Depth-First Search Techniques and
Efficient Methods for Creating Test Paths *

Leon Osterweil

CU-CS-077-75

DEPARTMENT OF COMPUTER SCIENCE

* This work supported by NSF grant GJ-3646.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Depth-First Search Techniques and
Efficient Methods for Creating Test Paths*

by
Leon Osterweil
Department of Computer Science

University of Colorado
Boulder, Colorado 80302

TR #CU-CS-077-75 August 1975

*This work supported by NSF Grant GJ-36461

Introduction

This paper is intended as a tutorial in the use of search techniques
to construct constrained paths through program flow graphs. Currently it
seems that incidence, or adjacency, matrices are widely used by practi-
tioners in analyzing flow graphs. In this paper, however, it shall be
shown that sizable gains in both speed and storage utilization are possible
through the use of search techniques in place of matrix manipulation.

The popularity of incidence matrices as tools for graph investigation
seems due largely to some early work of Ramamoorthy [1] and Prosser [2].
More recently, others such as Hopcroft and Tarjan [3] have developed search
techniques for performing diverse and powerful graph analysis. Through
the use of searching it has been possible to create a wide variety of useful
graph manipulative algorithms whose speeds and storage requirements are
improved, often by orders of magnitude, over comparable algorithms using
incidence matrices (see, for example [4,5,6,7,8]). Hence searching
algorithms are currently extremely interesting to researchers in algorithmic
complexity. Unfortunately, it appears that actual practitioners who
routinely deal with graphs in the course of program analysis have often
continued to use incidence matrices in their work.

The goal of this paper is to illustrate the power, versatility, and
efficiency of searching by presenting some algorithms as examples.

These examples are all related to the problem of generating paths through

a graph, a problem of significant interest in program testing and valida-
tion (see, for example, [9]). Most of the examples are rather straight-
forward adaptations of one basic, well-known algorithm. The author believes,
however, that these useful example algorithms have never been presented

before, and are therefore not widely known or used among practitioners.

The presentation of these actual algorithms should therefore be of direct
benefit to some practitioners. It is hoped, moreover, that this illustra-
tion of the adaptability and efficiency of the basic searching concept may
serve as a stimulus to other practitioners to use the concept in performing
necessary graph manipulations arisihg in other areas of program analysis.
The paper is concluded with the presentation of some recent results
concerning the construction of paths under important and more challenging

constraints.

The Edge-List Representation of a Graph

In the remainder of this paper it shall be implicitly assumed that
the graphs under consideration are all program flow graphs. Hence the
graphs are all assumed to be directed. Moreover, because the nodes of a
programkf1ow graph represent the program's basic blocks, the term block
may be used interchangeably with the term node. It is important to note,
however, that despite this terminology and the consistent use of flow
graphs as examples, the representations and algorithms described in this
paper are fully applicable to all directed graphs.

The search procedures described below all rely upon the representa-
tion of a directed graph by means of an edge-list, as opposed to an
incidence matrix. The edge 1ist representation employs two vectors,
which we shall call HEAD and FIRST.

The vector HEAD contains an entry for each edge in the graph. The
actual entry made in HEAD as a representation of a given edge, say from
block A to block B, is simply the node number B - the destination, or
head, node of the edge. Hence HEAD is a vector of the heads of all
graph edges.

The vector FIRST has an entry for every block in the graph. The
entry made in FIRST for a given block is the location in HEAD of the first
representation of an edge which originates from the given block - that is
FIRST [A] is the location in HEAD of the first edge whose tail is A. In
a graph having v blocks it is useful for the purposes of the algorithms
to maintain an entry FIRST [v+1] which points to the first location in
HEAD which follows the Tast edge represented by HEAD.

As an example, consider the flow graph in Figure 1.

\/M\\
\\\\\\\\\\ 7 ° (\hﬁ)
T 10
— /
AT

Figure 1 - A Sample Flow Graph

10
11

FIRST

10
11
12
13
13

HEAD
1 2
2 3
3 4
4 5
5 6
6 10
7 7
8 8
9 9
10 2
11 3
12 10
13 | ----

Figure 2 - An Edge List Representation

~of the Flow Graph in Figure 1.

An edge Tist representation of the graph in Figure 1 is given in
Figure 2.

