Two Algorithms for Generating
Weighted Spanning Trees in Order

Harold N. Gabow*

CU-CS-078-75 August 1975

L

)
j University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This work was partially supported by the National Science Foundation under Grant GJ 36461

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

1. Introduction

In many practical situations, one wants to generate the spanning
trees of a graph in order of increasing weight. For example, consider
this electrical wiring problem: n pins must be wired together with as
1ittle wire as possible; further, the wiring must satisfy complicated
and diverse constraints, e.g., at most k wires can meet any pin, no two
wires can be too close, etc. One way to solve the problem is to generate
spanning trees in order of increasing length (weight) until a tree sat-
isfying the constraints is found.

This paper presents an algorithm for generating the K smallest
spanning trees of a connected graph, in order of increasing weight. K
may be known in advance or specified as trees are generated. The algorithm
requires time O(KEa(E,V)+E Tlog E) and space O(K+E). Here V is the number
of vertices, E is the number of edges, and o is Tarjan's inverse of
Ackermann's function and is very s1ow—growing. ,Afbrevi0031y;known
algorithm for this problem [2] has slower run time, 0(K min(NZ,E(TOQ E)Z)+
K Tog K). The algorithm works by using a minimum weight spanning tree
as a "reference tree" [6], and exchanging edges to find other trees.

It uses fast set merging algorithms [10], and a bounding technique for
partitioning the solution space [5].

The algorithm is modified for the problem of generating all spanning
trees of a connected graph, in order of increasing weight. The run time
is O(NE) and the space is O(N+E), where N is the number of spanning
trees of the graph. Efficient algorithms for generating all spanning

trees of a graph without weights [7,8] can be applied to this problem.

The best known algorithm gives time bound O(NE) and space bound O(NV+E).
Since N can be large, storage may be a limiting factor. So the improve-
ment in space is significant.

Section 2 gives definitions from graph theory. Section 3 gives a
result on edge exchanges that is the basis of the algorithm. Section 4
presents the algorithm, and analyzes time and space requirements.
Section 5 describes the modified algorithm. Section 6 summarizes compu-

tational experience.

2. Definitions
A graph G consists of a finite set of V vertices and a finite set
of E edges. An edge is an (unordered) set of two distinct vertices.
The edge containing vertices v and w is denoted (v,w); it joins v and w.
A subgraph of G is a graph whose vertices and edges are in G. If
H is a collection of edges on the vertices of G, graph G-H consists of
the vertices of G and all edges in G except H; graph GUH consists of all
vertices of G and all edges in G or H.

A path from v to v, is a sequence of edges (VT’VZ)’(VZ’VS)""’

(v,_ysv,). If all vertices v., I<i<n, are distinct, the path is simple.
A graph is connected if there is a path between any two distinct vertices.
A bridge is an edge (v,w) that is in every path from v to w.

A tree is a connected graph, where any two distinct vertices are

joined by a unique simple path. A spanning tree of G is a tree that is

a subgraph containing all vertices of G.

A rooted tree is a tree T with one vertex r chosen as the root. Let
v be a vertex in T, and Tet v = VgoVyseeesVy =1 be the sequence of
vertices in the simple path from v to r. Any vertex Vi for O<izn, is

an ancestor of v; v, is the father of v; v is a son of vy; the depth of

v is n. The first common ancestor of two vertices v and w is the ancestor

of both v and w that has greatest depth. Two distinct sons of the same

vertex are brothers. In an oriented tree, the sons of a vertex are

ordered from left to right.

In a weighted graph, every edge e has a number, w(e), called its

weight. If H is a set of edges (such as a spanning tree), the weight of H
is Y w(e).

eeH

3. T-exchanges

This section describes how spanning trees can be derived by
exchanging edges. T-exchanges are defined and a useful property is proved.
Let T be a spanning tree of graph G. A T-exchange is a pair of edges

e,f where eeT, f£T, and T-elf is a spanning tree. The weight of exchange

e,f is w(f)-w(e). So the weight of tree T-elUf is the weight of tree T
plus the weight of exchange e,f.
A T-exchange can be used to derive one minimum weight spanning

tree from another, as shown below.

