On Two Problems in the Generation of Program Test Paths *

Harold N. Gabow
Sachindra N. Maheshwari
Leon J. Osterweil

CU-CS-081-75

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* This work supported by NSF Grant DCR75-90072

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

On Two Problems in the Generation
of Program Test Paths *

by
Harold N. Gabow
Sachindra N. Maheshwari
Leon J. Osterweil
:Department of Computer Science

University of Colorado
Boulder, Colorado 80302

TR #CU-CS-081-75 September 1975

* This work supported by NSF Grant DCR75-90072

ABSTRACT

In thié paper we analyze the compléxity of algorithms for two
problems that arise in automatic test path generation for programs:
the problem of building a path through a specified set of flow graph
nodes and the problem of building a path which satisfies impossible-
pairs restrictions in a flow graph. We give a highly efficient algorithm
for the first problem, and show that the second problem is NP-complete

in the sense of Cook and Karp.

INTRODUCTION

‘The ability to construct constrained paths through a program is
useful in program testing and validation. It is clear, for example, that
if it is possible to construct a path which is constréined to pass through
a given arbitrary basic block of a program, then this capability can be
used to build a set of test paths such that every block (and thus every
statement) of the program is covered (i.e. visited) by at least one test
path. Moreoever, this cépability can, with minor modification, be used
to construct a set of test paths which covers every exit from every
branching statement. The desirability of such test path sets seems well
agreed upon ([1],[2],[3]), and discussions of how to constrﬁct them can
be found in the literature ([1],[4],[51,[6]).

Criticism of such schemes for building test path sets can be levelled
in at least two ways. First, while the test path set may covef all lines
of code and all branches, no effort is made to insure that any single path
covers a potentiall§ revealing or vulnerable combination of blocks or
branches. Hence the test path set may be bland and unchallenging. Second,
no effort is made to use program semantics to suppress the generation Qf
paths which are unexecutable, and hence useless in any testing procedure.

In responsé to the first criticism, useful criteria for determining
how to Select’revealing and troublesome combinations éf blocks are now
being sought ([7], [8], [9]), and it seems reasonable to expect that
automated syétems for doing this may be available before long ([8], [9]).
The notion of impossible pairs, has been édvahéed by Krause, Smith, and
Géodwin [l] as a reasonable step towards meeting the second criticism.

They suggest‘that pairs of mutually unexecutable edges in a program be iden-

tified through analysis of program branching conditions, and that
every test path generated be constrained to contain no more than one
edge of each impossible pair. Recent program analysis systéms ([7],
[9],[1QD offer hope that non-trivial impossible pair sets can be auto-
matically generated.

in this pépér we assume the existence of program analysis schemes
for generating troublesome combination conditions and impossible pair
conditions. We address only the graph analytic problems of generating
paths constrained by these conditions. Our goal is to determine which
of these problems are combinatorially tractable, and hence which types
of program analysis seem worthy of continued effort.

We make the conventionai assumption that a program is fepresented
by a program flow graph — a digraph in which each node represents a
basic block of the program and in which the edges represent possible
transfers of control. Hence the'paths which we seek are flow graph
paths in the usual graph theoretic sense. In particular a path may be
a non-simple path, i.e. it may contain repeated nodes. We assume that V
is the flow graph's node set, E is its edge set, that it has a single start
or source node s, and a single stop or sink node 't. Definitions of

other graph theoretic terminology used here can be found in [11].

THE GENERATION OF MULTIPLE NODE CONSTRAINED PATHS

In this section we discuss the multiple node constrained path
problem. Given a flow graph G, with source s and sink f, the problem
is to either find a path from s to t which passes through a specified
subset V* of V, or show that no such path exists. We solve thé problem
by first reducing G to an acyclic equivalent and then determining a
multiple node constrained path through this simpler structure.

