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ABSTRACT

An algorithm is presented to compute a triangular factorization
and the inertia of a symmetric matrix. The algorithm is stable even
when the matrix is not positive definite and is as fast as Choleski.

Programs for solving associated systems of linear equations are

included.



1. Theoretical Background

A real symmetri; matrix A usually bossesses a unique triangular

factorization
A = MDM® (1)

where M is unit lower triangular, Mt denotes the transpose of M,
and D is diagonal. However this factorization does not always
exist and, what is worse, it may exist and be hopelessly unstable in
the sense that the intermediate quantities ]miﬁdj{, i>j, may be arbitrarily
greater than the elements of A. The use of interchanges to produce

papt = ot (2)
where P is a permutation matrix, removes some but not all of the
troublesome cases. The simplest recalcitrant example is

0 1)

A = (A 0} .

These difficulties have nothing to do with the condition number
of A for inversion, namely iiA{l']{A']][ .

It is interesting that an adequate degree of stability can be
maintaineq by accepting the small increase in complexity that comes
from allowing D above to be block diagonal with blocks of order 1 or 2.
A procedure parsymdec for obtaining the factorization of the form
(2) with block diagonal D is presented in this contribution. The
algorithm is easily modified to accept complex Hermitian or complex
symmetric matrices.

The method described here is the latest in a sequence which can
be traced in the articles Parlett and Reid [8], Bunch and Parlett
[5], Bunch [3], Aasen [1], Bunch and Kaufman [4]. Al1 these methods

are special variants of the familiar triangular decomposition (1)



which are designed both. to preserve symmetry and to prevent harmful
eJement growihd"Crucia1 points»in«tha‘tmplementﬁtton of these

algorithms are (a) the bounds on the [mlJZ'Jl izj , (b) the
~ computing time required for the factorlzatlon, (c) the form of the
permutation P, and (d) the storage requirements for P, M, and D.
There is an additional constraint that the algorithms should be no
slower than those in [2]’wh1ch solve Ax=b without maintaining
symmetry.

Block factorization techniques for symmetric A begin with
A (=A(n)), and produce a sequence of reduced matrices'{A(i)} as
described below. Note that the order of A(i) is i. At the typical

step a permutation of A is made and written in partitioned form as

( tA 1) (i) (:: $ :]

where the pivot X is sxs and nonsingular with s=1 or 2. The next

reduced matrix is defined by
ali=s) <y - exTct . (3)

The integer s is chosen to be 2 whenever it is predicted that this
will cause less growth in the elements of A(I"S) than would the choice

s=1.

The goal is to choose P(i) as simply as possible consistent
with a modest bound on element growth at each step. Our strategy
depends on a parameter of O<a<l, an appropriate value for which is
given below. In‘order to simplify the description of the algorithm
let I . denote the permutation matrix obtained by interchanging rows

m and j of the identity matrix I.



The reduct1on of A( i) to A(1 ~s) is as fo]]ows

(i) Determine ) = ]a(lll = max Ia )l
2<k$1

(ii) If |a )[ 2 an  then take P(l) = I, s=1, go to (vifi)
11

(iii) Determine o = max Iacg)l s k#]
T<ksd k

2

(iv) 1f [all)]o 202? take P{T) = 1, 51, and go to (vii)

(v) If Iajj | 2a0 then take (1) = > 5=1, and go to (vii)
(vi) Take p(1) = I,;s 522, and go to (vii)

(vii) Compute A(i"s) according to (3) and decrement i by s.

The following remarks explain the structure of the algorithm.

Let u(T) = max la§£)| j.k=1,...,1. Note that Aiafuel).

Whenever s=1,

. o
A R A

whence . .
(1) }\/Oci'lf ('I'l) holds
W No/alif (iv) or (v) holds

A+ /)

(i-1)

A

U

1A

Whenever s=2, a more complicated analysis (see Bunch and Kaufman
[4]) shows that
W20 s 27 (1-a))

The bound on the growth in passing from A(i) to A(i'z) is
minimized when

(1+1/0)% =1+ 2/(1-0)
i.e. where o =a_ = (1 +-\/T7)/8 % 0.6404.
With this choice

naxiu(1), 18y < (2501 L)



See Bunch and Parlett [5] and Bunch [3] for more details.

2. Applicability

The procedurelgérsxmdec,has two uses. Combined with the procedure
parsymsol it can produce the solution x to the linear equation Ax = b
with symmetric A and any number of right hand sides b. Secondly, the
decomposition permits the inertia (or, equivalently, the signature)
of A to be obtained from D with no further computation.

