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ABSTRACT

Some Resource Allocation Policies in a Multi Associative Processor

Gary J. Nutt

The Multi Associative Processor is a hypothetical machine composed
of eight control units and an arbitrary number of processing elements.
Each control unit executes a single-instruction-stream-multiple-data-
stream program in conjunction with a subset of the dynamically allocatable
processing elements. In this machine, the data bus interconnecting
control units and processing elements is partitioned in order to decrease
the hardware cost of the interconnection. In previous work, the degree
of partitioning was investigated, and it was found that the processing
element allocation algorithm was very critical to the performance of the
system, [4]. In this paper, a basic allocation algorithm is investigated
under various job loads, and then the performance is compared to three
distinct algorithms that compact processing elements into smaller subsets

of the partitions under varying conditions.



INTRODUCTION

The Multi Associative Processor (MAP) system is an array processor
consisting of eight control units and an arbitrary number of dynamically
allocatable processing elements, [3]. The architecture has been designed
to allow for the simultaneous execution of eight single-instruction-
stream-multiple-data-stream programs, where each program uses as many
processing elements (PEs) as required [2]; the maximum number of PEs
allocated to a given control unit (CU) executing a program depends only
on the number of PEs available in the entire system and the reduirements
of the program, not on a priori limits for each CU. Thus, PEs are
dynamically allocatable to each CU from a common pool.

The other primary components of the machine are shown in Figure 1.
The input/output subsystem is unspecified at the present time, although
it is conceived as being a somewhat conventional subsystem that handles
peripheral devices and provides for the transmission of data to and from
the main memory system. There are eight memory modules shown in the
figure; some preliminary studies into potential memory conflicts have
indicated that the system would require at least one memory module per
CU, [4]. The memory modules must all be accessible to each CU and to the
I/0 subsystem; the interconnection of all CUs and all memories is useful
to provide for the possibility of shared programs and data, especially
if a distributed operating system should be implemented on the hardware
as sketched here.

The Distribution Switch shown in Figure 1 is used to route Tow
Tevel commands from the CUs to their respective subsets of PEs. More
detail of this switch is provided below, since it contributes significantly

to any PE allocation algorithm to be employed in MAP. Each PE consists



of an arithmetic/logic unit, a local memory for storing data, and an
associative unit. Although the architectural details of MAP are discussed
elsewhere, it is noted in passing that the arithmetic/logic unit is
similar to a 16-bit minicomputer CPU [1]; the memory size is assumed to

be on the order of 1000 words. The associative unit contains an 8-bit
“select register" in which individual bits are set/reset under pfogrammer
control. This select register setting, along with a key broadcast
(implicitly) with each instruction, determines the activity or inactivity
of the PE; thus the term "associative" (i.e., content addressable) in

the machine's name.

The most critical component of the MAP architecture is the distribu-
tion switch for passing control unit commands and data from any control
unit to any subset of the processing elements, and also to allow data
paths between subsets of PEs. The distribution mechanism consists of
two distinct bus systems as indicated in Figure 2; the dashed lines
represent possible connections between each CU and each PE, for the
purpose of command transmission. In the MAP system, each CU is a micro-
programmable control unit that broadcasts 6-bit microinstructions rather
than full machine instructions. This allows the instruction bus to be
quite narrow, but it requires that it be used frequently. Crossbar
conflicts are avoided at the microinstruction broadcast time by fixing the
crossbar connection points at PE allocation time; i.e., PE sharing at the
microinstruction level is not permitted.

The other portion of the bus system is used for transmitting 32-bit
operands or PE memory addresses among CUs and PEs. Reflecting on the
architecture as discussed up to this point, it is apparent that the data

bus system will be used much Tess frequently than the instruction bus.



There are two reasons for this: First, not all microinstructions require
the data bus, (in fact, it is used primarily for PE address broadcasting
and very little for data broadcasting). Secondly, it is expected that
for the majority of processing time, operand references will be to the
processing element memory rather than the main memory, and for the MAP
programs that have been monitored on interpreters, experience has borne
out this hypothesis. As indicated in Figure 2, the data bus has been
partitioned into j sectors, each sector servicing the needs of k PEs.

The conjecture for this design was that it could be successful due to the
relatively low load on the data bus. In a previous paper, [4], this
conjecture is explored and those results are summarized below.

In order to investigate the viability of partitioning the data bus
into j sectors, each sector shared among k PEs, a simulation program was
written to model the activity of each control unit at the data bus
reference level, i.e., each allocation and deallocation of the data bus
for transmission was modeled. To produce a realistic load on the model,
it was driven by a full trace of each PE activation, deactivation,
allocation and deallocation, while the actual bus interreference pattern
was specified by a distribution derived from MAP program executions.