Lemma 1: A spanning tree T has minimum weight if and only if no T-exchange

has negative weight.

Proof: The necessity of this condition is obvious. Sufficiency is

proved in [4]. §

Theorem 2: Let T be a minimum weight spanning tree of G, and let e be
an edge in T. Let e,f be a T-exchange having the smallest weight of
all T-exchanges e,f'. Then T-eUf is-a minimum weight spanning trea-of

graph G-e.

Proof: Let S = T-eUf. Suppose S does not have minimum weight. By
Lemma 1, there is an S-exchange g,h having negative weight. We derive a

contradiction below.

We first show edges e,f,g,h are situated as in Figure 1. Let T-e
consist of the two trees U,V. Edge e joins U and V. Edge f also joins
U and V, since e,f is a T-exchange.

Edge h also joins U and V. For if not, assume without loss of

generality that h joins two vertices in U. Since g,h is an S-exchange,

5

g is in tree U. Thus g,h is a T-exchange. But g,h has negative weight,
and T is a minimum weight spanning tree. This contradiction proves h
joins U and V.

Now we show edge geUUV. Since e,h is a T-exchange, its weight is
no smaller than that of e,f. Thus
(1) o w(f)sw(h)<w(g).
So g#f, and geS-f = UuV.

Assume without loss of generality that geU. This gives Figure 1.

Now let U-g consist of the two trees W,X. Edge e is incident to
one of these trees, say W. Since T-e-guflh is a spanning tree, either
f or h is incident to X. So either g,f or g,h is a T-exchange. But (1)
implies both of these exchanges have negative weight, a contradiction.
This contradiction shows the original assumption is false. Thus S has”
minimum weight. '

Now Tet T be a minimum weight spanning tree. The Theorem:shows a
spanning tree with the next smallest weight is T-eUf, wheré e,f is a mini-

mum weight T-exchange. This observation is the basis of the algorithm.

4. Algorithm for K Spanning Trees

The algorithm for generating K spanning trees consists of procedures
EX,GEN, and a main procedure GENK. This section describes these proce-
dures in turn.

EX finds a minimum weight T-exchange e,f subject to certain con-
straints, IN,OUT. We describe EX, first assuming there are no constraints
and then incorporating the constraints.

For each edge geT, EX finds a minimum weight T-exchange g,h; it sets
e,f to the smallest of these exchanges. During the execution of EX, we
call an edge geT eligible if a minimum weight exchange g,h has not been

found.

EX works as follows. Originally all edges in T are eligible. A
1ist L contains all edges h]’hZ""’hE of G, sorted in order of increasing
weight. EX begins by finding every T-exchange g,h1. This is a minimum
exchange for g, since h] has the smallest weight possible. Now all edges
g become ineligible.

Edge h2 is processed similarly. EX finds every T-exchange g,hz,
where g is eligible. This is a minimum exchange for g. The edges ¢
become ineligible.

The procedure is repeated for every edge hk in L. The smallest
exchange found is the minimum T-exchange e,f.

The tree T is represented by a father array F. Vertex 1 is the
root; for any vertex v # 1, F(v) is the father of v. Call a vertex v # 1
eligible if edge (v,F(v)) is eligible, i.e., a minimum exchange for
(v,F(v)) has not been found; call vertex 1 eligible. too.

Now suppose EX examines the edge hk = (x,Y), as shown in Figure 2.
Vertex a is the first common ancestor of x and y that is eligible;
vertices Xy for l<izn, are the other eligible vertices on the path from
x to a; vertices yj, for 1sjsm, are defined similariy. ;Edge’hk‘gives a
minimum exchange for each edge (Xi’F(xi))’ (yj,F(yj)), and no others.

EX finds the vertices Xi’yj’ by using set merging techniques. A
family of sets partitions the vertices of G. Each set contains a unique
eligible vertex, which is used as the name of the set. Vertex w is in
the set named v when v is the first eligible ancestor of w. (Since 1 is
eligible, v exists for any w.) EX uses two procedures to manipulate
these sets: FIND (v) computes the name of the set containing vertex v;
UNION (v,w,x) combines sets-named v and w into a new set named x (destroying

sets v and w).