For the flow graph G let Gl’ GZ,...,Gk be the strongly connected

components (SCC) of G (i.e. each G; is a maximal subgraph of G such
that any node of'G:,L is reachable from any other node in Gi by a path
in Gi)' Now consider the digraph’Gr = (Vr’Er) for which each node in the node set
Vr represents a SCC of G, and (vi, vj) is in the edge set’Er if and only
if there is an edge in G directed from some node in the SCC correspond-
ing to vi‘to some node in the SCC corresponding to Vj. We call Gr the
reduced graph of G. It is easy to see that Gr is acyclic, and has a
source s_ corresponding to s and a sink tr corresponding to t. More-
over, because each node in G cdrresponds to a unique node in Gr there is
a correspondence between the paths in G and the paths in Gr’ Now denote
by Vr* the subset of Vr which corresponds to V¥ in V, Clearly a path
in G from s to t through all nodes of V¥ exists if and only if there ex-
ists:a path in Gr ffom s, to t_ which paSseé through all nodes of V*r.

Hence the problem of determining the existence of a multiple node
constrained path in an arbitrary digraph is reduced to the problem of
determining the existence of such a path in an acyclic digraph. In the
process of sélving this latter problem én actual path in the acyclic

digraph will be produced if one exists. It will be shown that the

desired path in the original digraph is easily generated from this path

in ﬁhe acyclic digraph. |

| We will now present an efficient élgorithm for finding a multiple nqde
constrained path’(if one exists) through a single source, single sink
acyciic digraph. Suppose G is such an acyclic diagraph, s and t are its
source and sink respectively, énd V* is a subset of nodes of G through

which the desired path must go. The algorithm relies upon the following
observations. First, the desired path exists if and only if for all pairs

of nodes Vi Vj e V& U {s,t}, either vy is reachable from Vj, or Vj is reach-
able from v, A node pair is said to be unrelated if neither is reachable

from the other. Thus, for example, any pair of source nodes in an

arbitrary acyclic diagraph is unrelated. Second, the deletion of a

source and all edges emanating from it in an acyclic digraph results
in another acyclic digraph. This process can be continued until

the trivial graph with one node results. This successive

removal 'of sources creates a sequence of node-deleted subdigraphs,
some of which may have multiple sources. The order in which nodes are
deleted can, as shall be shown, be contrived to assure that if there are
two unrelated nodes in V%, then there will be a subdigraph in the node-
deleted sequence for which some pair of sources will both be members of
V%, This condition is easily tested for, and hence the algorithm is
readily usable to disprove the existehce of a multiple node constrained
path. This successive reduction of the acyclic digraph, ultimately

to a single node can, moreover, be viewed as a traversal of the digraph,
where the traversal is the order in which the nodes are{deleted. This
traversal easily yields the desired multiplé ndde constrained path

through G;

The following lemma leads directly to the algorithm:

Lemma 1. If u and v are a pair of unrelated nodes in anvacyclic digraph
G, then there exists a traversal in which at some stage both u and v are

sources in the remaining node-deleted subdigraph.

Proof. Without loss of generality consider a traversal in which,

after nodes Vi Visoeee , v, are traversed, the subdigraph of

1 2 T
undeleted nodes and edges contains both u and v, and has u as a
source. If v is also a source then we are done. Therefore
assume that v is not a source. Since u and v are unrelated, and v is
not a source there must be another source in the subdigraph, say \ s
r+l1
from which v is reachable. Let v, be the next node to be tra-
r+l1
versed. In the resultant untraversed subdigraph u will continue to be
a source, and if v is not a source then the same argument can be

used to choose other nodes to traverse until both u and v

become sources. ‘ £

The algorithm fof determining the existence of a multiple node
constrained path works just as the proof of the lemma, namely by
traversing a nonconstraining source in a node-deleted subdigraph first,
whenever a choice exists. It will be shown that the successful
traversal of G implies the existence of a patﬁ from s to t that passes
through all of the nodesoofyv*. The information about the path itself
is built in the vector PATH, a footéd father tree (see [lZ]for the definition
of this tefm) which shall be oalled the traversal tree. Initially
the source of. G is made the root of the traversal tree.k At each
successive stage of traversal any new source created is added to the

tree by linking it to the node most recently traversed. The algorithm

useskSets SET1 and SET2 to store those sourCes of the node~déleted sub-

digraph which are nonconstraining and constraining nodes respectively.

7
The information about the indegrees of nodes is stored in the array INDEG.
For the purposes of the following algorithm, V* {J {s,t} is considered to

be the set of constraining nodes.