The traces and distributions were obtained by interpretively executing
each MAP program, one-at-a-time, on a Control Data 6400 and then using
the data from the collective runs to drive the model.

The conclusions from this study can be quickly summarized: Even
for very heavy loads on the bus system, the number of partitions need not
be greater than 8-12 sectors. Secondly, the algorithm used for allocating
processing elements to control units is extremely critical to the per-

formance of the system. It is this latter observation which has caused



the study that is reported on in the remainder of this paper. Four
resource allocation algorithms are examined under a fixed load to in-
vestigate some tradeoffs of operating system overhead for more effective
utilization of the shared bus system. The hardware is configured to
consist of eight sectors in all cases.

The generalization of this problem corresponds to a special cross-
bar switch. Suppose that a system is composed of n subjects and m
objects, and it is required that any subject be able to communicate with
any subset of the m objects under the constraint that the communication
cannot take place unless all objects in the given subset are "available"
simultaneously. If any object is involved in a communication with another
subject, then the first subject cannot communicate even with the re-

maining unencumbered objects.



THE PE ALLOCATION MODEL

The processing element allocation model is based on the same program
that was used to investigate the number of sectors in a MAP system,
(briefly described above). The primary alteration was to decrease the
level of detail to ignore actual bus allocations and deallocations.

The reason for this decrease in detail has to do with the higher cost
of executing the model at the more detailed Tevel. It appeared that the
additional information was not worth the price in terms of execution and
programming time. The measure used for bus sector activity in the model
is the number of CUs which are allocated active PEs within a given
sector, and the number of sectors with active PEs allocated to a given
CU. These measures offer an upper bound to, (and is closely correlated
with), the actual bus utilization.

Since trace data is not used for determining PE activity, a
statistical method must be chosen to generate a set of PE activations,
deactivations, allocations, and deallocations. Additionally, the members
of the subsets that change from one state to another must be specified.
In the previous work, it was observed that MAP programs tend to partition
the set of PEs into equivalence classes such that all members in the same
class participate in the same action at the same time. In Figure 3, a
state diagram is given that indicates all possible states that an equiv-
alence class of PEs can assume. In the simulation model, the state
diagram is used to describe PE activity by specifying a distribution of
the amount of time a class of PEs will remain in any given state and the
transition probability for moving from any one state to another. The
resource allocation model allows each CU to be characterized by

specifying:



The maximum number of PEs to be allocated to the CU
(maximum = 256).

The number of equivalence classes of PEs assigned to the CU
(number = 26).

The number and distribution of PEs in each equivalence class.

Transition probabilities and distributions for the state diagram
shown in Figure 3.

The simulation of the system is terminated after simulated time has
reached some value provided as an input parameter. A report is produced
which summarizes the machine configuration, the algorithm, the CU
characteristic as described above, CU-PE and CU-sector allocation status
at termination, PE allocation request queue, and a series of histograms
to describe sector activity, allocation, number of active CUs per sector
and the number of active sectors per CU.

Although the above description of the model is brief, the program
itself is relatively complex, and is written in about 1500 lines of
FORTRAN and assembly language code.

The model can be criticized on the following points: The character
of the programs that run on a given CU is stated with respect to the
initial description, i.e., the model does not simulate any form of
multi programming of the control units, nor does it allow a job to
"finish" and a new job with a new set of characteristics to be loaded
onto the control unit. Because of this problem, only non-preemptive
resource allocation algorithms are tested on the model. A more complete

study would allow preemptive resource allocation.



THE ALLOCATION ALGORITHMS

Four algorithms were implemented and tested for allocating PEs to
control units. As noted previously, all of the algorithms are non-
preemptive, and three of them use compaction techniques for changing the
PEs allocated to a CU from one sector to another. In the MAP system,
these compactions require a certain amount of operating system overhead
to allow the PE memory contents of one PE to be copied over the data
bus system to another PE. Special "stream instructions" exist in the
MAP instruction repertoire to rapidly move a b]ock of words. At any rate,
the number of PEs moved during any compaction operation is a measure
of the overhead that must be offset by any decrease of sector conflict
resulting from the compaction.

The basic algorithm for PE allocation to control unit number i,

(denoted CUi), does not use compaction.

1. Test all sectors with the following: If the sector contains
PEs already allocated to CUi and no other CU, then allocate
any available PEs within the sector to CUi. If outstanding
requests still exist after testing all sectors, go to Step 2.

2. Test all sectors with the following: If no PEs are allocated
within the sector, then allocate to CUi, If outstanding
requests still exist, go to Step 3.