EX computes the vertices x; using the equations x, = FIND(x),

1

X. .4 = FIND(xi). Vertices yj are computed similarly. Vertex a is

i+]

the first common value, a = x In this manner, EX finds all

ntl - Ymt1”
minimum exchanges for edge hk.

Now we discuss the constraint :1ists IN and OUT.. These 1ists prevent
trees from being gererated twice; their construction is described fully.
below. ~IN-is a Tist'of edges in T that must remain.in!T; OUT is a %ist
of edges out of T that must remain out of T. Thus EX must find a
T-exchange e,f, such that eeT-IN, feG-OUT, and e,f has the smallest
weight possible.

To do this, EX begins by making all IN edges (x,y) ineligible. This
is dQne by~p1aping.Xwand;yfjn the_same set'(since,they have the same first
é11g101e'ancestor). A]so, Emeérks é]];OUT edges in’'the 1ist L, so they are
not considered for exchanges. These edges are later unmarked, for sub-
sequent calls to EX. In this manner, the constraints are handled.

~The final array used is W, which specifies the weight W(e) of each
edge e.
The procedure below sets global variables e,f and r, so e,f is a

minimum weight exchange subject to constraints IN,OUT, and r is the

weight of e,f.

procedure EX(F,IN,0UT); begin

initialize: r < @3 make each vertex v the only element in a set
named v;
IN edges: for edge (x,y) in IN dg begin wlog assume F (x) = y;

y < FIND (y); UNION (x,¥,y)s

end;

10.
11.

12.

0UT edges: for edge (x,y) in OUT dg mark (x,y) in L;
L edges: jggzedge (x,y) in L gg\commeng edges in L are in

increasing weight order;
&iu(x,y) is marked then unmark (x,y)
else lﬂ_F(x) 7yandF (y) # x then begin
find exchanges: Tlet a be the first eligible common ancestor of x and y;
for, v1 < x,y dg begin v <« FIND(v1);

wpile v # a do begin
check exchange: rl < W(x,y)-W(v,F(v)); opment, r1 is the

exchange's weight;
£ rl < r then begin r« rl; e < (v,F(v))s
f < (xy), ends

advance: u < FIND(F(v))s UNION{v,u,u); v < u;

end end end eng EXs

Table I iTlustrates EX. Input parameters describe T1 for the graph
of Figure 3. The exchanges found by EX in step 8 are listed, along with

the output values describing TZ'

Lemma 3: Let T be a minimum weight spanning tree subject to constraints
IN €TeG-0UT. Then EX, called with a father array for T, sets e,f so

T-eUf 1is the next smallest spanning tree subject to the same constraints.

Proof: Theorem 2 shows T-eUf has the desired property if e,f is a
minimum weight T-exchange subject to constraints ef£IN, fAOUT. The

remarks preceding EX show EX finds such an exchange. §

Lemma 4: EX runs in time O(Ea(E,V)).

Proof: First we bound the time for set operations. Lines 3 and 13
together do at most one UNION for each vertex. So they do O(V) UNIONs,
and also O(V) FINDs. Line 9 does at most two FINDs for each edge in
G-T. Thus, a total of O(V) UNIONs and O(E) FINDs are done. If fast set
merging algorithms are used, the total time is O(Ea(E,V)) [10].

Line 4 can be done in time O(E). For OUT contains at most E edges e;
e can be marked (in L) in time 0(1), if OUT contains a pointer to e in L.

Next consider line 8. Vertex a can actually be computed as
exchanges for vertices v are found (lines 9-13). To do this, the paths
from x to a and y to a are processed simultaneously. Referring to Figure 2,
Supste”xiyandayj h@vewbeen found;, for some isn, jsm; if xij# yj; the
vertexfwith?greaten depth precedes a, and so:is X417 OF yj+].~‘1n
this manner, the exchanges for vertices v, and the vertex a, are found.

To do this efficiently, we use an array D, that gives the depth
D(v) of vertex v in T. D can be computed from F in time 0(V). Thus,
Tine 8 requires only 0O(V) extra time.

The remaining Tines in EX require time O(E+V). This gives the
desired time bound. §

Procedures GEN and GENK call EX to generate spanning trees in
correct order. A technique resembling branch and bound, described by
Lawler [5], is used.