- SET1«{s};
SET2¢ ¢;
TRAVERSE: while SETL is non-empty and |SET2| < 1 do
begin
delete a node x from SETI;
for each node w in the adjacency list of x do
begin
INDEG(w) < INDEG(w) - 1;
if INDEG(w) = 0 then
begin
PATH(w) < x;
if w is a constraining node then add w to SET2
else add w to SET1;
end
end

end

’iﬁ‘{SETZI > 1 then output "no path exists"
else if t § SET2 then |
delete the node from SET2 and add it to’SETl;
80 to TRAVERSE;
end

~else output PATH;

end;

The following lemma shows how a multiple node constrained path

through G can be produced from PATH.

Lemma 2: TIf CONSTRAINTPATH terminates by placing t into SET2, then
the reverse of the node sequence t, PATH(t), PATH(PATH(t)), ...,
s, denoted by P = ﬁl,pz, cevs Py is a path in G which contains

all the nodes in V*,.

Proof: The proof is by induction on the depth of the traversal

tree, depth of a tree being defined as the length of the longest

path from the root to a leaf. The claim is trivially true for
traversal trees of depth 1. Assume it is true for all traversal

trees of depth k < n. Now consider a digraph for which CONSTRAINTPATH
terminates by placing t in SET2, and the depth of the traversal tree
represented by PATH is nt+l. Let u be the first constraining node
after s to be added to SET2 by CONSTRAINTPATH. From lines A and B,
and Lemma’'l it follows that u is the only source of the node

deleted subdigraph Gu when u is traversed. Also, since CONSTRAINT-
PATH stops with t in SET2, V* is a subset of thé node sét of Gu'
Therefore, under the condition thath* - {u} are the contraining nodes
for Gu, the subtree rooted at u in the traversal tree represented by
PATH is the traversal tree for'Gu. Since the depth of this subtree
ié not gfeaﬁer than n, it foilows from the induction hypothesis

that the reverse of the node sequénce t, PATH(t), PATH(PATH(t)),

...'u is a path in Gu which contains all the nodes in V* - {u}.
Therefore the reverse of the néde sequence t, PATH(t), ..., u, PATH(u), -

.+.»s8 1is a path in G which contains all the nodes in V*. ' o

It is easy to see that CONSTRAINTPATH reqﬁires only O(IE[)

(where [E[denotes the cardinality of set E) steps to build the traversal
tree. This is because CONSTRAINTPATH involves eséentiallyrthe deletion,
one by one, of the edges and nodes of G, and creation, node by node,
of PATH. |

"Iﬁ order to determine whether a multiple node constrained path
exists iﬁ a flowgraph G=(V,E), the reduéed graph Gr=<vr’Er) must be
constructed and CONSTRAINTPATH must then be run on Gr' Gr can be constructed
from flowgraph G=(V,E) in 0({E‘) steps by using an algorithm of Tarjan [13].
As stated above CONSTRAINTPATH takes O(IErl) steps to build the entire
traversal tree of Gr. Hence, since lErLiiE|, the existence of a multiple
node constrained path can be determined in O(IEI) steps. It is often assumed
(see [14], for example) that |E[’= O(]VI) for a ?rogram flow graph.
Hence éxistence can be determined in O(|Vi) steps for a program flow graph.

If such a pathkexists; then its representation in Gr is easily obtained

in 0(‘Vr|) steps by determining P as in the proof of Lemma 2. In order to
construct a multiple node constrained path in G, P is first expanded by
replacing each P> 1<i<%, by any arbitréry permutation of the wvertices
in the SCC of G corresponding to P, - This results in a sequence of
nodes in G such that each consecutive pair of the sequence can be connected
by a simple path in G, thereby forming the desired multiple node constrained
path iﬁ G. In this sense, this sequehcekis a representationkof the
desiréd péth.. This sequénce in G can be bbtainéd in O(lVI) steps for

a program flow. graph.

10

In order to obtain the actual path in G, a depth fifst search
can be used to build subpaths between each pair of adjacent nodes
in the representation. FEach subpath can be computed in 0(W D steps.
Since there may be as many‘as |V|-1 subpaths to be determined, the total
effort is bounded by O(}V[z). Thiskbound holds for all digraphs,
regardless of whether]E]= O(]V]) or not.

