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Abstract
A matching on a graph is a set of edges, no two of which share a
vertex. If each edge of the graph has a number, called its weight,

a maximum weight matching has the greatest total weight possible.

An algorithm with run-time O(V3), where V is the number of vertices,
is presented. It is based on Edmonds' algorithm, which has run-time

0(V*). The algorithm uses efficient data structures for blossoms and

for choosing edges in a search.






1. Introduction. Maximum weight matching on graphs is the

prototype of a number of integer programming problems that can be

solved efficiently [4]. 1Its applications in operations research are
illustrated by the foTTowing matching problem: Construction workers

must be paired up to carry beams. Each pair of workers has a numerical
rating of its efficiency. Choose the pairs so the total efficiency rating
is as high as possible.

Edmonds has presented an efficient algorithm for maximum weight
matching [3]. It is based on an algorithm for maximum cardinality
matching [2]. Both algorithms have a worst-case time bound of 0(V4),
where V is the number of vertices. We describe implementations of
these algorithms with time bound O(V3). The cardinality
matching algorithm has the same time bound as other efficient algorithms
[1,5,8], although it is more involved. The weighted matching algorithm
has the best time bound currently known.

Section 2 gives definitions from graph theory. Section 3
summarizes Edmonds' method for cardinality matching. Then the
implementation of this a]gorithm‘is described: Section 4 presents
the data structure; Section 5 illustrates it by describing blossom
expansion. The next two sections discuss weighted matching: Section
6 summarizes Edmonds' method; Section 7 describes a data structure
for weighted edges, Section 8 discusses numerical accuracy, and Section 9
discusses the efficiency of the algorithm.

The algorithm is not stated in complete detail because of its
length. Instead, examples and sample procedures are given. A com-

plete statement of the algorithm is in [6].



2. Preliminaries. This section summarizes some well known

definitions and results. A graph consists of a finite set of vertices
and a finite set of edges. An edge is an unordered set of two distinct
vertices. The edge containing vertices v and w is denoted (v,w) or (w,v).
Vertices v and w are adjacent, and (v,w) is incident to v and to w.

When the order of vertices in an edge is significant, it is

a directed edge. The directed edge (v,w) goes from v to w; its head is

w, and its tail is v.

Throughout this paper, G denotes a given graph; V denotes the
number of vertices in G; E denotes the number of edges in G.

A path in G is an ordered Tist of vertices (v1,v2,...,vn), such
that no vertex occurs more than once in the list, and (vi,v1+]) is an
edge, for 1 <1 <n. The path Jjoins v, tov,. A tree is a graph with
a distinguished vertex r, the root, such that there is a unique path
P(v,r) joining any vertex v to r.

A matching Mon G is a set of edges, no two of which share a
vertex. A vertex is matched if it is in an edge of M; otherwise it is

unmatched. M is a maximum cardinality matching if no matching on G

contains more edges. Figure 1(a) shows a matching on a graph GI
(Matched edges are drawn wavy). It is not maximum cardinality, since
a matching with more edges exists.

An alternating path is a path (V1""’Vn) such that one of

every two consecutive edges (Vi—l’vi) and (Vi’vi+]) is matched, for

1 <1 <n. An augmenting path is an alternating path that joins two

unmatched vertices.

If (v],...,v2n) is an augmenting path, a new matching M' is



obtained by replacing the matched edges (VZi’V21+1)’ 1 <1 <n, with
the unmatched edges (v21_1,v21), 1 <1 <n. We say M is augmented to
M', since M' contains one more edge. In Figure 1(a), (12,6,7,9,8,11)
is an augmenting path. Augmenting gives a maximum matching.
A fundamental fact is this: A matching M has an augmenting path
if and only if M is not maximum cardinality [2]. Thus, a maximum cardinality
matching can be found by repeatedly searching for an augmenting path and
augmenting the matching.

In a weighted graph, each edge has a real number called its

weight. The weight of a matching is the sum of the weights of all

matched edges. M is a maximum weight matching if no matching has greater

weight. Figure 1(b) gives weights for Gl. The matching shown has weight
60. This is not maximum since the maximum cardinality matching has

weight 62.

3. Cardinality matching. This section describes Edmonds'

algorithm for maximum cardinality matching,using blossoms. The flow

chart of Figure 2 is explained. Graph G1 of Figure 1 is used as an example.
The algorithm starts with all edges in the given graph G

unmatched. It searches for an augmenting path. When such a path is

found, the matching is augmented. Then a search is made for an

augmenting path in the new matching. The search-augment process is

repeated until no augmenting path exists. At this point a maximum

matching has been found.
During a search, the graph is repeatedly transformed. Under

certain conditions, a collection of vertices gets replaced by a single



vertex, called a "blossom" (a precise definition is given below).
Also, under certain conditions, a blossom gets replaced by its constituent

vertices. We call the graph currently being searched the working graph.

We refer to vertices of the working graph as either vertices or blossoms.

Téb]e I shoWs how a makimum métching éh G1 i§ fdund;
(The last three columns are for weighﬁéd matching). The algorithm
makes six searches, ST - S6. In S3, blossom bl is formed, from
five vertices. This is illustrated in Figure 3(a). Blossoms b2
and b3 form in search $5 (Figures 3(b) - (c)); they get expanded

into their constituent vertices in search S6.

A search works by constru;ting a number dF trees made up of

alternating paths. An a1ternatihg'tree is defined as a tree in which

(i) the root is an unmatched vertex; (ii) any path from a vertex to the
root is alternating. Let v be a vertex in the tree, and let u be the
root. Then P(v,u) denotes the path from v to u. Vertex v is outer if
either v is the root u or path P(v,u) starts with a matched edge.
Otherwise, if P(v,u) starts with an unmatched edge, v is inner.