Let Ti’ for 1<i<N, denote the spanning trees of G, in order of
increasing weight. Suppose the algorithm has output the first j-1
trees, j>1. The remaining trees have been partitioned into j-1 sets of
the form -

- .
P% = AT | k> 3-15 eqs epsenns @ eTys e iqseens e £T T,

10

for 1<i<j (Here r and s vary over sets). Tree Ti satisfies all conditions
of this set except the first, k>j-1. The smallest tree in this set is
known; it 1sithe,resu1t;of~a'Ti—exChange e,f.

Procedure GEN finds the next smallest tree Tj from among the j-1
smallest trees in these sets. Suppose Tj is in the above set P2"1, and

T. = Ti-eUf. GEN computes T. and outputs it. Then a new partition Pﬁ, T<k<is

J J
is formed, by subdividing PI71. For all k # 1 in lsk<j, set p) = PI71;
further,

i N _

Py = (T, | k>3 €raenes € €ETp5 @ e €T T,

1l

J . i
Pj T | k>33 eps--vs €eTys @ . egs efT) 1.

NETPRE
Ti satisfies all conditions of P? except the first. GEN finds the smallest
tree in Pg by executing EX on Ti’ with edges SIERRRRL I in IN, and -
€008 in OUT. (Lemma 3 shows EX works correctly.) P§ is processed
similarly, using tree Tj' In this way, the partition is updated. Now

T can be found.

3+
The algorithm uses a list P to represent the partition. A set Pg

is represented by a tuple (t,e,f,F,IN,OUT) in P. Here t ié the weight
of the smallest tree in Pg; F is the father array for Tig the smallest
tree in Pg results from the Ti-exchange e,f; IN is the 1ist of edges that
are in all trees of Pg; QUT is the Tist of edges that are out of all trees
of P3.

Procedure GEN outputs the next smallest tree Tj from set Pg_1, and

puts the new sets P%,Pg in the partition.

procedqre/GEN; begin
find Pg:l; remove the tuple (t,e,f,F,IN,0UT) with smallest weight t
from P;

;;g t =« then stop; comment all spanning trees have been output;

11

output T.: Fj < F; modify Fj so edge f replaces e; oytput (Fj);
ti <« t-W(f)HW(e); compent ti is the weight of Ti;
form 1ist INi by adding e to IN; form 1ist QUTj by adding e
to OUT;

J. - . . - .

form Py EX(F,INJ,OUT), add (ti+r,e,f,F,INi,0UT) to P; comment EX
sets e,f,r for the minimum weight exchange;

form P%: EX(Fj,IN,OUTj); add (f+r,e,f,Fj,IN,0UTj) to P;

3QQ»GEN;

Table II illustrates GEN, by showing the partition after tree T2 for

Figure 3 is output.

Lenma 5: Let GEN be called, with P containing tuples for the sets Pﬂ’],
1<k<j. Then GEN outputs Tj’ and changes P to tuples for the sets PJ,

1<k<j.
Proof: The Lemma follows from the remarks preceding GEN. B
Lemma 6: GEN runs in time O(Ea(E,V)).

Proof: Lines 1, 6 and 7 remove and add tuples to P. These operations
can be done in time O(E). For this, we use a heap [1]. The tuples in P
are numbered, by assigning i to Pg. An entry in the heap is a number i;
entries are ordered on the weight t of the corresponding tuple. The heap
contains at most K entries. So an entry can be removed or added in time
0(log K). Since K<2E, this is O(E).

Line 3 requires time 0(V) to derive Fj. Referring to Figure 2, let
e = (x;>F(x;))s = (x¥). To derive Fj, array F need only be changed on

the path from x to'xi.

12

The rest of the ‘time is dominated:by the two calls to EX. This gives
the desired bound. §
The main procedure GENK finds a minimum spanning tree, and calls

GEN for the next (K-1) trees.

‘Erocedure GENK(K)3 beginm -~ -
make L a Tist of the edges of G, sorted in order of increasing
weight;

find T,: make F a father array for a minimum weight spanning tree,

—1

having weight t; gutput(F);
form P}: EX (F,6,9); make (t+r,e,f,F,4,¢6) the only tuple in P;
generate Tj: for J « 2 %o K do GEN;

Sﬂﬁ& GENK;

Table III shows the partition after all minimum weight spanning

trees for Figure 3 are output.