It should be noted that the path produced by this algorithm may
not be simple. It is not hard to see that the problem of producing
a simple multiple node constrained path is equivalent to the problem of
finding a hamiltonian path and thus is an NP-complete problem [15].

It should also be noted that a digraph G and a constrained node
set V* can be constructed which force the required path to have O(!V}Z)
length (see figure 1). Hence if the process of listing a node is
defined to require one unit of effort, then no algorithm for listing a
multiple node constrained path can have complexity less than the one
given here.

It should be stressed, however, thét the method outlined here can
be used to determine a useful representation of such a path (if a path
exists) with O({Vl) effort, for a program flow graph. The work of
Clarke Eld seems to indicate, moreover, that such a representation
may be’more:useful than a completely specified path in an
actual pfdgram teSting situation.‘ This is becausé4a>mechanical subpath
géneratof is inhéfently'incapable of producihg subpaths which are known
to be executable. Preliminary work by Ciarke, however, offers hope that
symholic execution methods can be used to build an executable path betweeﬁ

two given flow graph nodes.

Figure 1: Assume|VI= 2k. If the constrained node set V* = {

Vit Vkt2?
© Vor-1d,
then the length of the path from s to t that passes

2
through the vertices in V* must be at least O(k").

11

12

THE CONSTRUCTION OF IMPOSSIBLE PAIRS CONSTRAINED PATHS‘

In this section we discuss the impossible pairs constrained path
problem. We show that the existential impossible pairs problem--i.e.,
the problem of detérmining the existence of an impossible pairs constrained
path--is NP-complete. We show, moreover, that the problem is NP-complete
even when the gréph is acyclic and all indegrees and outdegrees are
bounded by two.

We begin by describing a straightforward algorithm for constructing
an impossible pairs constrained path, if one exists. Suppose G is a flow
graph with node set V and edge set E. We solve the problem of finding a
path from s to t containing at most one node from each pair of nodes

(ai,bi) in the set

n
M={(ai,bi)}i=l

It can be easily shown that this problem is equivalent to the problem
stated in [l], in which the impossible pairs are edge paifs.
Let I={1,2,...,n} be the set of indices‘of M.
procedure DETPATH;
begin for all subsets J of I do
Eggig‘form the set S={a,]isJ}u{bi{iéJ}'

form the graph G' by deleting from G the nodes in § and
their incident edges;.

if a path from s to 't exists in G' then go to Y;
end; |
butputk”pafh does mnot eiist”;Agg‘Eg DONE;
Y: outguti"path eXists”,

DONE: end;

13

The existence of a path from s to t can be determined in O(lV|) time
(if G is a flow graph) by using a depth-first search. Hence the generation
and searching of each of the 2" graphs formed in DETPATH requires O({V’)
fime. Hence this algorithm requires O(IVl*Zn) time; (Another exhaustive search
algorithm, requiring O(IV|'V[) time, 1s easily constructed.) |
Note that the above algorithm can be thought of aé a non—deterministicr
polynomial time bounded algorithm, because once the correct choice
for J has been made, finding the desired path requires only O([V[) time.
Thus the impossible pairé problem is in NP.
In order to finish the proof of the NP-completeness, it is shown
that an NP-complete problem is transformable in polynomial time to the
existential impossible pairs problem. The satisfiability problem for
a Boolean expression in conjunctive normal form is used for this.
A Boolean expression B is in conjunctive normal form if it is
written as
B=(plle12V. . .plnl) A.(leVPZZ .. .sznz) A--- (plemeV. . .menm)
wheﬁe each pij‘represepts either a Boolean variable, X, » OF the negation
of a Boolean variable, Ek. 'B\is satisfiable if the X, can be assigned
Boolean values so B is true. The problem of determining the satisfiability

of an arbitrary expression in conjunctive normal form is NP~completef[15];

14

Lemma 3: The satisfiability problem is polynomially transformable into

the existential impossible pairs problem.