3. Test all sectors with the following: If the sector contains
any PE allocated to CUi and there exist unallocated PEs, then
allocate to CUi. If outstanding requests still exist, go to
Step 4.

4. Allocate any available PEs to CUi, regardless of sector member-

ship.



This basic algorithm attempts to allocate processing elements in
the best possible way, given a static set of conditions. Of course
conditions are not static in the system, since the eight CUs will be
asynchronously allocating and deallocating PEs. The second algorithm
takes the dynamic nature into account by attempting to compact after any
PE deallocation. Allocation is handled exactly as in the basic algorithm.
The basic compaction algorithm consists of:

1. Find a sector that is neither entirely empty nor entirely

full (call it sector j), and go to Step 2. If no such sector
exists, do not perform a compaction.*

2. If sector j does not contain PEs allocated to at least two
distinct CUs, return to Step 1, to choose another sector j.
Otherwise, choose the CU that contains the most PEs in the
given sector (call it CUk), and go to Step 3.

3. Search all sectors distinct from sector j such that a new sector
(call it sector i), is found that contains PEs allocated to
CUk. If no such sector exists, repeat steps 1 and 2 to find a
new.CUk and sector j. If no possible combination of CU,
yielding sector, and receiving sector exist, then no compaction
can be done. Otherwise, go to Step 4.

4. If the number of PEs allocated to CUk in sector i exceeds the
number of idle PEs in sector j, move PEs from sector i to
sector j until there are no more unallocated PEs in sector j,

then stop. Otherwise, move all PEs allocated to CUk from sector

* A refinement to the basic compaction algorithm would attempt to
reduce the number of shared sectors if some sector is found to be
completely empty.



i to sector jJ and then go to Sﬁep 3.

The remaining two algorithms are simple extensions to the basic
compaction algorithm, and differ from the basic algorithm (and from
each other) in the conditions under which each will attempt to per-
form a compaction.

Let M be the number of sectors in the machine and k be an input
parameter to the model. Then algorithm number three invokes the com-
paction algorithm after any deallocation such that the sum of the number

8
of sectors, S., allocated to each CU exceeds kM, i.e., = s. > kM.

1 i=] !
The criterion used here is that compaction should be attempted oh]y
when the level of sharing surpasses some absolute threshold.
Algorithm 4 is based on a slightly more sophisticated measure of

sector utilization. Let n; be the number of PEs allocated to CUi, and

m be the number of PEs per sector. Then

H

is the minimum number of sectors required under optimal resource
allocation. Again Tlet Si be the number of sectors allocated to CUi

and k be an input parameter, then if

8 8

7S. > k= [ni]
1 m

i=1 i=1

algorithm number 4 will attempt compaction after PE deallocation. In
the case that k = 1, the algorithm attempts compaction if the current
allocation is less than optimal, thus it is 1ikely that the performance
of the algorithm would not be any different from the basic compaction
algorithm. For k > 1, the amount of deviation from optimal allocation

can be used to invoke compaction.
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TESTING THE ALGORITHMS

First, a fixed job load is used for comparing performance and cost
variations for varying factor k within Algorithm 3 and within Algorithm
4, and then to compare their performance with the basic algorithm and
the basic compaction algorithm. Next, a brief description of tests made
with different job loads is given.

For testing compaction factors and comparing algorithms, the eight
programs whose characteristics are given in Table 1 were used. The
maximum number of PEs associated with a program on a CU is initially
allocated to the CU, and then individual clusters, (equivalence classes
of PEs), are allowed to become active, or be deallocated, as the transition
probability for state 1 of the program dictates (see Figure 3). The
Table also indicates the number of partitions that should exist within
each program; the actual input to the program allows a precise definition
of these equivalence classes. The two probabilities, for an activation
transition from State 1 or a deactivation transition from State 2, also
imply the probability of a deallocation transition from either State 1
or State 2, since each state has two output transitions. Once a
partition of PEs enters a state, the 9de1ay time" distributions are used
to indicate the amount of time a partition should stay in the given state.
The distributions used here were all Erlang distributions, although the
model allows negative exponential, hyper-exponential, normal, and uniform
distributions, (which were used in other job load descriptions).