Lemma 7: GENK generates the K smallest weight spanning trees in order,

in time O(KEa(E,V) + E log E).

Proof: The correctness of GENK follows by induction, using Lemma 5. Now
we analyze the time. Line 1 requires time O(E log E) to sort E edges.
Line 2 can be done in time O(E Tog E), using Kruskal's algorithm [1].

The rest of the time is dominated by 0(K) calls to GEN, requiring time
0(KEa(E,V)) by Lemma 6. |§

When K is small, the term E Tog E in the run time is significant. It
can be reduced to E log log E. This is done by using a faster minimum
spanning tree algorithm [3,12], and changing EX so the edges of G need not

be sorted. For the latter, the techniques of [11] are used.

13

Now we examine the space requirements. The dominating requirement
is for P. Since a tuple can contain 0(E) words, P can’use 0(KE) words.
Below we modify the-data structure to reduce this bound, without changing

the run time.
Lemma 8: GENK uses O(K+E) space.

Proof: We show the structures F,IN,O0UT in a tﬁp]e can be replaced by 6
words,’and still be computed in time O0(E). The extra time is spent in
Tine 1 of GEN, and does not change the algorithm's time bound; P is
reduced to 0(K) words. So this suffices to prove the Lemma.

Suppose the first k trees Tj’ 1<j<k, have been output. Make these
trees the vertices of an oriented tree 7%, as follows. Make T1 the root
of 7. For j>1, méke Tj a son of Tf if GEN derives Tj from a Ti—exchange.
Let ej,fj denote this Ti—exchange. Arrange the sons Tj of T; so J
increases from left to right.

k

For a set Pj’ the structures F, IN, and OUT can be derived from?J,

as follows. Let A be the path in J from Tj to the root T]. Consider

these sets:
0y = fe; I T, is in A and i>1},
02 = {fi | Ti is in A and i>1},
T = (T]UOZ)—O],
I =

1= ley | T; 1s a left brother of some T, in A},

i
I

o = le, l T; is a son of Tj}.
T contains the edges of Tj; the father array F for Tj is easily derived.

I]UI2 contains the edges of IN, and O] contains the edges of OUT.

14

Now for each set P?, replace F,IN,OUT by the 6 words j,i,ej,fj,s,b.
Here j is the index in P?; i is the index of the father T, of T ej.fj
is the exchange that derives Tj from Ti; s is the index of the rightmost
son (if any) of Tj; b is the index of the brother (if any) immediately
to the left of Tj'

These 6 words are easily computed in GEN. Let the tuple found in
line 1 be (t,e,f,i,i1,ei,fi,s,b). Then line 6 adds the tuple (ti+r,
e,f,i,i1,ei,fi,j,b) to P; line 4 saves e,f as ej,fj, and line 8 adds
the tuple (t+r,e,f,j,i,ej,fj,0,s) to P.

Finally, it is easy to see the five sets above, and F,IN,QUT, can be
constructed (in Tine 1 of GEN) in time O(E).

Table IV shows how the partition in Table III is changed using this

scheme.

5. Algorithm for A1l Spanning Trees

This section describes a modification of the algorithm that generates
all spanning trees of a connected graph, in order of increasing weight.
The run time is O(NE), a slight improvement over GENK. The three main
changes are described below.

The first change eliminates extra calls to EX, by modifying the
tuples for sets Pg in P. The tuple's minimum Ti—exchange e,f is replaced
by X, a Tist of Ti—exchanges. For each edge gaTi—IN, X contains g,h, the
smallest exchange with heG-0UT. So e,f is the smallest exchange in X.

EX is modified to generate X. X is initialized to an empty Tist (in
Tine 1), and a line is added after 12:

12.1. add exchange (v,F(v)),(x,y) to X
‘GEN is modified to use X. In line 1, the minimum exchange e,f is

found by examining X. In Tine 6, the call to EX is eliminated; the tuple

15

for Pg is formed by removing e,f from X, and computing the new minimum
weight t, using X.