A search constructs an alternating tree for each unmatched vertex
u. This is done by scanning edges, and adding edges and vertices to the
tree. Eventually, the search scans an edge joining two outer vertices
VysVps that are in different trees. The alternating paths P(v],u]) and
P(vz,uz), together with edge (v],vz), form an augmenting path between
vertices Uy and Uy - At this point the search stops, and the matching
is augmented.

Figure 4 shows the alternating trees grown in search S6. The

search stops when in Figure 4(d), edge (6,12) is scanned. This edge



joins outer vertex 6 with the tree for unmatched vertex 12. It gives
an augmenting path.
A search constructs alternating trees in four different steps:
start, grow, blossom, and expand. These steps are shown in Figure 2.
They are described below.
Start: A search begins by making every unmatched vertex the root of
an alternating tree.
Grow: Suppose the search scans an edge (x,y), where vertex x is outer
in some alternating tree, and vertex y is not in any tree. Then the
.search does a grow step. The tree containing x 1s extended
by two edges, (x,y) and (y,y'). Here (y,y') is the matched edge
containing y. (Edge (y.,y') exists, since otherwise y is the root of an
alternating tree.) Vertex y is made inner, and y' is made outer.
In Figure 4(c),edge (9,7) is scanned. A grow step is done,
giving Figure 4(d).
Blossom: Suppose the search scans an edge (x,y), where x and y are outer
vertices in the same tree. Then the search does a blossom step. -
Figure 5 iTlustrates this step schematically. The paths P(x,u) and
P(y,u) join at some outer vertex j. In the blossom step, all vertices
up to and including j in P(x,u) and P(y,u) are replaced by a single
vertex b. Vertex b is called a blossom, and vertex j is its join.
Blossom b is adjacent to any vertex that was previously adjacent to a
constituent vertex of b. In the new working graph, b is an outer vertex.
The three blossom steps for Gl are shown in Figure 3. For example,
in Figure 3(b), edge (7,b1) is scanned. This edge comes from edge (7.,4)
in the original graph. (This is indicated by the "4" at the head

of (7,b1).) Blossom b2 is formed, replacing vertices 7, 6, and bl.



The rationale for blossom steps is that any matching on the new
working graph, W', gives a matching on the original working graph, W.
Suppose the matched edge incident to blossom b corresponds to (v,v') in W.
Here vertex veb, v'£b. Figure 5 shows in W, there is an alternating path
P(v,j) from v to the join j, that starts with a matched edge. (If v
is outer, P(v,j) is the beginning of P(v,u). If v is inner,P(v,j)
is apath from v to x (or y), plus P(x,j) (or P(y,j)); for example,
P(x1,j) consists of (xT,x), (x,y), and P(y,j).) Suppose we rematch
the edges in P(v,j), switching the matched and unmatched edges. Then
v is no longer matched with a vertex in b. This allows (v,v') to
be matched. It gives the desired matching on W.
Expand: Suppose a blossom b is made inner in a grow step of some
search. (This search is not the one where blossom b is formed, since
b is outer when it forms.) Blossom b may be expanded during this search.
The expand step replaces b by its constituent vertices. This
necessitates two changes. First, the matching on the constituent ver-
tices is changed. This accounts for the augments done since the
formation of b. Second, some constituent vertices are put in
the tree to replace b. This prevents losing the part of the tree
"hanging from" b.
Figure 4(a) - (b) shows the expansion of b3. The matching is
not changed; the three constituent vertices of b3 are put in the
tree. Figure 4(b) - (c) shows the expansion of b2. The matching
is changed from Figure 3(b), to reflect the augment in search S5
(Table I). Also, vertex bl is put in the tree.
Expand steps insure inner blossoms do not "hide" augmenting

paths. For example, in search S6, the augmenting path (12,6,7,9,8,11)



is hidden in Figure 4(b), where it corresponds to (12,b2,b2,9,8,11).
After b2 is expanded, the augmenting path is found.

The cardinality matching algorithm is summarized in Figure 2.
A complete discussion of the underlying theory is in [3]. Now we

describe an efficient implementation.

4. A Data Structure for Blossoms. This section presents a

data structure that handles blossoms efficiently. Data is stored in
five arrays, called BLOSSOM, MATE, LABEL, NEXT, and LAST.
These arrays are described and illustrated.

The algorithm begins by numbering the vertices and edges of
the given graph G. The vertices are numbered from 1 to V. Fach:
array in the data structure has V entries. A vertex's number
is used as an array index. Usually we identify a vertex and its
number.

The edges of G are numbered from 1 to 2E. FEach edge (x,y)
gets two consecutive numbers. The first number is associated with
the directed edge (x,y), the second number with the directed edge (y,x).
(Note the edges of G themselves have no direction.) Edge numbers are
stored in the MATE and LABEL arrays. The direction associated with an
edge number allows additional information to be saved. Usually we
identify an edge and its number.

We give a method for extending the numbering of the vertices to
include blossoms.

Definition 1: The blossom index for a blossom b, denoted i(b), is

an integer between 1 and V, defined recursively as follows:
(i) Suppose b is a vertex in the given graph G. Then i(b)

is the number of vertex b.



(ii) Suppose b is formed in a blossom step, and has join j.
Then i(b) = i(J).
For example, in Figure 3, i(b3) = i(b2) = 7.
These dindices can be used to identify blossoms, since in a
given working graph, distinct blossoms have distinct indices. This is
done in the BLOSSOM array, which specifies which blossom contains a

given vertex.

