can be found as follows.

First for 1 = 1,2, find a matching Mi that covers each vertex of

degree A 1in Si’ Note M; exists, by Hall's Theorem [g]: Any d vertices

of degree A in Si are adjacent to at least d vertices, so Hall's Theorem

applies.

Next construct the desired matching M, using the method of Mendelsohn-
Dulmage [L1.. "First put~all® edges of My, My in M. Next, form My @
M,. A connected component C of M @M, is a path, with edges alternately
in M] and MZ' For each component C, put all edges of-Mi 0O Cin M, where
1 is chosen as follows: If C is an open path of odd length, choose i so
lMitﬁ C| is maximum. If C is an open path of even 1ength, one end of C
s a vertex of degree A; choose i so Mi covers that vertex. If C is a
closed path, choose i arbitrarily. When this is done, M is a matching,

that covers every vertex of degree A.

Procedure MD implements this construction.

procedure MD(A);

comment MD (Match A) finds a matching M on G that covers every vertex
of degree A. Here G is a bipartite multigraph, in global
storage. It has vertex sets S]’SZ' A s the maximum degree
of a vertex.

begin

1. for i: = 1,2 do comment find a matching Mﬁ that covers every vertex
~of degree A in Sis
begin

2. let T be the set of vertices in S; with degree <a;
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10.
11.

let H be the multigraph G-T;

let My be a maximum matching on H;

end;

comment use the Mendelsohn Dulmage construction to combine matchings;

M:

M] n MZ;

M]G)MZ;

N:
for each connected component C of N do

begin

let C be the sequence of edges el,...,er;

wlog assume C starts with a vertex of degree A;

for i: = 1 step 2 to r do

put e in M;

end;

end MD;

Figure 3(a) shows a graph; the starred edges form the matching found

by MD. Figure 3(b) shows matchings M] and M2, and the components of

My C)Mz; edges in M; have the label 1.

Lemma 3: Procedure MD finds a matching that covers every vertex of

degree A, in O(V

V2(E +v)) time and O(E + V) space.

Proof: The correctness of MD follows from the remarks above.

Now consider the time. Lines 1-3 use 0(V) time. (In line 3, it is

only necessary to flag the vertices of T.) Line 4 can be done once in

time O(V]/Z(E +V)) [FK].  The matchings M; are stored so each vertex v

indicates which edge of M; contains v. So Tines 5-11 require O(V) time.

Thus the total time is O(V]/Z(E +V)).

The space bound is obvious, since line 4 requires no extra storage. QED.
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Now we describe the edge coloring algorithm EC. EC uses a divide-
énd-conquer approach [AHU]: Divide the multigraph G into subgraphs G] and
GZ’ where each subgraph has maximum degree A/2. Color each subgraph with a/2
colors. (This is possible by Lemma 1). This gives a coloring of G with
A colors, which is minimal.

To divide G, construct an euler partition. Traverse each path of
the partition, placing edges alternately in G] and GZ' If vertex v has
degree d in G, its degree in Gy or G, is |d/2]or [d/7].

If A is even, this approach produces two subgraphs with maximum
degree A/2, as desired. If A is odd, both subgraphs may have'maximum
degree [3/2]. This would give a coloring of G with o + ] colors, which
is not minimal.

To prevent this, if 4 is odd, first constrict a matching M that
covers all vertices of degree A. Assign one color to the edges of M.

Then delete these edges. This makes A even, SO now the divide-and-conquer
approach can be used. |

Procedure EC implements this construction.

procedure EC;

comment EC (Edge Color) finds a minimal edge coloring for a bipartite

multigraph ‘G. For eaghvedge e, color (e) is set to the appro-
priate color;

begin

myltigraph G; comment G is stored in global storage;

procedure REC (A);

comment REC (Recursive Edge Color) recursively colors a bipartite multi-

graph G, that contains no vertices of degree 0. A is the

maximum degree of a vertex;

begin



10.

11.
12.

15.

16.

if A is odd then

begin

comment make M a matching that covers every vertex of degree A,

and color the edges in M;

if 4 =1 then M: = G else MD; comment MD finds a matching M;
let ¢ be a new color;
for each edge e ¢ M do

begin

color (e): = c;

delete e from G;

end; |
end;

EP; comment EP makes P an euler partition of the edges in G;

if P is not empty then
begin
make L] and L2 empty Tists;
for each path p in P do
begin
let p be the sequence of edges €1se-es€ 3
fori: =1 to r do
if i is odd then put e in L]
else put e. in LZ;
end;
for i: = 1,2 do
begin
let G be the multigraph consisting of the edges‘in Li and all
vertices incident to these edges;

REC( LA/ZJ); comment REC colors the edges in Li;

11
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end REC;
17.  delete all vertices of degree 0 from G;
18. let A be the maximum degree of a vertex;
19.  REC(a);

end EC;

Figure 1 shows an input graph for EC. Figure 2 shows the parti-

tion found by EP. Figure 4 shows the Tists of edges L, and L. con-

1 2
structed from Figure 2. The recursive calls to REC assign colors 1-4

to the edges, as indicated in Figure 4.