The second change, in the set merging algorithms, speeds up FIND at
the expense of UNION. Sets are represented by an array VSET, where
VSET(w) = v when v is the name of the set containing w. With this approach,
FIND takes time 0(1) and UNION takes time O(V).

EX uses these algorithms to manipulate the sets of vertices. Also,

lines 2-3 are modified to avoid calls to UNION:

2'. 1IN edges: sort the edges (x,y) of IN, so F(x) = y and the depth
of X increases;

3. for edge (x,y) in IN QQ%VSET(X) « VSET(y)s

When (x,y) is processed in Tine 3', VSET(y) already has its final value.
So Tines 2'=3' ‘initialize the: sets correctly.
The third change involves the main procedure. A new main procedure

is used to insure all trees are generated:
procedure GENA; begin GENK(=) ends

Note the algorithm halts in Tine 2 of GEN.
Further, GENK is modified to reduce the set-up time in lines 1-2.

Line 1 is changed:

1'. make B a 1ist of the bridges of G; make L a list of the edges of G-B,

sorted in order of increasing weight;

In Tine 2, the bridges B are placed in the spanning tree, before the
minimum spanning tree algorithm is called.

The remaining changes in the algorithm are typographical.

16

Lemma 9: GENA generates .all spanning trees in order, “in time O(NE)

and space O(N + E), where N is the number of spanning trees.

Proof: The correctness of GENA follows from Lemma 7 and the discussion

above. Now we analyze the time, beginning with GENK.

Let E' be the number of edges that are not bridges. Then lines 1'-2
of GENK use time O(E + E' log E'). For in line 1', the bridges B can be

found in time O(E) [9]; L can be sorted in time O(E' log E').

Line 2,
using Kruskal's algorithm with the bridges already in the tree, uses time
O(E' Tog E').

Now we show E' Tog E' is O(NE). It suffices to show E' < 2N. Let T
be a spanning tree. We can list T-exchanges e,f, so each edge that is not
a bridge occurs in the 1ist. Since each exchange represents a distinct

tree, E' < 2N. Thus, Tines 1'-2 use time O(NE).
| The rest of GENK is dominated by O(N) calls to GEN. As before, the
heap operations in GEN (lines 1,6,7) require time O(NE); the rest of GEN
is dominated by O(N) calls to EX (1ine 7).

In EX, Tine 2' can be done once in time 0(V). First the depth of
each vertex in the tree is computed, using F. Then the edges of IN are
sorted on depth, using a bucket sort [1] with one bucket for each depth.
Thus, . line 2' uses total time O(NV).

Line 13 of EX, using the modified FIND and UNION procedures, is done
once in time 0(V). It is executed N times, once for each spanning tree.
So the total time is O(NV).

The rest of EX usesitime O(NE). This gives the ‘desired time bound

for GENA.

17

Now we examine the space. The X lists in P require a total of O(N)
words, since each exchange in an X 1ist represents a distinct spanning
tree. Using the modification of Lemma 8, the rest of P uses O(N) words.
So O(N + E) space is used. B

Minty [7] and Read and Tarjan [8] give an algorithm that generates
all spanning trees of a graph without weights. It requires time O(NE)
and space 0(E), assuming each tree is output as soon as it is generated.
We can generate all spanning trees in a weighted graph, by first applying
this algorithm, and then sorting the trees in order of increasing weight.
This method requires time O(NE). The space is O(NV + E), since each tree
must be stored until the sort is done. GENA has the same time bound but

V-2

uses less space. Since N can be large (N =V in a complete graph),

space is likely to be a Timiting factor, so this improvement is significant.

6. Computational Experience

A version of GENK has been programmed in PASCAL and run on the
CDC 6400. The program stores tuples in a hybrid form (using the notation
defined above, a tuple is (t,X,i,fj,F,IN)). The time bound for the program
is O(KEa(E,V¥) + E log E), and the space is O(KV + E).