Note that all the blocks directly reachable from block i,

1 <1 <v, are listed from HEAD[FIRST[i]] to (but not including)
HEAD[FIRST[i+1]]. Thus, for example, the blocks directly reachable
from block 2 are Tisted starting in HEAD[FIRST[21] (or HEAD[3], namely
4) and going up to HEAD[FIRST[3] -1](or HEAD[5-1] that is HEAD[4] or 5).
Thus from block 2 there are direct transfers to blocks HEAD[3] and
HEAD[4], i.e., blocks 4 and 5. The case of block 10 is slightly
awkward. The first block reachable from 10 should be Tisted in HEAD[13],
but the last block reachable should be in HEAD[12]. 1In fact, in an

edge Tist representation of a graph, this is a reliable indication that
the block has no out-edges. That is, if FIRST[i] = FIRST[i+1], block

i has no successors (it is presumably a stop block). The algorithms
which use this representation are, of course, designed to recognize

and exploit this.

An immediate virtue of this representation is its compactness. Note
that FIRST is v+1 entries long, and HEAD is e entries long, where v is
the number of program basic blocks and e is the number of edges. Hence
the edge 1ist representation requires O(v+e) entries. Because a basic
block rarely has more than 2 out-edges (the three out-edges in the case
of a FORTRAN arithmetic IF, and perhaps even more in the case of a CASE
statement or FORTRAN computed GO TO, are exceptions to this), e in the
case of an actual program flow graph is generally 0(v), and is almost
always bounded by 2v. Hence this representation requires, for virtually

all programs, 0(v+2v) = O(v) storage. Storage for an incidence matrix

requires, of course, O(vz) entries. To be totally fair, these v2

entries can be single bits, but note that edge-1ist entries also tend to
be small integers, requiring no more that [1og2v] bits for HEAD entries
and r1og2e1 bits for FIRST entries. Hence the entries for an edge Tist
representation can lTikewise be packed several to a word.

One last note about the edge 1ist representation should be made.
For clarity, the edge-Tists are represented here as being sequential
Tists. It is sometimes not practical, however, to build such a repre-
sentation as the analysis of actual source text is proceeding, owing
to the fact that the block numbers or even the very existence of some
graph edges may suddenly become known at awkward times during the
analysis. For this reason, the edge-lists for the various blocks are
often represented as linked 1ists. This requires that HEAD be an e x 2
matrix, where one column contains head block numbers as before, but
the other column contains Tinks, each Tink pointing to another head
reachable from the given tail block. Figure 3 illustrates this repre-
sentation. Zero entries (both in FIRST and column 2 of HEAD) indicate
the absence of additional (or any) destination blocks.

Although the Tinked edge 1ist representation is often preferable
to the original sequential edge representation, the remainder of this
paper will assume the sequential representation, primarily for reasons
of algorithmic simplicity. Adaptations of the algorithms which operate
on the linked representation are not hard. They do, however, require

auxiliary vectors whose lengths, nevertheless, are 0(v).

FIRST HEAD

heads next heads
(1inks)

1 1 1 2 5
2 2 2 4 3
3 6 3 5 0
4 7 4 9 0
5 8 5 3 0
6 9 6 6 0
7 | 12 71 10 0
8 10 8 7 Q
9 11 9 8 4
10 0 10 3 0

11 10 0

12 2 0

Figure 3 - Linked Edge List Representation of
the Graph in Figure 1

The Basic Path Generation Algorithm

The path generation algorithm presented here is actually an
adapted depth first search procedure. A search procedure on a graph may
be characterized as a procedure which causes all of the nodes and edges
of the graph to be visited in a systematic way. A search always pro-
ceeds from one node to another by following an edge of the graph. Two
important types of search are in common use - the breadth first search
and the depth first search. A breadth first search is one in which the
nodes are visited one at a time, with all edges emanating from one node
being examined before consideration of the next node. In a depth first
search, whenever a new node, N], is visited, a single out-edge is traver-
sed in search of another new node, NZ' A second out-edge from N] will
not be traversed until all out-edges from N2 have been traversed. In
both types of search a special mark is used to allow visited nodes to be
distinguished from unvisited nodes. In this way, needless searching is
avoided. The depth first search seems to be a 1ikely basis for a path
generation algorithm, because by its very nature, it burrows deeply
into a graph rapidly and directly.

The basic path generation algorithm can now be stated. This
algorithm differs only superficially from others in the Titerature such
as the connected component algorithm in [3], attributed there to
Shirey [10], and the classical garbage collection marking algorithm
(see Algorithm B, p. 145 of [11]) which has been known for quite some
time.

In addition to the arrays described in the previous section, some

additional arrays are needed for the algorithm:

10

STACK - a vector of'Tengthwv; wﬁichvﬁjl‘bg“USed'as a stack. This
vector will keep track,of the blocks currently being explored
by the search; Hence the desired path will be built in this
vector.