Definition 2: Let v be a vertex of G, contained in blossom b in the

current working graph. Entry BLOSSOM[v] is i(b), the index of blossom
b.
For example, in Figure 3(c), vertices 1-9 are in blossom b3, so their
BLOSSOM value is 7.
Blossom indices are also used as array indices, in the MATE and
LABEL arrays. These arrays are maintained as follows. When the
algorithm begins, any vertex v is a blossom index. MATE and LABEL
information for v is stored in entry number v. When a blossom b
forms, MATE and LABEL information for b is stored in entry number 1i(b).
The information about the vertex numbered i(b) is no Tonger needed.
Now we describe the MATE array, which specifies the matchfng.

Definition 3: Let v be a vertex of G. 'Entry MATE[v] is the number of

a directed edge (x,y), defined as follows. Let W be the last working
graph where v is the index of a blossom b. Then (x,y) corresponds to
the matched edge incident to b in W, and x ¢ b. (If b is unmatched,
MATE[v]=0).

For example, consider vertex 5 in Figure 3. Since i(b1) = 5, in Figure
3(a) ,MATE[5]=0, and in Figure 3(b) MATE[5]=(4,6). This entry does

not change in Figure 3(c),since vertex 5 is no longer a blossom index.

Table II gives MATE entries for the vertices in blossom b3.



Now we describe the LABEL array, which specifies the structure
of the alternating trees and blossoms.

Definition 4: Let v be a vertex of G. Entry LABEL[v] is the number of

a directed edge (x,y), defined as follows. Let W be the last working
graph in which v is the index of a blossom b.
(i) Suppose b is an outer vertex in W. Then (x,y) corresponds
to the first unmatched edge in path P(b,u). So if P(b,u) = (b,b],bz,...),
edge (x,y) corresponds to (bT’bZ)‘ Also, x ¢ b1. (If b is an unmatched
outer vertex, P(b,b) has no edges, and LABEL[v]=0).
(ii) Suppose b 1is an inner vertex in W. If b is absorbed in
a blossom b' 1in the next working graph, then (x,y) corresponds to the
first unmatched edge in P(b,j), the path from b to the join of
b'. Otherwise, b is an inner vertex in the current working graph, and
LABEL[v] is any negative number.
(i11) Suppose b is neither outer nor inner in W. (So b is a
vertex in the current working graph that is not in a tree.) Entry
LABEL[v] is any negative number.
For example, consider Figure 3(b). Blossom bl is outer, so LABEL[5] =
(6,7). Vertex 6 is inner. Before the blossom step, LABEL[6] < 0;
after, LABEL[6] = (4,7). Table II gives LABEL entries for vertices in
blossom b3.
The following pseudo-Algol code shows how a matching is augmented.

It illustrates the use of MATE and LABEL.
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procedure augment ‘(le

comment Parameter a is an edge that completes an augmenting path.
Thus a joins two outer vertices VisVy, and an augmenting
path is formed by paths P(VT,UT), P(vz,uz), and edge a;
for side :=1,2 do
comment Rematch two "sides" of the augmenting path;
begin
b1 := BLOSSOM[tail of edge aJ;
MATE[b1] := a; comment Match one end of a;
e := LABEL[b1]; comment e steps through the edges to be matched;
while e # 0 do
begin
comment Get the two ends of e
b1 := BLOSSOM[head of edge e];
b2 := BLOSSOM[tail of edge e];

comment Match edge e;

]

MATE[b2]
MATE[b1]

€5

edge opposite to e;
comment Advance e along the path;
e := LABEL[b1];
end;

~ ai= edge opposite to a;

end;
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Now we describe the NEXT and LAST arrays. These arrays 1ist
the vertices in a blossom. They are based on the following method for
listing vertices.

Definition 5: The vertex 1ist for a blossom b, L(b), is definedA

recursively as follows:

(i) Suppose b is a vertex in G. Then L(b) is the 1ist b.

(i1) Suppose b is a blossom formed from vertices x, X]""’X2r+1’
Yo Yyseres¥ocry j, as in Figure 5. Then L(b) is

1(6)s LOx)s LOxy)seewsllxpi)sLY) s LOYp ) s vnslVpyq ) oL (3)-1(5).
(Here L(j)-i(j) denotes the Tist L(j) with i(j) deleted. Note i(b) =
i(3).)
It is easy to see L(b) Tlists every vertex (of G) that is in b exactly
once. For example, in Figure 3, L(b3) = 7,9,8,5,2,1,4,3,6.
NEXT and LAST derive from L as follows.

Definition 6: Let v be a vertex of G, contained in blossom

b 1in the current working graph. Entry NEXT[v] is the vertex after v in

L(b). (If v is last in L(b), NEXT[v]=0.)

Definition 7: Let v be a vertex of G; let b' be the last blossom with

index v, i.e., i(b')=v. Entry LAST[v] is the Tast vertex in L(b').
Note that in Definitions 6-7, 1ist L(b') is a sublist of L(b). Thus
L(b') is v, NEXT[v],...,NEXT"[v], where NEXT"[v]=LAST[v]. This facilitates

blossom expansion. Table II shows NEXT and LAST for blossom b3.

The following code shows how NEXT and LAST are updated when

a new blossom is formed.
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procedure build-L (x,y,Jj);

comment Parameters x and y are vertices in the original graph, and
Jj is a blossom index. As in Figure 5, edge (x,y) completes
a new blossom b, and j is its join. Build-L builds Tist L(b)
in NEXT and LAST;

begin

rear := j; comment rear is the current end of L(b). Initially only

j is in L(b);

save := NEXT[j]; comment Save list L(j).for later insertion in L(b);
for side := BLOSSOM[x], BLOSSOM[y]do
comment Process the vertices in both paths;
begin
bl := side; comment b1 steps through the outer vertices of the path;
while b1#j do
begin
b2 := BLOSSOM[head of edge MATE[b1]]; comment b2 steps through
the inner vertices
of the path;
NEXT[rear] := bl; comment Add L(b1) to L(b);
NEXT[LAST[b1]] := b2; comment Add L(b2);
rear := LAST[b2];
b1 := BLOSSOM[head of edge LABEL[b1]7;
end;
end;
comment Now add L(j) to L(b):
if save = 0 then LAST[j] := rear else NEXT[rear] := save;

end;
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5. Expanding Blossoms. This section describes a method for

expanding blossoms, illustrating how the blossom arrays are used.