The inertia of A is the triple (w,v,£) where m,v,£ are,
respectively, the number of positive, negative, and zero eigenvalues
of A. The rank of A is w+v and its signature is m-v. The inertia
is a complete set of invariants of A under congruence transformations,
A~ StAS. It characterizes the quadratic form associated wjth A.

The procedure inertia can certainly be used in conjunction with
a bisection‘a1gorithm to determine the eigenvalues of a symmetric matrix.
Moreover the determinant is readily evaluated for use with inverse linear

interpolation. For examples of other uses of the inertia_see Cottle [61.
Consult Bunch and Parlett [5] for natural examples of systems

of equations with coefficient matrices which are symmetric but not
definite.

The Positive‘Definite Case (m=n, v=£=0). If A is known to be positive

definite the procedures symdet and symsol or the procedures choldet 1

and cholsol 1 in [7] should be used. If A is positive

definite but not known to be so, then using parsymdec might increase
the execution time by about 10% on some machines, but it is actually
cheaper with others. What is more serious is that parsymdec may
utilize some interchanges which may destroy any bandstructure that A
enjoys. These interchanges are used to curb the growth of D, but
when A is positive definite, the bounds on || M|/ and ||D|| are

irrelevant because no element growth can occur.



The,Lndefiniﬁe;Casg;(ﬂ$q3iv>qj. ,Thg,a]gorithm‘was designed for this
case. NeyertﬁeJess théwproéedures;uHSZmdet and qh;i@io] in

[2] can solve Ax = b stably in approximate]y‘n3/3 multiplications
and n2 storage by sacrificing symmetry. Rival techniques must not

spend so much time choosing and executing interchanges that they
exceed this operation count. Parsymdec requires n3/6 multiplications.

Singular Case (£>0). For the inertia problem it is important that

the parsymdec can accept singular matrices.

3. Formal Parameter List

3.1 Input to procedure parsymdec

a the elements of an nxn symmetric matrix A,
Only the upper triangular portion need be stored.

n order of the matrix A
Output of procedure parsymdec

a elements of the MDMt decomposition of A are stored in
its upper triangular portion including the diagonal.
Its strictly Tower triangular portion is left
untouched.

change a vector recording the interchanges performed on A
during the computation of the decomposition and
block structure of D.

3.2 Input to procedure parsymsol

a elements of the MDMt decomposition of a symmetric
matrix A as produced by parsymdec.

change a record produced by parsymdec‘of the interchanges
performed on the A matrix and of the block structure
of D.



3.3

b a vector of length n containing the right hand side
of the equation Ax = b. o

n order of the matrix A.

Output from procedure parsymsol

b the solution to the problem Ax = b.

fail This is the exit used when A, possibly as a result of
rounding errors, is singular.
Input to procedure inertia

a elements of the MDMt decomposition of a symmetric
matrix A as produced by parsymdec.

change a record produced by parsymdec of the block. structure
of D.

n order of the matrix A
Output from procedure inertia
poseig the number of positive eigenvalues of A.

negeig the number of negative eigenvalues of A.



4. ALGOL program
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5. Organizational and Notational Details

a. The procedure parsymdec takes A in conventional form as an
nxn array. Without increasing execution time A can be stored as a
one dimensional array of length n(n+1)/2. This saves storage but
the square array has the advantage of being able to hold M, D, and
the strictly lower triangular part of A; The diagonal of A must be
saved separately. Snapshbt& of two possible configurations after

two steps of the algorithm are given below.

4119213141516 1 d11921"31 ™41 ™51 "6 1
;;;%22m32m42m52m62 851922M3M 55 Mg 2
231%32%3343"53"63 231232133943 363
311242%43%44%45%6 34124224304"54"64
%51952%53%54%55%56 251252253%54%55%56
361%62%63%64%65%66 261%62%63%4%5%6

Note that mj+],jdj+],j = 0 always, so M and D never overlap.

b. The derivation of the permutation P from the sequence of
interchanges is a standard technique, see Wilkinson [10], p. 206, for
more details. Let P1 denote the interchange at i. If a 2x2 pivot

is used on A(T) then, by convention, M, , = P._, =1I. Also let Mt

denote (M'I)t.

The block diagonal matrix D is computed in stages as

! > pou TPap e it Lt

n=1 - My PoMy PyARIM TR,

17 D.

11



This can be rewritten in. the. form

M"\.]

where

P=P1P2

..

plapm~t = p

P!