MARK - a vector of v bits which is to contain the marking information
needed to insure the efficient, non-repetitious visitation
of ﬁlocks.

CURRENTROW - a vector of length v, whpseqtth‘entny is the row in
HEAD of the edge out of block i which is currently being

used as part of the evolving path.
The following simple variables are also used by this algorithm:

PTR - the stack pointer.

NEWHEAD - a block which may be used to extend the currently evolving
path.

CURRENTBLOCK - the block to which,the,eyo1vtng path currently extends.

V - the number of basic blocks in the graph.

Note that the algorithms stated here use the notation [] to denote

subscripting and <« to denote assignment.

Algorithm P (Path tracer): Assume that BEGINBLOCK is a variable

containing the number of the block at which the path is to start, and

ENDBLOCK is a variable containing the number of the block at which the

path is to stop.

1

w P

[Sa I8

11

Erocedure P
begin

~procedure. NEXTEDGE;
comment NEXTEDGEichecks whether CURRENTROW[CURRENTBLOCK]
indicates an actual edge out of CURRENTBLOCK.
If so, it returns. If not, it backtracks to
previously stacked blocks: unt11 finding an
‘actual edge;
begin
“wh11e4CURRENTROW[CURRENTBLOCK] =FIRST] CURRENTBLOCK*1]do
comment, no further edges oyt of CURRENTBLOCK, back up;
begin -
PTR<PTR-1;
if PTR=0 tﬁen stog
comment the desired path does not estt,
‘else begin
CURRENTBLOCK<STACK[PTRT;
CURRENTROW[€URRENTBLOCK]«CURRENTROW[CURRENTBLOCK]+1
end;
end;
end NEXTEDGE;
comment initialize P;
for I«1 to V do MARK[I]+O
PTR<0;
comment initialize the search;
CURRENTBLOCK«BEGINBLOCK:
while CURRENTBLOCK# ENDBLOCK do
" cuiment continue the search until ENDBLOCK is encountered;
begin
ggmment mark and stack newly encountered bTlock;
MARK[CURRENTBLOCK]<1;
PTR«PTR+1;
STACK[PTR]«CURRENTBLOCK
comment get an edge out of the newly encountered block and
follow it to its head;
CURRENTROW[CURRENTBLOCK J«FIRSTLCURRENTBLOCK];
NEXTEDGE
NEWHEAD<HEAD[CURRENTROW[CURRENTBLOCK]T;
while MARK[NEWHEAD]=1 do
comment if head has been visited, get the next edge,
examine its head, continue until an unvisited
head is found;

%

begin
CURRENTROW[CURRENTBLOCK J«CURRENTROW[CURRENTBLOCK]+1;
NEXTEDGE;
NEWHEAD<HEAD[CURRENTROW[CURRENTBLOCK]];
end;
comment a new unvisited node is found;
CURRENTBLOCK«NEWHEAD ;
end;
‘comment ENDBLOCK has been reached;
PTR«PTR+1;

35
36

37
38

12

STACK[PTRI<ENDBLOCK;
comment print path and terminate successfully;
for T<1 to PTR do print STACK[I];

stop.
‘end P;

It seems useful to show how this algorithm works in finding a

path from 3 to 9 for the graph in Figure 1. Hence, in Figures 4a - 4g,

the status of the algorithm and its key variables are shown as the

algorithm executes. In these figures a marked block is indicated by

coloring it black, while NEWHEAD is indicated by a([_].

13

BEGINBLOCK: 3
ENDBLOCK: 9

Figure 4a: Algorithm starts

Figure 4b: After execution of line 22 STACK: 3

Figure 4c: After the first execution of
Tine 32: STACK: 3
NEWHEAD: 6
CURRENTBLOCK: 6
CURRENTROW [3]: 5

Figure 4d: After another iteration of the major
loop, Tine 32 1is again executed, and
the status is: STACK: 3,6
' NEWHEAD: 8

CURRENTBLOCK: .8 -
CURRENTROW[3]: 5

CURRENTROW[6]: 8

14

15

Figure 4e: On the next iteration of the major Toop,
the test at line 26 will succeed. Just
before this point: STACK: 3, 6, 8
NEWHEAD: 3
CURRENTROW[8]: 11

16

Figure 4f: After execution of line 771: STACK: 3, 6
' CURRENTBLOCK: 6
CURRENTROW[3]: 5
CURRENTROW[6]: 9