Proof: Using the given Boolean expression B, a digraph GB is con-
structed. VB, the node set of GB’ consists of a source S, a

sink t and a node vij for each literal pij in B. E the edge set

B,
of GB, is the set of pairs of vertices corresponding to pairs of

literals in consecutive disjuncts of B, where s is considered the

first disjunct of B and t the last disjunct in B. Thus

Bg={(s,v,) Il;jsnl}

i+l

U{Vij’viﬂ,k) {rlii<m,l_<fj_<‘ni,l_§k_<_n }
<q<
Q{(ijat) ‘ l—“l—nm}
An illustration of this construction is given in Figure 2.
MB’ the impossible pairs list for GB’ is the set of all pairs of

nodes representing pairs.of literals which are negations of each.

other. Thus

MB={(vij,vk£)lpij=pk&}

Hence,'for the example illustrated in Figure 2,

M= s V) (V95005 (V)55 V) (V) 0V 0)]

Fig. 2: The graph GB constructed from the Boolean

expression B=(pVq)A(pYqvr)A(qyr) .

15

16

It is easy to verify that if a constrained path exists in GB, then

izl’VZQZ""’VmQ ,t} be such a constrained

and me all true in B, the value of B
S m

B is satisfiable. Let PB={s;v

P e
222

is true. Because PB is impossible pairs constrained, moreover, these

path. By making p s
lﬁl

requirements are guaranteed to be non-conflicting. Hence the existence

of PB implies the satisfiability of B.

Conversely if B is satisfiable, then there exists a sequence

{zlzz...,zm}

such that plzl, ngz, «+, and pmgm are all true in B. Clearly the
assignment of true to all of these literals cannot result in a con-

flicting definition of any Boolean variable, X . Hence s, Vlll’ Vzgz’

cees Voo t is a path through GB which is impossible pairs constrained.
m

Thus the satisfiability of B implies the existence of PB. '

It is clear that GB and MB can be created from B in polynomial time.
Thus the problem of determining the existence of an impossible pairs
constrained path in a digraph is NP-complete. |

It is interesting to note that GB is acyclic for all B, implying
that the problem of determining the existence of an impossible-pairs con-
strained path in'an acyclic digraph is NP-complete.

It is not hard to see, moreover, that this result holds for acyclic
digraphs for which all vertices have indegree ana Qutdégree léss than or
equal to two. " The dembnstration'of this is the same aé the previous

demonstration, except that now, in place of G , a Gé must be constructed

B’
which satisfies the above degree constraints. In order to build Gé, first

arrange the nodes okaB, the node set of GB, in m+2 rows, each row corres-

ponding to the literals of a single disjunct’of B} the edges of GB‘maké

17

consecutive rows of VB into complete bipartite graphs. Gé is constructed by
introducing new nodes between the rows of GB, and altering the edge set

of G so the following two properties hold. First, any two nodes in

B’
consecutive rows of VB are joined by a path through new nodes. Second,

all nodes have the desired degree constraints. This construction can always

be done in polynomial time.

|

Fig. 3 shows how GB

can be constructed from GB in Fig. 2. It is
now easy to see that the problem of determining the satisfiability of
a Boolean expression in conjunctive normal form is transformable to
the impossible pairs problem for Gé and ME.

We have thus shown that the problem of finding impossible pairs
constrained paths is NP-complete for a highly restricted class of graphs.
Clearly this restricted class is included in the class of program flow
graphs, even assuming that programs are written with highly disciplined
use of control flow structures. Hence this result is directly applicable
to the problem of finding pathsﬂin real-world programs.

It should be noted in closing, however, that the impossible pairs
problem is not NP-complete for the very resﬁricted, yet important, class {
of program flow graphs which are trées. A linear algorithm is constructed
as follows. Let T be a flow graph which is a tree. Form G=(V,E) from T
by adding a sink node, t, to the node set of T énd by adding, for each
leaf of T, an edgé‘directed from the leaf to t. Use a depth-first search
to numbexr the nodeé‘éf'T in such a way that all descendants of a node‘are
consécutively numbered, and each node is 1aEelled with the range of numbers
borne by its.descendants.r This can beldoné in OC|E]) time [13]. For each
impossible péir use the node’numbering to defermine whether oﬁe node of

the pair is a descendent of the other. If so, remove the single in-edge

12
Vi2
Yoo
u
32
S N
"31 T - -
Vo1 Vo2
u < <<
41 u42
T Y
i V3
Y62

Fig. 3: The graph Gé constructed from the graph GB in Figure‘Z. For

each row of nodes vi+ in Gg, two rows of nodes Ui-1,]

3

and u.. . have been added.
2i,7]

13

19

into the descendent node from the edge set of G. Tﬁis determination and
deletion (if necessary) requifes constant time for one pair, hence 0(n)
time for all péifs. Finally use é depth first-search to attempt to
build a path from s to t in G. Thisrsearch requires O(lEl) time. Any
path built is an impossible pairs constrained path. If’no such path
exists then there is no impossible paifs constrained path. Hence the
impossible pairs problem can be solved in O(max(n,‘EI)) time for the

class of flow graphs which are trees.