'n~1’M

= w1l bt ul
Mot (Pn—JMn

-2Pp-1l

pt
. s (7Pn-] . ..

The matrices in parentheses are all unit lower trfangu]ar:

12

c. In the table be]ow‘écmparing three different methods for

computing factorizations of symmetric matrices, the algorithm comsymdec

is the complete pivoting scheme of Bunch and Par]étt[s] which searches

each A(i) to find its largest element.

Element

Method ..Restrictions, Multiplications | Additions. Comparisons |Growth
Choleski | pos.def. %ﬂ3+%ﬂ2+%ﬂ %ﬂ3+n2-%n 0 1
comsymdec|  sym. Sé 3+%n2-n _%n3+%n2$%ﬂ S%ﬂ3+%ﬂ2 <3nf(n)*
parsymdec|, sym. | f%ﬂ3+%n2+3n 'f%ﬂ3+%ﬂ2f%h <n2-1 <(2.57)n_]
£ f(n) = (2] .32 4172 ._'n]/(n*l))l/Z ~ piogn)/4

More details are given in Bunch and Kaufman 47 and Runch [37.

d. The information describing P is encoded in a single array of

length n, called change.

At step j the current matrix is A(n'
and rows 1 and k are exchanged, then change [j] is
pivot is used and rows 2 and k are exchanged, then

k and change [j+1] is set to -1.

signifies the existence of a 2x2 pivot.

J+1)

Thus, a negative

If a 1x1 pivot is used

set to k.

If a 2x2

change [j] is set to

number in change

Note that the permutation matrices are not applied directly to M.



e. The test for singularity in parsymsol is the most stringent
one, i.e. a test for 0 rather than e||A]].

f. If the user wishes to recover the original matrix, as for use
with iterative refinement, then the original diagonal should be saved

before parsymdec is invoked.
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6. Discussion of Numerical Properties

Because of rounding errors the computed matrices M and D satisfy
MDME = AtE
It turns out that [|E|[ does not depend on ||M|| and ||D|| alone

but on max 3 (1) where 1(H] = max Ia[gl‘). | .
izn k;’j s d

'Mmfmw]e,.lﬁgu@)
3 ed

where A(h} = A and 9y = (max g(f))/p(”) is the element growth to

12n

which reference has been made throughout the article.

In Bunch [3] it is shown that with the algorithm comsymdec,
described in Bunch and Parlett [5], Iy < 3nf(n) ~ 3n(1+1og(n)/4) when
o= o whereas with parsymdec 9y < (2.57)“‘1 when 0= This
exponential growth seems alarming but the important fact is that the
reduced matrices cannot grow abruptly from step to step. No example

is known where significant element growth occurs at every step.

In Bunch and Kaufman [4] it is shown that element growth can be
monitored at a modest extra cost. However the extreme rarity of
significant growth disuaded us from incorporating this device into

parsymdec.

7. Test Results

The execution time for the combination parsymdec and parsymsol

has been compared with that of other programs on the CDC 6400 and
the Burroughs 6700. The results are given in Tables 1 and 2. 1In

Table 1 the matrices are positive definite and are given by
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aij = ntl-i , 12§, aji = aij J>1
where n is the order of the matrix. The code choldetl* was obtained by
deleting the determinant calculation from choldetl [7]. In Table 2
the matrices are given by

= abs(i-j) i#j , a5 T 1.69

a5
These matrices are indefinite and the D matrices produced by parsymdec
contained a number of 2x2 blocks. The code unsymdet* was obtained by
deleting the determinant calculation from unsymdet [2] and- computing -
inner products in 1ine in single precision. In order to make fair
comparisons unsymsol [2], which uses a matrix for the righthand side(s),
was modified to uns msol*, which stores b in a one dimensional array.

Timing comparisons are, of course, dependent on the compiler and

machine.