9

Figure 4g: After the next execution of line 25:
‘ ‘ STACK: 3, 6
NEWHEAD: 9

CURRENTBLOCK: 9
CURRENTROW[3]: 5
CURRENTROW[6]: 9

17

Figure 4a shows the status of the algorithm at the start of execu-
tion. The algorithm begins by executing Tines 1,2 and 15 through 22,
resulting in the status shown in Figure 4b. Then Tline 23 is executed;
procedure NEXTEDGE is invoked and the test at 1line 5 fails, causing an
jmmediate exit. Line 25 is executed, and the test in line 26 then fails
causing a skip to 1ine 32. The status at this point is shown in Figure 4c.
The algorithm then Toops back up to Tine 18 executes through Tine 23,
invokes NEXTEDGE, where the test at Tine 5 fails causing an immediate
return to line 25. The test at 1line 26 again fails, and line 32 is
executed next. At this point the status is as shown in Figure 4d. Again
there is a Toop back to 18, execution sequences down through 23, NEXTEDGE
is entered, the test at 1line 5 fails, returning control to line 24, and
Tine 25 is then executed. At this point the status is as shown in
Figure 4e.

Note that the algorithm now threatens to go off on a wild goose chase.
Because block 3 is marked, it is pointless to revisit it. A1l paths out
of any marked node either have been explored or are being explored (as
is the case here). Thus the algorithm should not go to block 3, but
instead should seek an alternate way out of block 8.

The algorithm does in fact detect the futility of going to 3 by
noting (1ine 26) that 3 is already marked. In the WHILE loop beginning
at Tine 26, it seeks an alternate way out of block 8. If there exist
alternates, one would have to be on row CURRENTROW[8]+1 (namely row 12)
of HEAD. In line 28 this row number is computed. The execution of Tine
29 then causes an invocation of NEXTEDGE to determine whether the proposed

alternate, the edge at CURRENTROW[CURRENTBLOCK] of HEAD, is actually an

18

edge out of CURRENTBLOCK. In this case, the test at line 5 shows that
the proposed edge is actually the edge at FIRST[CURRENTBLOCK + 1]. Hence
the proposed edge is actually an out-edge from block CURRENTBLOCK + 1,
indicating that there are no further edges to be explored out of block 8
(CURRENTBLOCK). The success of the test causes the execution of lines 7
and 8. The test at 1ine 8 fails, and thus the ELSE clause beginning on
line 9 is executed. Lines 10 and 11 are executed, resetting CURRENTBLOCK
and CURRENTROW[CURRENTBLOCK]. The status of the'algorithm now is shown
in Figure 4f. |

The algorithm has backed out block 8, the blind alley. Note that

block 8 remains marked. It is known to be a blind alley, hence if on

some future exploration it were to be reached again, the mark would pre-
vent it from being reexplored. Next the end of the WHILE Toop begun at
1ine 5 is reached. Now CURRENTROW[CURRENTBLOCK] is 9 and
FIRST[CURRENTBLOCK + 1] 1is 10. Thus the test at line 5 fails and
NEXTEDGE is exited. Lines 25 and 26 are then executed; the test at
1ine 26 fails causing a skip to line 32. The status of the algorithm at
this point is shown in Figure 4g. Now, upon reaching line 33, the end
of the WHILE clause begun on line 18, it is discovered that
CURRENTBLOCK=ENDBLOCK. Hence the loop is exited and lines 34 through 37
are executed. The path 3, 6, 9 is printed and the algorithm terminates.

Hopefully this simple example illustrates enough elements of the
search procedure to allow the reader to create and follow new, more
complex examples. Through such examples insight into the search algorithm
should be gained.

Such insight should also convince the reader that at no time does

the algorithm ever traverse any edge of the graph more than once. Hence

19

the running speed of the algorithm is 0(e), which as noted earlier
for program f1ow Qraphs is invariably 0(v). This is a sizable improve-
ment over the running speeds of comparable algorithms using incidence
matrices. (Note, for example, that a single matrix multiplication
alone requires O(v3) time).

In addition, it is worthwhile to observe that any path generated
by algorithm P must be a simple path (i.e., must have no repeated

edges), and hence can contain no more than v vertices.

20

Some Applications of the Basic Algorithm
To Path Generation Problems

An immediate application of algorithm P is to use it to generate a
path from the start node of a program to the stop node. This is easily
done by setting BEGINBLOCK to the block number of the start node, ENDBLOCK
to the block number of the stop node, and invoking algorithm P. This
will yield a complete program test path.