We first consider an example. A blossom b forms, as in Figure

5, in the search S, In subsequent searches, b is on one or more augment-
ing paths. Finally, in some search,b is expanded. Before expansion,
b is an inner vertex. The edges incident to b in the alternating tree
are the unmatched edge (y],yi), and the matched edge (x1,x{). Vertices
X1s¥q € b, and x{,yi £ b.

The expand step changes MATE and LABEL entries for blossom b.

We discuss these changes.

Before expanding, MATE contains the matching of search S on the
constituent vertices of b. The expand step must change MATE entries
for b, so vertex Xy is not matched with a vertex of b. (This allows
(x],x{) to be matched.) This can be done by rematching the path
P(x1,j). MATE must be changed so these edges are matched:

()5 (yps¥p)s (Ygo¥a) s (¥peyysd)-

LABEL must be changed so blossom b is replaced in the alternating
tree. To do this, vertices Yy and X4 in the tree must be joined by
an alternating path. This can be done since in the new matching on
b, every vertex is joined to Xq by an alternating path. The desired
path is

(y1’y2”"’y25+]’j’ Xopa 2+« 2XpXq) -

Adding this path to the tree makes alternate vertices outer, starting
with g and ending with Xo- New LABEL entries must be made for these
vertices.

Now we give a method for expanding blossoms that accomplishes

these changes. It consists of the three procedures.
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The first procedure computes the new vertices in the working graph,
XoXqaeensXo 1o y,y],...,y25+1,j.

These vertices may themselves be blossoms, so their constituent vertices
are computed. The procedure also gives a negative sign to all LABEL
entries for new vertices. This effectively removes these vertices from
the tree (see Definition 4). However, the previous LABEL information is
preserved (as negative edge numbers), for the two remaining procedures.

The second procedure updates MATE, by rematching path P(x1,j).
It resembles the augment procedure in Section 4, although the negative
edge numbers in LABEL are used. There is another addition: Entries
in LABEL are made compatible with the new matching. When the procedure
is finished, the updated LABEL array defines alternating paths (in the
new matching) from the new vertices to Xy (although LABEL entries are
still negative). In effect, X4 has become the join of the blossom.

The third procedure updates LABEL, putting the alternating path
between 2 and X into the tree. This path is computed from LABEL,
as in the augment procedure, using negative edge numbers. Alternate
vertices along this path are made outer by assigning new (positive)
LABEL values.

Complete details of these procedures are in [7]. The first

procedure is shown below.
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procedure start-expand (b);

comment Parameter b is the index of the blossom to expand;

begin

comment Start-expand contains two main Toops. A two-pass organization
is not required, but is used for clarity;

comment Pass T: Step through the constituent vertices of b (in Figure
5, XsXpaeensXo 11 y,y],...,y25+],j) to find the last one (J);

bl := NEXT[b];

comment bl is the first constituent vertex of b;

b2 := NEXT[LAST[b111;

comment b2 is alwasy one vertex ahead of bl;

e := eb := LABEL[b27;
comment In Figure 5.eb is the edge (x,y) that formed blossom b. Variable
e steps through the unmatched edges in b;
for side :=1, 2 do
comment Step through both "sides! of b;.
begin
while LABEL[b2] = e do
comment This test insures bl and b2 are in the current side of b.
Advance;
begin
e := edge opposite to LABEL[b1];

b1 := NEXT[LAST[b2]];

1]

b2 := NEXT[LAST[b111;
end;

comment Now bl is not in the current side. Try the other side;
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e := edge opposite to eb;
end;

first := bl;

comment first is the first vertex in L(b)-i(b) that is in blossom j

(see Figure 5). If no such vertex exists, first = 0;
bl := NEXT[b]; comment Return bl to the first constituent vertex of b;

comment Now update arrays for blossom j;

NEXT[b] := first;

if first = 0 then LAST[b] := b;
LABEL[b] := -LABEL[b];
comment Pass 2: Update arrays for the other constituent blossoms bl of b;
while b1 # first do
comment bl steps through the constituent vertices of b;
begin
b2 := NEXT[LAST[b1]1];
NEXT[LAST[b11] := 03
LABEL[b1] := -LABEL[b1];
comment Update BLOSSOM for all vertices in blossom bl;
i = bl; ®
while i # 0 do
begin
BLOSSOM[i] := bl;
i := NEXT[i];
end;
bl := b2; comment Advance;
end;

end;
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The expand procedures are also used after the final search of
the algorithm. At this point, a maximum matching has been found.
However, the working graph may contain unexpanded blossoms. These
blossoms are expanded so MATE is correct. This is illustrated by the

last step in Table I,where blossom bl is expanded.

6. Weighted Matching. This section describes the theory and

algorithm developed by Edmonds for maximum weight matching. Table I
(in particular, the last three columns) illustrates the algorithm
on graph GI.
The theory is based on duality theory of linear programming
[3] (A combinatoric interpretation can also be made [6]). Here
we give an argument that is simple, although Tacking in motivation.
Let G be a weighted graph, where edge (x,y) has weight w(x,y).

Let M be a matching. Let s be a vertex weight function, assigning a

non-negative number s(b) to each set b of an odd number of vertices

of G. (Note, any blossom contains an odd number of vertices.) Let

s(x) denote the weight s({x}) for vertex x. Suppose s and M satisfy
the following

Optimality Conditions:

(1) For every edge (x,y) in G,

s(x) + s(y) + / s(p) > w(x,y).
X,Yeb

If (x,y)eM, then equality holds in this constraint.