20

CONCLUSIONS

We have analyzed two different schemes for’generating test paths
thfough programs. For the first scheme, in which a path through a spec;
ified set of nodes is desiréd, we were able to produce a highly efficient
algorithm. It appears that it will be qﬁite useful and fewarding to
press forward efforts in the automatic generation of interesting‘combinations
of program blocks. The second scheme, involves finding a path which
never includes both nodes of any of a given set of node pairs. Our
results are unencouraging for this scheme. Even if the program graph
is acyclic and even if no node has more than two inedges or outedges,
the best known algorithm for finding such a path is exponential in
the nﬁmber of impossible pairs. Hence it appears that it is reasonable
to attempt the generation of impossible pairs constrained paths
only if the number of pairs is small or if good heuristics can be

discovered.

10

11

12

13

14

15

References

Krause, K.A., Smith, R.W., and Goodwin, M.A.."Optimal Software Test
Planning Through Automated Network Analysis," 1973 TEEE
Symposium on Computer Software Reliability, IEEE #73

C 40741-9CSR, New York, pp. 18-22.

Ramamoorthy, C.V., and Ho, S.-B.F.,"Testing Large Software with
Automated Software Evaluation Systems,' IEEE Transaction
on Software Engineering, SE-1, (March 1975), pp. 46-58.

Boehm, B. "Software and Its Impact: A Quantitative Assessment,"
‘ Datamation 19 (May 1973) pp. 48-59,.

Osterweil, L., '"Depth First Search Techniques and Efficient Methods
for Creating Test Paths,'" University of Colorado Dept. of
Computer Sci. Technical Report #CU-CS-077-75 (August 1975).

Hoffman, R.H. and Smith, R.W., "Advanced Techniques in the Generation
of Connectivity Matrices for Software Network Analysis,"
TRW Systems Group, Houston, Texas, 1975.

Huang, J.C., "Program Testing," University of Houston, Dept. of
Computer Science, Houston, Texas, May 1974.

Clarke, L., "A System to Generate Test Data and Symbolically
Execute Programs,'" University of Colorado Dept. of Computer
Sci. Technical Report #CU-CS-060-75, (February 1975)

Howden, W., 'Methodology for the Generation of Program Test Data,"
IEEE Transactions on Computers, C-24 (May 1975), pp. 554-560.

Osterweil, L., and Fosdick, L.D. "Data Flow Analysis as an Aid in.
Documentation, Assertion Generation, Validation and Error
Detection," University of Colorado, Dept. of Computer Sci.
Technical Report’ #CU-CS-055-74 (September 1974).

King, J.C., "A New Approach to Program Testing,'" 1975 International
Conference on Reliable Software, IEEE Cat. No. 75 (CHO 940-7CSR
pp. 228-233.)

Harary, F., Graph Theory, Addison-Wesley, Reading, Mass., 1969.

Knuth, D.E., The Art of Computer Programming, v.l, Fundamental
Algorithms, Addison-Wesley, Reading, Mass., 1968.

Tarjan, R.E., "Depth First Search and Linear Graph Algorithms,"
SIAM Journal on Computing, 1 (June 1972) pp. 146-160.

Ullman, J.D., "Fast Algorithms for the Elimination of Common
Subexpressions,'" Acta Informatica, 2, (December 1973)
pp. 191-213.

Karp, R.M., '"Reducibility Among Combinatorial Problems,' ip Complexity
of Computer Computations," R.E. Miller and J.W. Thatcher, eds.,
Plenum, New York, 1972, pp. 85-103. :

References cont'd.

16 Clarke, L. "Automatic Generation of Test Data for Computer Programs,"
Ph.D. Dissertation, Dept. of Computer Sci. University of Colorado,
Boulder, Colorado (to appear).