The generation of test paths under more challenging constraints
is also possible. It is important to observe that marking a node assures
that it will never be explored subsequently, and hence will never be put
on the stack and become a member of a resulting path. Hence by arbitrarily
marking a node, or set,of nodes, before executing P -(or even during P's
execution) one can assure that those arbitrarily marked nodes will be
excluded from the resu]t path.

Thus, for example, suppose a path from b]ock S to block T is sought
which does not include any of the b]ocks‘{BT,Bz,...,Bi}. Such a path is
easily found (if it exists) by marking Bys Bys -t Biy, setting
BEGINBLOCK <« S, ENDBLOCK <« T and invoking algorithm P.

Having dealt with the problem of generating a path which must avoid
certain blocks, it is now reasonable to consider the generation of a path
which must include a certain block. It is easy to generate a path from
S to T which necessarily includes a given block, say A. Such a path
necessarily consists of two concatenated subpaths - a path from S to A,
and a path from A to T. Hence to find the desired path we execute the

following:

21

BEGINBLOCK = S
ENDBLOCK < A
invoke P
BEGINBLOCK < A
ENDBLOCK < T
invoke P
The resulting block sequence will, upon deletion of the repeated block A,
be the desired path. Clearly the execution speed of this algorithm is
0(v) for a flow graph.
It is worth noting that the path generated may not be a simple path.
Because algorithm P resets the entire MARK vector to zero as part of its ini-
tialization, the path generated from A to T may include blocks which were also

included in the path from S to A. Because each subpath is simple, however,

the concatenated path will contain each node at most twice. If a simple

path from S through A to T is desired, the marks set by the first invoca-
tion of P should not be reset to 0 by the second invocation of P. Un-
fortunately, this procedure may fail to find a simple path even though one
may exist. For example in Figure 5, if the first invocation of P were to
produce the path S,B,C,D,A then the next invocation of P could find no path
from A to T, because C would retain its mark, set by the first invocation
of P. Of course, the path S,A,C,T has the desired characteristics. On
the other hand, the insistence upon a simple path is probably unwise
anyway. Figure 6 shows a flow graph containing a loop. Clearly there is
no simple path from S to T through A; yet it is most desirable to be able
to create a path from S to T through A. This is easily done by concatenating
a simple path from S to A with a simple path from A to T.

The generation of edge constrained paths - paths which must necessarily
include or omit spgcified edges - can be accomplished in similar ways.

Perhaps the most straightforward way to produce a path from node S to

22

Figure 5: A graph where a simple path from S to T
through A cannot always be found by concatenating
an arbitrary simple path from S to A with an
arbitrary simple path from A to T.

Figure 6: A program flow graph for which there is no
simple path from S to T through A.

23

node T whicheqmit& edges e1;‘e2, ..;;‘eiris,to de]etevthe specified edges
from the edge-list representation of the graph and inyoke A]gorithm P.
This deletion of edges is easily done when the edge 1ists efe represented
by Tinked 1ists, but a bit clumsy if the edge 1ists are represented
sequentially.

The generation of a path containing a single specified edge is also
straightforward. If a path from S to T which passes through the edge
(A,B) is desired, it can be found by the following procedure:

BEGINBLOCK <« S

ENDBLOCK « A

invoke P

BEGINBLOCK <+ B

ENDBLOCK « T

invoke P
Here again, it is important to observe that the path generated in this
way will contain no node more than twice, but may not be simple. In
order to assure that any path generated will be simple, it suffices to
retain the marks set during the first invocation of P and not reset them
before the second invocation. Here too, however, this adapted procedure
may be unable to find a simple path even though one may exist. Moreover,
by insisting on a simple path, the possibility of generating a path which
includes the closing edge of a loop (e.g., a Fortran DO loop) is ruled
out. Hence insistence upon simple paths is often unwise.

An alternative approach to creating edge constrained graphs is to
first build the edge graph of the original directed graph, and then apply
to it the algorithms for creating node-constrained paths which have
already been presented.

We construct an edge graph in the following way. Suppose G is a flow

graph. To build its edge graph, Ge’ first add to G a new start node and

an edge directed from it to the original start node. Similarly add to

24

G a new. stop node and an gdge,directed from the original stop node to
the new stop node. Call this new graph G'. The node set of Ge is the
edge set of G'. The edge set of Gé‘consists of all pairs of nodes of
Ge (edges of G'), (eil, ez‘), such that there exists a vertex v' in the
vertex set of G' such that eq‘ = (a,v') e2‘ = (v',b) for some a,b,
vertices of G'. As an example, Figure 7 shows the edge graph of the
graph in Figure 1. In Figure 7 node a represents edge (1,2), b represents
(1,3), c is (2,4),d is (2,5), e is (7,2), T is (8,3), g is (3.6), h is
(5,7), i is (6,8), j is (6,9), k is (4,10), m is (9,10), E is the new
edge directed to node 1, and F is the new edge directed from node 10.