Experiments were conducted on random connected graphs with random
integer edge weights between 50 and 10000. Tables V-VI show results.
The run time is specified by T, the average time in milliseconds to gen-
erate one spanning tree. (Experiments show for a given graph, the time
per spanning tree is approximately constant, as expected.) Table V shows
T for graphs that are almost complete; T is computed from K = 15.
Table VI shows T for graphs with 60 vertices; again K = 15. When T is

plotted against E, the data is almost linear. Least square fits

18

for the two tables have slopes .72 and .68, respectively. Almost linear
performance is expected from the asymptotic time bound, since the factor

a(E,V) is constant in this relatively small range.

7. Acknowledgments

The author thanks Professor Donald Johnson of Pennsylvania State
University for his inspiring discussions, Mr. Robert Palasek for program-

ming GENK, and the referee for indicating how to improve GENK for small K.

Fig. 1

Edges in Theorem 1

19

Fig. 2 Exchanging (x,y) into T

20 -

Fig. 3 Example graph

21

IN OUT

22

t F(2) F(3) F(4) roe f
12 11 2 [3 |- |- [2,0),031):(3.2),(3,1):(43),,1) | o [3,2)].1)
input exchanges output
Table I.
EX processes TT
t f__F(2) F(3) F(4) IN L ouT
pf 12 {43 e,nl1 |2 |3 (3,2) i
. '
P, [12 [(@.3) |11 |3 - (3,2)
‘Table II.
.2
Partition P1
t e f F(2) F(3) F(4) : N ouT
Pf 13 (2,1 {(3,1)] 1 2 3 (3,2),(4,3) -
MERERERN RN R 1 3 (4,3) (3,2)
s | 13 Jenjen| 1] 2| (3,2) (4,3)
PZ o - - 1 1 1 - (3,2),(4,3)
Tab]e III.

Partition P?

J i ej i s b
4
P] 1 - - - 3 -
P4
2 2 T 1(3,2) } (3,1)] 4 -
4
P3 3 1 {(4,3) | (4,1) - 2
4
el 4 2 e @) - | -

Table IV

Changes ianf using storage reduction scheme

23

v {10 15 25 35 45 55 60
E {44 104]300 {595 {985 {1476 |1762
T |2 27 74 143 236 362 422
Table V
Time for generating one tree
E |159 336 |513 |690 {867 [1044 |1221 |1398 |1575 |1757
T |48 86 124 {162 |199 237 279 |324 365 |413
Table VI

Time for generating one tree, V = 60

References

[1] Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] Camerini, P. M., L. Fratta, and F. Maffioli, "The K shortest spanning
trees of a graph", Int. Rep. 73-10, IEE-LCE Politecnico di Milano,
Italy.

[3] Cheriton, D. and R. E. Tarjan, "Finding minimum spanning trees",

SIAM J. Comput., to appear.

[4] Deo, N., Graph Theory with Applications to Engineering and Computer
Science, Prentice-Hall, Englewood Cliffs, N.J., 1974.

[5] Lawler, E. L., "A procedure for computing the K best solutions to
discrete optimization problems and its application to the shortest
path problem", Management Sci. 18, 7 (Mar. 1972), 401-405.

[6] Mayeda, W. and S. Seshu, "Generation of trees without duplications",
IEEE Trans. on Circuit Theory CT-12, 2 (June 1965), 181-185.

[7] Minty, G. J., "A simple algorithm for listing all the trees of a
graph", IEEE Trans. on Circuit Theory CT-12, 1 (Mar. 1965), 120.

[8] Read, R. C. and R. E. Tarjan, "Bounds on backtrack algorithms for
listing cycles, paths, and spanning trees", preprint (Dec. 1973).

[9] Tarjan, R. E., "A note on finding the bridges of a graph", Information
Processing Letters 2, 6 (Apr. 1974), 160-161.

[10] Tarjan, R. E., "Efficiency of a good but not linear set union
algorithm", J. ACM 22, 2 (Apr. 1975), 215-=225.

[11] Tarjan, R. E., "Applications of path compression on balanced trees",
Tech. Rep. STAN-CS-75-512, Comp. Sci. Dept., Stanford Univ., Stanford,
Calif. (Aug. 1975).

[12] Yao, A. C., "An O(|E| Tog log |V]) algorithm for finding minimum

24

spanning trees", Inf. Proc. Letters 4, 1 (Sept. 1975), 21-23.