(2) If s(x) > 0, then vertex x is matched.
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(3) If s(b) > 0, then b is maximally matched, i,e., b contains [i%lj
edges of M.
These conditions imply M has maximum weight, No matching N has

~greater weight, since

< < —
ZZL~_W(X,Y) < éiuw_s(x)+s(y) N éim“;s(b)
(x;y)eN T (xsy)eN (%,¥)eN
XsYeb
N <
s, 2 Bl s
= S e
- zgi:: w(x,y).
(Xa.y)eN

So to find a mé%imumiweight‘matchjng; the algorithm constrycts M and s -
satisfying (1) - (3), as follows,

The algorithm starts with no edges matched; for each vertex x
in G, s(x) = W/2, where W is the maximum edge weight; for all other odd
sets b, s(b) = 0. For example, Table I shows at the start of search
ST, all vertex weights are 7.

The initial choice of s satisfies optimality conditions (1)
and (3), but not (2). Each search of the algorithm maintains (1) and
(3), and eliminates violations of (2). Eventually (2) is satisfied,
and the matching has maximum weight.

A search works as follows: Call an edge (x,y) tight if
equality holds in condition (1). A search puts only tight edges in
alternating trees. If no augmenting path can be found, s is modified
so more edges are tight; the search continues. When an augmenting
path is found, the matching is augmented. Newly matched edges are

tight, so condition (1) stays true. Since more vertices are matched,
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there are fewer violations of (2).

For example,consider search S6. It begins (Figure 4(a)) by putting
tight edges (11,8), (1,70) in the tree. No other tight edges can be put
in the tree. So s is modified, and an expand step (Figure 4(b)) is done.
Eventually an augmenting path is found, giving a maximum weight matching.

Now we describe how s is modified. Call a blossom b proper if it
was formed in a blossom step (so b contains an odd number > 3 of vertices
of G). Note in any working graph, any vertex x is in some blossom; either
the blossom is x itself, or it is proper.

The algorithm modifies s by computing a value § (see below), and
making the following
Weight Transformation:

(1
(2

) If x is a vertex in an outer blossom, s(x) <« s(x)~s.

) If x is a vertex in an inner blossom, s(x) « s(x)+s.

(3) If b is a proper outer blossom, s(b) < s(b)+2s.

(4) If b is a proper inner blossom, s(b) <« s(b)-2s.

For appropriate §, the transformation preserves optimality constraints
(1) and (3). For example, edge (1,10) is tight after the grow step of
Figure 4(a). When weights are modified for the expand step of Figure
4(b), the changes in s(1) and s(10) balance, and edge (1,10) stays tight.

In general, the new weights s satisfy optimality conditions (1)

and (3), provided s satisfies the following
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Feasibility Constraints:

(1) ¢

| A

min{s(x)|x 1s a vertex in an outer blossom},

(2) 5 < min{s(b)/2|b is a proper inner blossom}.

(3) 8 < min{s(x)+s(y)-w(x,y)|for edge (x,y), x is in an outer blossom
and y is in a blossom that is not in a tree}.

(4) s < wmin{(s(x)+s(y)-w(x,y))/2|for edge (x,y), x and y are in distinct

outer blossoms}.

Constraint (1) is needed because weight transformation (1) decreases
vertex weights; the constraint guarantees each vertex has non-negative
weight. Similarly, constraint (2} guarantees each blossom has non-
negative weight. Constraints (3) and (4) guarantee all edges satisfy
optimality condition (1).

The algorithm chooses the largest possible value § permitted
by constraints (1) - (4). This gives equality in some constraint,
Depending on the constraint, a grow, blossom, expand or augment
step can be done, or else the search can stop with a maximum matching.
We show this below, discussing constraints in the order (2), (3),
(4), (1).

Suppose equality holds in constraint (2). Some proper inner blossom
b has a new weight s(b) = 0. Optimality constraint (3) no longer
applies to b, and it need not be maximally matched. So the search can
expand blossom b. In Figure 4(b), blossom b3 is expanded when s(b3)
becomes 0.

Suppose equality holds in constraint (3). Some edge (x,y) has

become tight, where (x,y) joins an outer blossom to a blossom not in
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a tree. The search can do a grow step for (x,y). In search S5, a
grow step for edge (7’4) is done when (7,4) becomes tight.

Suppose equality holds in constraint (4). Some edge (x.y)
has become tight, where (x,y) joins two distinct outer blossoms. The
search can do a blossom step, if these blossoms are in the same tree;
otherwise, it can do an augment. In the last step in search S5, an
augment is done when edge (1,10) becomes tight.

Finally we consider constraint (1). First note at any point
in the algorithm, all unmatched vertices of G, u, have the same weight s(u).
For when the algorithm starts, all vertex weights are the same; whenever
s changes, the weight of an unmatched vertex u decreases by §
(transformation (1)). This reasoning also shows the value s(u) is
the smallest of all vertex weights s(x).

Now suppose equality holds in constraint (1). A1l unmatched
vertices u have new weight s(u) = 0. So optimality condition (2)
holds. The search can stop, since a maximum matching has been found,

To summarize, the algorithm searches the tight edges to find
an augmenting path. If the search cannot proceed, § is computed from
the feasibility constraints; the weight transformation is applied; then
the search continues. Eventually a matching satisfying the optimality

conditions is found,and the algorithm halts.
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7. A Data Structure for Edges and Weights. This section describes

a data structure that handles weighted edges efficiently. The arrays
S, EDGE, and EDGEA are described and illustrated.
The S array derives from the vertex weight function s. It

uses the variable A to keep track of weight transformations.

Definition 8: The variable A gives the total decrease in the weight

of an unmatched vertex since the current search began.

In Table I, when b2 is expanded in search S6, A = 2.