A path (i.e., node sequence) in Ge corresponds to a sequence of
edges in the original graph, G. Hence a node constrained path through
Ge corresponds to an edge constrained path through G. Thus for example,
in order to find a path from S to T in G which includes the edge (A,B)

one can proceed as follows. First produce G, from G. Suppose (A,B)

corresponds to node D in Ge, and that the node S_ 1in Ge corresponds to

e
any edge in G' which is an in-edge to node S in G', and that the node

Te in Ge corresponds to any edge in G' which is an out-edge from node

T in G'. Then:

BEGINBLOCK < S
ENDBLOCK < D
invoke P (for the graph G)
BEGINBLOCK < D €
ENDBLOCK < Te

- invoke P (for the graph G,)

e

produces. a list of edges in G'. The repetttion of edge D must be removed
from this list; then the 1ist can be easily transformed into a list of
nodes in G*. Finally, by removing the first and last nodes from this

1ist, the desired path through G is obtained as a sequence of nodes in G.

Figure 7: The edge graph of the flow
~graph in Figure 1.

26

In closing this section, it seems appropriate to demonstrate that
algorithm P can easily be transformed into an algorithm for producing the
transitive closure or reachability matrix of a graph. This matrix has
proven useful in a wide variety of program analyses.

The reachability matrix of a graph, G, is a (v x v) bit matrix such
that the (i, j)th entry of the matrix is a 1 if and only if there is a
path in the graph from node i to node j. Hence the ith row of this
matrix is a bit vector containing 1's only in those bit positions corres-
ponding to nodes, j, for which there is a path from i to j. Algorithm P

is easily altered to produce this bit vector as follows:

1) Change line 18 to
WHILE 1=1 DO;
(i.e., change 1ine 5 to a "REPEAT FOREVER")
2) Delete Tines 34 through 36.
3) Change 1ine 1 to
PROCEDURE R(BEGINBLOCK).

The resulting algorithm, Algorithm R, will STOP at line 8 only after
all nodes reachable from BEGINBLOCK have been visited and marked. Hence
upon termination of Algorithm R, the vector MARK will be the bit vector
required as the BEGINBLOCK th row of the reachability matrix. Thus in
order to compute REACH, the reachability matrix of a graph G having v

vertices, it suffices to execute:

FORI <« 1 TO V DO
BEGIN
invoke R(I);
FOR J < 1 TO V DO REACH[I,J]<+MARK[J];
END;

27

Algorithm R executes in O(v) time for a program flow graph because,
1ike Algorithm P, it does not visit any edge of G more than once. Hence
it is easy to see that for a program flow graph the reachability matrix
can be computed as shown above in 0(v2) time. It should be noted that an
algorithm for computing the reachability matrix using incidence matrices
was presented by Warshall [12]. Improvements to his algorithm have been
subsequently proposed by Purdom [13], and Warren [14]. The execution
speed of the search algorithm proposed here seems comparable to these
incidence matrix algorithms.

It seems worth noting, however, that the storage required for the
search algorithm is O(v) edge representations for a program flow graph,
but v2 bits for the incidence matrix algorithms. Considering that an
edge representation is actually a node number, it is clear that an edge
representation requires []og2 v] bits. Hence the search algorithm

2

requires O(v log v) bits of storage, a saving over the v© bits required

by incidence matrix algorithms.

28

The Generation of Paths as Part of a
Comprehensive Program Testing Strategy

Considerable attention has recently been focused on the problem
of devising a strategy for thoroughly testing a program (see for example
[9], [15], [16]). Although no strategy has yet gained general acceptance,
it is nevertheless widely agreed ([9], [15], [17]) that no program can
be considered thoroughly tested unless all Tlines of code have been
executed, and that, moreover, each exit from each of a program's branch
statements should be executed as well. The problem of hypothesizing
a set of program executions which, if carried out, would cause all
1ines of code to be executed can be approached by first generating a set
of paths through the program flow graph which covers all graph nodes,
i.e., a path set such that every graph node Ties on at Teast one path.
Similarly the problem of exercising all branches is approachable by
generating a path set which covers all edges of the flow graph.