Theorem 1: Procedure EC finds a minimal edge coloring of a bipartite multi-

graph, in 0(v'/2

E log V + V) time and 0(E + V) space.

Proof: The correctness of EC follows from the preceding remarks, using
induction on A. Now we discuss the time bound. In EC, Tlines 17-18

require O(E + V) time. So it suffices to show that if there are no vertices
of degree 0, REC runs 1in O(’V]/2 E log a + V) time. We do this below.

First note that since there are no degree 0 vertices, V < 2E, i.e., V = 0(E).

Suppose A = 1. Then G is a matching, containing at most V edges.
Lines 1-6 color the edges in 0(V) time, and the total time is o(v).

Now suppose 4 > 1. If 4 is odd, Tine 2 uses 0(vV'/2 (E + v)) =
0(v'/%E) time, and Tines 3-6 use O(V) time. So Tines 1-6 require 0(v1/2E)
time. _ |

Lines 7-13 require O(E + V) = 0(E) time, as do Tines 14-15. So the
total time used by REC is O(V1/2E) plus the time for two recursive calls
to REC in 1ine 16.
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Now consider a tree whose vertices represent recﬁrsive calls to
REC. The root represents the original call to REC. A call REC (a),
Where o > 1, has two scns, representing the two calls in line 16. A call
REC(A) where A = 1 has no sons. |
The tree contains L}ogz Aj + 1 levels. Consider the graphs for all
calls on a given level. Let there be k such graphs. An edge of the
original graph is in at most one of these graphs. Let Vi and Ei be the
number of vertices and edges in these graphs, for i = 1,...,k. Then
k k
AP WA Vg
(CIRE

Thus a total of O(V]/ZE) time is spent in all calls in a given level.

(On the bottom level of the tree, all graphs have A = 1, so the total

time is

k k | T
L0(v;) =F0(E) = o) = o(v!/?%)).
i=1 i=1

- &7

Thus REC requires o(v!/? 1og &) time, if 4 > 1. This proves the time
bound for REC.

Now consider the storage space. The graph G uses O(E + v)‘space,
At a given point in the algorithm, an edge of the input graph that is
not in G is in at most one list Li; so the Tists Li require 0(E) space.
The color array uses O(E) space. The remaining space is needed for
implementing the recursion. Since the depth of the recursion is at
most Llogz a1, at most 0(logV) space is used. So a total of O(E + V)
space is used. QED

Now consider a special case, 4 = Zn. In the calls to REC, A assumes

the values 21, fori =n, n-1,..., 0. So.in line.2 of REC, MD is never

called. Thus the following bound holds.
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Corollary 1: If a = 2", procedure EC finds a minimal edge coloring in
0(E Tog V + V) time and Q(E + V) space.

An interesting question is whether the time for EC can be improved
in other cases. When 4 is odd, it is not strictly necessary to find a
matching; it suffices to partition the edges into subgraphs having maxi-
mum degrees [4/2] and [4/2]. It may be possible to use a faster parti-
tioning procedure, thereby improving the time bound.

Now we discuss an application of EC to matching. Corollary 1 imp?ieé
a matching that covers all vertices of degree A = 2" can be found in
0(E Tog V + V) time. This improves algorithm MD. By rewriting EC for
this special case, we can further improve the bound. The matching
algorithm follows.

procedure MD2;

comment MD2 (Match a = 2”) finds a matching that covers all vertices
n

of degree A, if A = 2";
begin
1. delete all vertices of degree 0 from G;

Z. let A be the maximum degree of a vertex;

3. while A > 1 do

begin
4. EP; comment make P an euler partition of the edges in G
5. for each path p in P do
begin
6. let p be the sequence of edges e1,...,er;
7. for i: = 1 step 2 to r do
8. delete e; from G;

end;
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9. delete all vertices of degree Q from G;
10. At = A/2; |
end;
11. M. = g;
end MD2;

For the input graph of Figure 1, the matching consists of the edges

labelled 4.1in Figure 4.

Theorem 2: Let G be a bipartite graph with o = 2", Procedure MD2 finds
a matching that bOVers=every vertex of degree A, in O(E + VY
time and O(E + V) space.

Proof: The correctness of MD2 is proved similar to the correctness of

EC. Now we discuss the time bound. The body of the Toop in lines 3-10

is executed once in O(E + V) time. Since the graph contains no degree §

vertices (1lines 1,9), this.time is 0(E). The Toop is executed for graphs
containing at most E/Zi edges, where i = 0,...,n-1. So the total time in

Tines 3-10 is O(E). Lines 1-2 and 11 require O(E + V) time. So MD2 uses

O(E + V) time.

Since storage is needed only for the graph G, the space is 0(E + V).

QED |

The following instance Theorem 2 improves the time bound for bipartite

matching [HK] in a special case:

Corollary 2: Let G be a regular bipartite graph with A = 2n. Procedure
MD2 finds a maximum matching in O(E + V) time and O(F + V)

space.

It is an easy exercise to modify MD2, so if A is arbitrary, the matching

covers at least half the vertices of degree .
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Figure 1

Input graph
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Figure 2

Euler partition
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