Table 2 summarizes some of the results of the tests with the fixed
job load; the mean number of CUs and the maximum number of CUs that
contained activated PEs in each sector are listed. Algorithm 3 was also

tested with k = 1.0 and 1.25, but produced exactly the same result as
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the basic compaction (hereafter BCA). Similarly, Algorithm 4 with
k = 1.0 produced the same result as BCA. Since Table 2 ignores the
overhead time due to compaction, one can compare pure performance
without regard to cost. Considering Algorithm 3, a factor of 1.50
performs as well, on the average, as the compaction on every dealloca-
tion (i.e., BCA). If the overhead is less, then Algorithm 3 with k = 1.50
(denoted #3/1.50) would be more attractive. Over a simulated time
interval of 5000 time units, BCA performed 75 compactions, where the mean
number of sector pairs involved was 2 per compaction; the mean number of
PEs moved per compaction was 15.9. On the other hand, #3/1.50 performed
only 53 compactions, each involving 2.7 sector pairs on the average, and
moved an average of 21.5 PEs per compaction. Thus #3/1.50 requires
significantly Tess overhead and still performs as well as BCA. Both
are much better than the basic algorithm, BA. #3/1.75 compacted only
20 times over the same time interval; the average number of sector pairs
per compaction was 3.8, although the mean number of PEs was only 19.2.
Overhead reduction in #3/2.0 was insignificant compared to #3/1.75.
It is apparent that for this fixed job load, (see Table 1), Algorithm
3 with 1.50 = k £ 1.75 is a good choice, with smaller k for pure per-
formance objectives and larger k for less system overhead.

Algorithm 4 represents reasonable performance for k = 1.25 (denoted

#4/1.25) and k

it

1.50, (i.e., #4/1.50), although for the given job load,
#3/k with 1.50 Sk 22.00 all perform as well or better. #4/1.25 performed
only 6 compactions during the 5000 units of time and used an average of

4.5 sector pairs per compaction. These compactions were relatively
inexpensive, since the mean number of PEs moved per compaction was only

11.5; (in two cases, about 50 PEs were moved on one compaction). #4/1.50
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required nearly the‘same system ovgrhead. The conclusion is that #4/k,
for 1.25 £ k £ 1.50 is even more economical than #3/1.75 and it performs
almost as well.

The basis for comparing performance above was the number of CUs per
sector; another measure of CU blockage due to sector conflict is the
number of sectors associated with each CU such that the sector contains
at least one active PE allocated to the CU. Table 3 summarizes the
simulation results for the fixed job load tests. Because of sector
size and the varying number of active PEs per CU, it is difficult to
interpret the data except by comparison. If all PEs were active all of
the time, the minimum number of sectors required is given in parentheses
following the CU number, and the percent of time that the CU used more
than the minimum allocation is included in parentheses under each
algorithm heading. Again, #3/1.50 performs comparably to BCA and both
are much better than BA; again the small differences between #3/1.50
and #3/1.75 are apparent. #4/1.25 and #4/1.50 remain similar.

In the remaining discussion, only BA, BCA, #3/1.50, #3/1.75, and
#4/1.25 are used to compare performance on different loads. The following
basis of comparison will be used: The state of a PE is defined by
Figure 3, and that model corresponds to a Markov chain. Therefore, the
steady state probability that a PE is in State 2, (i.e., allocated and
active) can be determined from the input parameters to the model; denote
this probability as q. An estimate for the expected number of PEs that
are active for CU; is

an;
where ny is the maximum number of PEs allocated to CUi. Thus, the

minimum expected number of sectors containing active PEs allocated to
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CU. is

. q(n;_¢)
Sm{n(l) =q + i-1
m
where m is the number of PEs per sector. (Note that one sector is

required if any PE is active.) Let Sex (i) be the experimental average

P
number of sectors containing PEs allocated to CUi’ and let
_ n
Zn,
=17

Now, a single number representing the performance of an algorithm on

a given load can be computed as

for job load number k.

The simplest meaningful measure of cost, Ck’ is the total number
of PEs moved during a simulation run on load number k, (which is always
zero for BA). This measure does ignore the number of PEs moved per
compaction, which provides definite insight into cost.

Figures 4 and 5 illustrate the performance and cost, respectively,
of BA, BCA, #3/1.50, #3/1.75, and #4/1.25 on a few different job loads.
Although the data has no meaning between discrete points on the
abscissa, it is more convenient to use a continuous 1ine for comparing
results than a set of bar graphs. The results of the different job Toads
are reasonably consistent with the fixed job load case discussed above,
(job load 0 is that fixed job load). The most apparent anomaly is the

cost of running #3/1.50 on load 2; the explanation for this extremely
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low cost compared to the other compaction algorithms is that an "early"
compaction just happened to catch the configuration in such a way that
the compaction allocation was very near optimal. Also, the pattern of
deallocations did not disturb the fortunate allocation state once it
had been reached. (These remarks are substantiated by the data taken
on that run).

The conclusion drawn from these tests runs, (and other runs not
shown), is that the most cost-effective algorithms are 3/1.75 and 4/1.25,
with Algorithm 3 having a slight performance edge but also costing a

Tittle more to use.
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