It is straightforward to use the results of the previous section
to produce algorithms for generating such coverings of the flow graph.
For example, suppose a node covering is sought for the graph G, suppose
P is a (possibly empty) set of paths through G and U is the set of nodes
of G which are not covered by P. We have seen that it is easy to
construct a path Pu’ which is constrained to pass through any of the
nodes ueU. By augmenting P by Pu a better cover is created. By
jteratively creating such node constrained paths, U is eventually reduced
to the null set and P is augmented to a node covering. An edge covering
for G is readily constructed in a similar way by iteratively creating edge

constrained paths.

29

Unfortunately, it is becoming quite clear that the construction of
flow graph coverings represents only a modest first step in designing
a program test regimen. Test path generation algorithms must take
program semantics into account if they are to generate interesting and
challenging paths and avoid unexecutable and hence worthless paths.

Some semantic program analysis systems currently under development
(e.g.,%DAVE [18]) seem useful in hypothesizing interesting and revealing
program executions. Systems such as DAVE are capable of identifying
path segments through programs which seem particularly vulnerable to
such errors as uninitialized variables. It is clear that Algorithm P
is directly useful in constructing the additional path segments
necessary to build such vulnerable segments into full test paths.

Another reasonable approach to generating interesting test
executions is to determine combinations of blocks which, if executed
as part of a single program execution, seem 1ikely to cause anomalous
program behavior. If such block combinations were available, then the
remaining problem would be to construct a path through the corresponding
program flow graph which is constrained to pass through the specified
block set.

The problem of finding such a multiple node constrained path is a
logical extension of the single node constrained path problem discussed
in the previous section. The solution is more difficult, however.
Suppose a path is desired which starts at S, ends at T, and visits all
of {B], BZ""’ Bn}, It is easy enough to attempt to find a path from

S to B1, then from B1 to B .» then from Bn to T, by finding the

2"
indicated n+l subpaths. Unfortunately, such a path may not exist, even

30

though there may still be a path from S to T through {B], BZ""’ Bn}.

For example, suppose that we seek a path through the graph in Figure 6
from S to T through {A, B, C, D, E}. No path from S to A to B to C
exists. Yet there is clearly a path from S to E to D to C to A to B to T.

An efficient algorithm for finding a multiple node constrained path
can be found in [19]. This algorithm can in 0(v) time for a flow graph,
determine whether or not the desired path exists, and in case the
path is found to exist, produce a representation for it. The algorithm
requires at worst O(vz) time to print out the actual path, because in
the worst case the length of the path may necessarily be at Teast O(vz).
No algorithm with a better time bound can be found.

It should also be noted that the path produced by this algorithm
may not be simple. The problem of generating a simple multiple node
constrained path is far harder and is easily shown to be equivalent
to the Hamiltonian Path Prob?em, which is an NP-Complete problem. Hence
no efficient algorithm for generating a simple multiple node constrained
path is known, and the problem is recognized to be equivalent to a host
of celebrated problems for which no efficient algorithms are known
either [20].

Some work has also been done on the problem of suppressing the
generation of unexecutable paths. Smith, Krause, and Goodwin have
proposed [9] that it is sometimes possible to identify mutually
unexecutable pairs of edges of a program's flow graph due to semantic
incompatibilities. (Recent work by Clarke [21] offers hope that this
identification can usually be made quite reliably.) They propose that
it is unreasonable to generate any test path containing both edges of

such an impossible pair. Hence it is interesting and useful to consider

31

the problem of generating a test path which does not anywhere contain
both of the edges named in any of a set of impossible pairs, where the
set of impossible pairs has been specified before the algorithm begins.
A straightforward solution based upon algorithm P is possible but
inefficient. Suppose there are t impossible pairs, (r], s]), (rz, 52),
ces (rt, st), and suppose that the t pairs are partitioned into two

sets, E and F,of cardinality & and t-2 vrespectively, where we shall

= 2 _ t-2
denote E = {(rei, Sei)}1=1 and F = {(rfj, sfj)}j=].
it is possible in 0(v) time to either build, or disprove the existence .

Using Algorithm P

of, a path from the start of G to its stop which excludes Pas T s wees
1 2

r. and Sg 5 Sge 5...5 S . This is done by removing from the flow

) f7)

graph those edges which are to be excluded and then invoking Algorithm P.

If this is done for all of the 2JC possible combinations of impossible
pairs then eijther an impossible pairs constrained path will ‘have been
found, or the existence of such a path will have been disproven.