Definition 9: Let v be a vertex of G, contained in blossom b in the

current working graph. Entry S[v] is a non-negative number defined

as follows:

(i) Suppose b is not in a tree. Then S[v] = s(v).
(ii) Suppose b is an outer blossom. Then S[v] = s(v)+a.
(iii) Suppose b is a proper inner blossom. Then S[v] = s(v)+s(b)/2.

(iv) Otherwise (b is an inner blossom with one vertex), S[v] =o.

Table III shows S at the end of search S6, when A = 2.

S is organized so it keeps track of s, without changing in
most weight transformations. We show this below.

When a search begins, S gives each vertex's weight. Suppose
a blossom b is made outer. Let vertex veb. Following Definition 9,
the algorithm increases S[v] by A. Vertex v remains in an outer
blossom for the rest of the search. So each weight transformation
decreases s(v) by &, and increases A by §; S[v] does not change. At

the end of the search b is no Tonger outer. The algorithm decreases
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S[v] by A, giving s(v).

Proper inner blossoms are handled similarly. Suppose b is
made inner. Llet veb. The algorithm increases S[v] by s(b)/2. S[v]
does not change until blossom b is expanded.* This occurs when s(b) =
0, and S[v] = s(v). This value of S[v] is correct until v is put
back in a tree.

Thus we see S does not change in most weight transformations.

Values of the vertex weight function s on proper blossoms b are not
stored explicitly. When needed, they can be computed from optimality
constraint (1) (Section 6). For this, it is useful to define the
slack in edge (x.y) as S[x] + S[y] - w(x,y). The following code shows
how S is changed when a bTossom b is made inner; it also illustrates

how s(b) is computed.

procedure make ~inner (b);

comment Parameter b is the index of a blossom that is being made inner;
begin

if LAST[b] # b then comment b is proper;

begin
e:==-(slack in edge MATE[NEXT[b]1)/2; comment ¢ is s(b)/2;
v:=b; comment v steps through all vertices in b;
while v # 0 do
begin
S[v]:=S[v]+e;

* An exception is if blossom b is absorbed in an outer blossom before
it is expanded (as in search S5). When this occurs, S[v] gets changed.
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v:=NEXT[v];
end;
end

else comment b is a single vertex;

S[b]:=w;

end;

Slack is also used to determine when edges become tight, and can
be used in the search. For example, suppose (x,y) joins an outer blossom
to a blossom not in a tree. It becomes tight when s(x) + s(y) - w(x,y)
= 0, or equivalently, when its slack is A. If (x,y) joins two outer
blossoms, it becomes tight when its slack is 2A. These facts are used
in the definitions of EDGE and EDGEA. EDGE contains all edges that
may be used in the remainder of the search; EDGEA indicates when the

edges can be used.

Definition 10: Let v be a vertex of G, contained in blossom b in the

current working graph. Entry EDGE[v] is a Tist of directed edges,

defined as follows.

(i)  Suppose b is not in a tree, or b is a proper inner blossom. Then

EDGE[v] is the edge (x,v) with the smallest slack possible such that x

is in an outer blossom. (If no such edge exists, EDGE[v] has no edges.)

(i1) Suppose b is outer, and v = i(b). Then EDGE[v] is a 1ist of edges,
* . .

(x1,y]),...,(xn,yn). The 1ist is sorted, Yy<ee o<y, - For each edge

(Xi’yi)’ 1 <1 <n, x;eb, yiéb; X; was put in an outer blossom after Yis

* In most programming languages, a 1ist of edge numbers cannot be stored
in one word; EDGE[v] would be the head of a Tinked 1ist of edges. For
simplicity, we overlook this point.
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and (Xi’yi) has the smallest sTack of all edges (X’yi)’ where xeb.

(i11) Otherwise, EDGE[v] has no edges,

Definition 11: Let v be a vertex of G,contained in blossom b in the

current working graph. Entry EDGEA[V] is a non-negative number, defined

as follows.

(i)  Suppose b is outer, and v = i(b). Then EDGEA[v] is half the
smallest slack in Tist EDGE[v].

(i) Otherwise, EDGEA[v] is the slack of edge EDGE[v].

(If EDGE[v] has no edges, EDGEA[v] = =)

Table III illustrates these arrays. Note outer vertex 6 has only one
edge in its Tist.

EDGE and EDGEA have the following property. Suppose at
some point in the search, a grow, blossom, expand, or augment step
is done. The flowchart of Figure 2 shows how an edge (x,y) is
associated with the step. As in Figure 2, let xeb, yec, with b,c
blossoms, and b outer. For a grow step, ¢ is not in a tree; for an
expand step, c is inner; etc. Then before the step for (x,y),when b
is made an outer blossom, some EDGE[v] contains (x,y); also, EDGEA[v]
is the value of A when the step for (x,y) can be done. We show this
beTow, by considering the different types of steps in turn.

First suppose a grow step is done for eage (x,y). Edge (x,y)
is the first edge joining ¢ to an outer blossom that becomes tight, i.e.,
the quantity (s(x) + s(y) - w(x,y)) is the smallest possible. When
blossom b is made outer, y is in some blossom c'. (Note, if ¢' # ¢,

then c¢' contains c, and ¢' is expanded before the grow step is done.)
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Either ¢' is not in a tree, or c¢' is a proper inner blossom. In either
case, the slack in edge (x,y) is smallest possible. Thus EDGE[y] =
(x,y) (Definition 10(i)), and EDGEA[y] is the value of A when (x,y)
can be used (Definition 11(i{)).
Next suppose a blossom or augment step is done for (x,y).
Similar reasoning shows (x,y) is stored in EDGE[b] and EDGEA[b].
Finally, suppose the inner blossom c is expanded. This occurs when
s(c) = 0. The edge (x,y) is not uniquely determined for an expand
step; let (x,y) be a tree edge, where yec. Its slack is a + s(c)/2,
“the smallest possible slack for an edge joining c¢ to an outer blossom.
Thus EDGE[y] = (x,y). Further, when EDGEA[y] = 4, then s(b) = 0, and (x,y)
can be used (as in Figure 2) to expand blossom c.
These remarks show EDGE and EDGEA allow the algorithm to
determine the sequence of steps in the search. This is illustrated

by the following code for finding the next step.