Table 1: Execution times on a positive definite matrix

Burroughs 6700

Order of parsymdec and choldet 1 and choldet 1* and
Matrix parsymsol cholsol 1 cholsol 1
10 .025 sec. .037 sec. .037 sec.
20 .123 .205 .183
40 .795 1.265 1.132
80 5.672 8.817 7.883
CDC 6400
parsymdec and choldet 1* and
parsymsol cholsol 1
10 .027 sec. .026 sec.
20 127 .126
40 742 777
80 3 4.957 5.277
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Table 2: Execution times.on an indefinite matrix

- Burroughs: €700

Order of ‘parsymdéc and "uhgzmdeﬁ*z(without determinant
- Matrix - parsymsol | calcuTlation). and unsymsol*
10 .023 sec. 047 sec.
20 127 .275
4Q 817 1.902
80 . 6.003 14.093
'CDC 6400
parsymdec and unsymdet* (without determinant
parsymsoi - calculation) and unsymsol*
10 .025 sec. .058 sec.
20 117 .297
40 .629 2.001
80 4.349 13.395
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Table 3: Ratio to parsymdec and parsymsol on the Burroughs 670Q

choldet 1 and choldet 1* and unsymdet* and
Order parsymdec ~cholsol T on  cholsol 1on a unsymsol™ on

of —and a positive positive def. an indefinite
~Matrix - - parsymsol . - def. matrix . mateix . matrix
10 1.00 1.48 1.48 2.04
20 1.00 1.67 1.49 2.17
40 1.00 1.59 1.42 2.33
80 1.00 1.55 139 2.35

Table 4: Ratio to parsymdec and parsymsol  on the CDC 6400

Order parsymdec .choldet 1* and unsymdet* and
of and cholsol 1 on a unsymsol® on an
Matrix parsymsol positive def. matrix indefinite matrix
10 1.00 .96 2.32
20 1.00 .99 2.54
40 1.00 1.05 3.18

80 1.00 1.06 3.08




In factoring positive definite matrices one might suppose that

pivoting would give parsymdec-parsymsol: a slight edge over choldet-

cholsol 1 as regards accuracy. In many cases, such as Example 1,
this is so. However,in Example 2 the Choleski method wins; There
are two points to be made here. Firstly, all the answers are
satisfactorily accurate. Secondly, pivoting is designed solely to
keep step by step element growth to a modest level and that will not
necessarily enhance accuracy.

In a similar view we emphasize that the fact that Method A has
a smaller error bound than Method B in nc way implies that it produces
smaller errors. In fact the diagonal pivoting method usually produces

slightly better approximations than Gaussian Elimination with partial

pivoting.
A11 examples were run on the CDC 6400, with machine precision

~48

27" ~ 3.5;9 -15 .
Matrix True Solution Right Hand Side

4 4 24 40 -24 -7 -436

4 7 45 13 -39 -2 -490

24 45 296 91 -289 -1 -3519

40 13 91 964 -420 -4 -8033
-24 -39 -289 -420 572 9 7363

Computed Solutions:

parsymdec and parsymso]l choldet 1* and cholsol 1
-6.9999999999964 -6.9999999969468
-2.0000000000075 -2.0000000078596
- .99999999999910 - .99999999900285
-4.0000000000001 -4.0000000001073

9.0000000000000 9.0000000000173

17



Example 2:
Matrix
1T -2 3 7 -9
-2 8 -6 2 i0
3 -6 18 -15 -18
7 2 =15 273 173
-9 50 -18 173 1667

Computed Solutions:

parsymdec and parsymsol

True Solution

18

‘Right Hand Side

-5.9999999998895
-4.9999999999870
-8.0000000000170

4.9999999999959
-6.9999999999995

Exampie 3:
Matrix
-3 -3 -18 -30 18
-3 -1 -4 -48 3
-18 -4 -6 =274 6
-30 -48 -274 119 19
18 8 6 19 216

Computed Solutions:

parsymdec and parsymsol

-6.9999999999914
-2.0000000000214
- .99999999999727

-4.0000000000003

+9.0000000000000

78
-320
-81
222
-10856

‘choldet 1* and cholsol 1

~-6.0000000000000
-5.0000000000000
-8.0000000000000

5.0000000000000
-7.0000000000000

True Solution Right Hand Side
-7 327
-2 291
-1 1290
-4 275
9 1720

unsxmdet* and unsymsol*

-6.9999999922446
-2.0000000207192
- .99999999732927
-4.0000000002640
9.0000000000702
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Example 4:
Matrix True Solution Right Hand Side
-4 a -6 -32 28 -8 448
a 1 5 10 -6 -3 -111
-16 5 =37 -66 64 -2 1029
-32 10 -66 -85 53 -5 1207
28 -6 64 53 -15 8 ~-719

Computed Solutions:

parsymdet and parsymsol unsymdet* ana unsymsol*
-8.0000000015746 -7.9999999993815
~-3.0000000020098 -2.9999999992122
-1.9999999994367 -2.0000000002219
-5.0000000000716 -4.9999999999711

8.0000000000152 7.9999999999945
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