Unfortunately, this algorithm requires at worst Zt invocations if algorithm
P, and hence takes O(Zt - V) time.

It has recently been shown however [19] that the problem of
generating an impossible pairs constrained path is also NP-Complete.
Hence, here too, no algorithm significantly faster than the one just given

is available.

32

CONCLUSIONS

It is hoped that this exposition has convinced the reader that
depth first search techniques provide a flexible and efficient tool
for test path creation. The applications presented here should be
construed as examples designed to illustrate the flexibility of this
technique. The examples were selected, however, from the author's
observations of the kinds of paths in which current investigators
seem interested.

This paper does not address the broader and more important question
of how one should go about creating path constraints which assure that
a program is adequately tested. A1l that is presented is a mechanism

for synthesizing paths which are consistent with such given constraints.

33

References

[1T] Ramamoorthy, C.V., Analysis of Graphs by Connectivity Considerations,
JACM 2 (April 1966), pp. 211-222.

[2] Prosser, R.T., Applications of Boclean Matrices to the Analysis of
Flow Graphs, Proc. Eastern Joint Computer Conf., December,
1959, Spartan Books, New York, pp. 133-138.

[3] Hopcroft, John and Robert Tarjan, Efficient Algorithms for Graph
Manipulation, CACM 16 (June 1973), pp. 372-378.

[4] Johnson, Donald B., Finding A11 the Elementary Circuits of a
Directed Graph, SIAM J. Computing 4, (March 1975), pp. 77-84.

[6] Tarjan, R., Depth First Search and Linear Graph Algorithms,
SIAM J. Computing 1 (June 1972), pp. 146-160.

[6] Ullman, J.D., Fast Algorithms for the Elimination of Common
Subexpressions, Acta Informatica 2 (December 1973),
pp. 191-213. '

[7] Allen, F.E., A Basis for Program Optimization, Proc. IFIP Conf.,
71, Amsterdam: North Holland 1972, pp. 385-390.

[8] Tarjan, R., An Efficient Planarity Algorithm, Rep. STAN-CS-244-71,
Computer Science Department, Stanford University, Stanford
California, 1971.

[9] Krause, K.A., R.W. Smith and M.A. Goodwin, Optimal Software Test
Planning Through Auotmated Network Analysis, 1973 IEEE
‘Symposium on Computer Software Reliability, IEEE #73
C40741-9CSR, New York, pp. 18-22.

[10] Shirey, R.W., Implementation and Analysis of Efficient Graph Planarity
Testing, Ph.D. Dissertation, Computer Science Department,
University of Wisconsin, Madison, Wisconsin, 1969.

[11] Knuth, Donald E., The Art of Computer Programming, vol. 1,
Fundamental Algorithms, Addison-Wesley, Reading, Mass, 1968.

[12] Warshall, Stephen, A Theorem on Boolean Matrices, JACM 1 (January
1962), pp. 11-12.

[13] Purdom, Paul, Jr., A Transitive Closrue Algorithm, BIT 10 (1970)
pp. 76-94.

[14]1 Warren, Henry S., Jr., A Modification of Warshall's Algorithm for
the Transitive Closure of Binary Relations, CACM 18 (April
1975), pp. 218-220.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

34

Goodenough, John B., and Susan L. Gerhart, Toward a Theory of Test
Data Selection, 1975 International Conference on Reliable
Software, SIGPLAN Notices 10 (June 1975), pp. 493-510.

Howden, William, Methodology for the Generation of Program Test
Data, IEEE Transactions on Computers. C-24 (May 1975),pp.554-560.

Boehm, B.., Software and its Impact: A Quantitative Assessment,
Datamation 19 (May 1973), pp. 48-59.

Osterweil, L.J., and Fosdick, L.D.,Data Flow Analysis as an Aid
in Documentation, Assertion Generation, Validation and Error
Dectection, Department of Computer Science, University of
Colorado, Technical Report #CU-CS-055-74, September 1974.

Gabow, H.N., Maheshwari, S., and Osterweil, L.J., Some Results in
the Construction of Constrained Program Test Paths,
Department of Computer Science, University of Colorado,
Technical Report (to appear).

Karp, R.M., Reducibility Among Combinatorial Problems, in Complexity
of Computer Computations, R.E. Miller and J.W. Thatcher, Eds.,
Plenum, New York, 1972, pp. 85-103.

Clarke, Lori, A System to Generate Test Data and Symbolically Execute
Programs, Department of Computer Science, University of
Colorado, Technical Report #CU-CS-060-75 (February, 1975).