procedure choose-edge;

camment Choose-edge finds the next step to be done. It sets e to
the edge associated with the step, and A to the value
when e can be used;

begin

comment first find vertex v with smallest EDGEA[v];

v =1,

for i:= 2 to V do

if EDGEA[v] > EDGEA[] then v := i;

A := EDGEA[v]; comment this is the next value of A in the search;
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if A < « then
begin
b := BLOSSOM[v];

if b is outer then comment a blossom or augment step is next.

Find e in Tist EDGE[b];
begin
e := first edge in EDGE[b];
while (slack in edge e) > 2A do
e := next edge in EDGE[b];
end;

else comment b is not outer;

e := EDGE[b]

else comment A = «;

- go to end-search; comment the search ends without augmenting,
since no more steps can be done;

end;

Arrays EDGE and EDGEA are easy to maintain. For example,
suppose a blossom step forms a new outer blossom b, as in Figure 5.
To build 1ist EDGE[b], first 1ists for the previously inner blossoms,
XqaXgaeowaXou oY aYgseeeeaYpgyy e formed; then the 1lists for all
constituent vertices are merged, according to Definition 10(ii). The
merge can be done efficiently since all lists are sorted, as specified
in Definition 10(i1).

The following code shows how the 1ist EDGE[b] is formed when a
blossom b becomes outer in a grow or expand step. (This code is also

used in a blossom step,for a previously inner blossom b.)
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procedure scan (b);

comment b is the index of a blossom being made outer in a grow or
expand step. The edges incident to b are scanned and stored
in EDGE and EDGEA;
begin
empty Tlist EDGE[b];
EDGEA[b] := oy
comment start with no edges in b's Tist;
X := b;
comment x steps through all vertices in b;
while x # 0 do
begin
for each edge (x,y) do
comment Some edges (x,y) are merged into EDGE[b]. To do this
efficiently, y takes on values in numerical order;
begin
BLOSSOM[y]; comment (x,y) joins blossoms b and c;

(@]
i

slack in edge (x,y);

m
]

if ¢ is outer then
begin comment (x,y) may possibly be put in EDGE[b];
if ¢ # b then

begin
find the place for (x,y) on EDGE[b]; comment EDGE[b]
is sorted on y; |
if no edge (x',y) is in EDGE[b] then
insert (x,y) in EDGE[b]
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else comment an edge (x' ,y) is in EDGE[b];

if (slack in (x' ,y)) > e then
replace (x' ,y) with (x,y) in EDGE[b];
EDGEA[b] := min (e/2, EDGEA[b]);
end
end

else comment ¢ is not outer;

if (BLOSSOM [head of MATE[c]] is not outer)
**éemmént ¢ {s not in a tree;
or (LASTIc] # c) comment ¢ is proper; then
if EDGEA[y] > ¢ then
begin
EDGELY] := (x,¥);
EDGEALY] := e;
end;
end;
x:= NEXT[x];
end;

Thus we see S, EDGE and EDGEA handle numeric weights efficiently.
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8. Numerical Accuracy. Since the a1gor1thm performs numerical
divisions, roundoff errors may be possible. This section shows we can
guarantee the arithmetic involves integers only, and so is exact. More
precisely, the following is true.

Theorem: Suppose all edge weights W(x,y) are even integers. Then all
numbers computed by the algorithm are integers.

Note that if some edge weights are odd, we can double all edge weights.
The new matching problem has even weights, and is equivalent to the
original problem.

Proof: The algorithm makes three divisions. We show each division gives
an integer result.

The first division is when the initial vertex weights are set to W/2,
where W is the maximum edge weight. Since W is even, the division is
exact.

The second division is when EDGEA[b] is computed, following
Definition 11(i), as (min { S[X] + S[y]l - w(x.y) |(x>¥) is in
EDGE[b]})/2 (see procedure scan). Definition 9 for S shows this
division results in an integer plus (s(x) + s(y))/2. Thus, it suffices
to show the parity of a vertex weight s(v) is the same for all vertices v
in outer blossoms c. We do this below.

Let W be the current working graph. Let M be the matching on G
corresponding to the matching on W. (Recall M is constructed by expanding
each blossom and matching it properly). Let u be the unmatched vertex of
G in the root of the alternating tree containing c.

Matching M can be modified so vertex u is matched and v is unmatched.

To do this, rematch the alternating path from ¢ to u in W, to get a matching
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on W with ¢ unmatched; then expand all blossoms. Let N be the new
matching on G.
We compute the difference in weight between M and N. M consists

of tight edges only; as in Section 6, its weight is

) staesme ) s

(X,y)eM (x>y)eM
X,yeb
b
=) s+ oy LB se
AN
X matched b a blossom

N also consists of tight edges. N has the same matched vertices as M,
except for u and v. In each blossom b, N and M contain the same
number of edges. So the difference in weight between M and N is
(s{v) -s(u)). The difference is even, because all edge weights are
even. Thus s(v) has the same parity as s(u). Since all unmatched
vertices have the same weight s(u), all vertices v in outer blossoms have
the same parity weight. Thus, the second division is exact.

The third division is when the S[v] is computed, following Definition
9, for v in an inner blossom, as s(v) + s(b)/2 (see procedure make-inner).
The weight transformations of Section 6 show s (b) is even for any blossom b.

So this division is exact. QED.

9. Efficiency. This section discusses the efficiency of the
maximum weight matching algorithm, from theoretical and practical points of

view.
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The execution time is bounded by 0(V3). This bound results from
doing at most V/2 searches, each requiring time 0(V2). We briefly
discuss the portions of the search that require time 0(V2).

Let x be a vertex of G. The first time x is absorbed in an outer
blossom, the edges incident to x are scanned (as in procedure scan).
During a search, an edge (x,y) may be scanned twice, for x and for y.

So the time spent scanning edges is O(E) = 0(V2).

A search does at most V/2 grow steps, since a working graph contains
at most V/2 outer blossoms. When a blossom is made inner, S and EDGEA
are modified (as in procedure make-inner). These arrays are processed in
time O(V). So the time to change inner blossom weights is 0(V2).

A search does at most V/2 blossom steps, since a blossom reduces the
number of vertices by at lTeast two. The BLOSSOM, NEXT, LAST, and LABEL arrays
are modified in time O(V). So the time to change blossom arrays is 0(V2).

In a blossom step, EDGE is modified, when the EDGE 1lists for the
constituent vertices are merged: Thé £ime to mérge two Tists is
0(V). At most V merges are done, since each merge reduces the number
of Tists by 1. So the time for merging is 0(V2).

A search does at most V/2 expand steps, sincg,qn1y~blossoms formed in
previous searches can be eXpanded. The BLOSSOM; NEXT, LAST, MATE, and
LABEL arrays are modified in time O(V). So the time to change blossom
arrays is 0(v2), »

A seafcﬁ calls procedure choose-edge (Section 7) at most 3V/2 times
to find the next step. ,This procedure scans through the EDGEA array,
and may scan through one list EDGEA[b]. This requires time 0(V). So

the total time is 0(V2).
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Other portions of the search procedure require time O(V). Thus a
search requires time 0(V2), and the algorithm runs in time 0(V3).
The algorithm was programmed in ALGOL W, and tested on the IBM

360/165, using "random" graphs. Edges were assigned random integer

weights between 1 and 100. Table IV shows results for graphs with 100
vertices. The times are approximately two orders of magnitude greater
than corresponding times for an efficient cardinality matching algorithm
[6]. The time could probably be reduced one order of magnitude by

making obvious changes in the code.

10.  Conclusion. The techniques discussed for matching can be
extended to a Targe class of integer programming problems described by
Edmonds [4]. One example is finding the minimum weight cover on a graph,
where a cover is a set of edges meeting every vertex at least once. An
0(V3) covering algorithm can be constructed by making simple changes to

the matching algorithm.
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Edge Edge Vertex Blossom
Search  (x,y) (c,d) Step Action Weight Weight
S1 Start i is outer, i<i<l2 s(i)=7, 1<i<12
(1,2) Augment | Match (1,2)
S2 Start i is outer, 3si<1?
(3,4) Augment | Match (3,4)
S3 Start i is outer, 5<i<12
(5,1) Grow Put 1,2 in tree
(5,3) Grow Put 3,4 in tree
(2,4) Blossom | bl replaces 1,2,3,4,5.
(8,9) Augment | Match (8,9)
sS4 Start i is outer, i=b1,6,7,10,11,12
(4,6) | (b1,6) | Augment | Match (b1,6) s(i)=6,all i # 8,9 s(b1)=2
S5 Start i is outer, i=7,10,11,12
(7,4) | (7,b1) | Grow Put b1,6 in tree s(1)=5,1=7,10,11,12
(7,6) Blossom | b2 replaces bl,6,7 . .
(4,9) | (b2,9) | Grow Put 9,8 in tree WMMWHM” duwmwmwddudm s(b2)=2
(5,8) | (b2,8) | Blossom | b3 replaces 9,8,b2
(1,10) | (b3,10)| Augment | Match (10,b3) s(i)=3, i=7,10,11,12 s(b3)=2
| s(1)=4, 1<i<6
s(4)=6, 1=8,9
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Edge Edge Vertex Blossom
Search (x,y) (c,d) Step Action S Ueight Weight
S6 Start ‘i is outer, i = 11,12
(11,8) (11,b3) |Grow Put b3,10 in tree
s(i)=2,i=10,11,12
(11,8) (11,b3) [Expand 8,9,b2 replace b3 in tree 1 mﬁﬂwupu¢uu s(b3)=0
s(i)=5,1<i<6
s(i)=7,i=8,9
U_umuwA1mvwmom b2 s(i)=1, i=10,11,12 s(b2)=0
Match (6,7 s(i)=5,i=7
(9.7) ) (9,b2) [Expand | pyi"h in e 1 mM@Wumu 1<i<6,1=9
(9,7) Grow Put 7,6 in tree mAgvum, 1=8
(6,12) Augment Match (6,12)
path (7,9), (8,11)
1,2,3,4,5 replace bl
Done Expand Match (2,4), (3,5)

Table I: Matching graph GI
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; 2 3 4 5 6 8 9
MATE | (1,2) |(2,1) |(3,4) |(4,3) |(4.6) |(6,4) (8,9) 1(9,8)
LABEL | (2,4) [ (1,5) |(4,2) [(3,5) |(6,7) |(4,7) (9,4) 1(8,5)
NEXT 4 ] 6 3 2 0 5 8
LAST 1 2 3 4 3 6 8 9
Table II: Blossom arrays for b3
\
\ 1 2 3 4 5 6 7 8 10 11 12
S 7 7 7 7 7 8 ® - 3 3 3
EDGE (9,4) (12,6) | (9,7) [(11,8)
EDGEA 3 2 ® ®
Table III: Numeric weights at end of S6.
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Edges 100 400 700 800 900 1000

Time (1/60 sec.) 56 146 287 319 344 360

Table IV: Time for graphs with 100 vertices
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