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ABSTRACT

Several measures of the complexity of a regular expression are
defined. (Star height and number of alphabetical symbols are two of
them.) Upper and Tower estimates for theAcompleXities of expressions

for certain sets of paths on graphs are derived.



1. Introduction

Some of our colleagues have considered using a regular expression
that represents sequences of instructions executed by a program as a
tool in static analysis of the program. The question naturally arose
of how large or complex one might expect such an expression to be.
This paper is intended to shed some light on the issue.

The four measures of expression complexity considered are:

N = size, the number of alphabetical symbols

H = star height, the depth of nesting of staré

L = Tength, the,1ength of the 1ongest nonrepeating path through
the expression

W = width, the maximum number of symbols unioned (dual to L).

See Table I for inductive definitions of these measures. The
complexity of a regular set with respect to any of these measures is

taken to be the minimal measure over all expressions for that set.

Alphabetical .
Symol ~  EwF E - F CEx
N 1 N(E)+N(F) NCE)N(F). | N(E)
H 0 max (H(E),H(F)) max (H(E),H(F)) H(E)+1
L 1 max(L(E),L(F)) L(E)+L(F) L(E)
W 1 W(E)+W(F) max(W(E),W(F)) W(E)

TABLE I



The sets examined are:

1. the set of all paths between twn specified nodes on the
complete graph on n nodesg'where‘“comp1etef means there is a directed
arc between every node pair (self loops included), and each arc bears
a distinct tabel,

2. the set of all paths of length = k arcs between two specified
nodes on the above graph, and

3. the set of all paths from node 1 to node n on the graph
that has a distinctly labelled, directed, arc running from every node

to every higher-numbered node, hereafter called the half-complete

graph.

A11 logarithms are to the base 2. We are disappointed that so many
of the lower bounds are worse than polynomial.

For the first set we find:

(1) 2010 < N and (2) N6 - 1(n-2)
(3) H=n

(4) W < n(2n+ ])fig(n/Z)T

(5) L VW

For the second set:

(6) nt9k . 4(]_k) $ Nand (7) N = (2n + ])flng

For the third set:

(8) (n-2) /s 9C/s - 19(n-2))-1) ¢y 2ng (9) w5 (2n + 1) 197]
(10) H=0
an (n-2)2/3 (1g(t/5 - 1g9(n-2))-%/2) . Wand (12) W s n(zn + T)[]g(n/z)]

(13) L =n-1



For convenience in finding individual items, the distribution of results

over sections of the paper is given below.

RESULT SECTION

(1) 4

(2) 10

(3) 4, 10

(4) 12

(5) 11

(6) 7

(7) 8

(8) 6

(9) 13
(10) - (trivial)
(11) 6
(12) 12, 13
(13) 5

TABLE 11

This distribution is the result of our grouping the resuits according
to the methods used to derive them

2. Normality

Henceforth, if E is a regu]ak expression, |E| will be the set of
strings that E represénts.

We call an expression E normal with respect to an arc-labelled
graph G if there is a pair of functions, init and fin, from sub-
expressions of E to nodes of G, for which:

1. If FeG is a subexpression of E, then init (F) = init (G) =
init (F~G) and fin (F) = fin (G) = fin (FwG).

2. IfF.Gisa subexpression of E, then init (F - G) = init (F),
fin (F - G) = fin (G), and fin (F) = init (G).
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3. If F* is a subexpression of E; then init (F) ini; (F#)~=
fin (F) = fin (F*). In this case we call thi& common value thé”éggg
ggig;_pf the star.

4. If F is any subexpression of E, |F|e= the,éet of all label
sequences of paths from init (F) to fin (F).
Note that for each of the sets defined in the preceding section, all

expressions for the set are normal with respect to its graph, by

virtue of the distinctness of the arc labels.

3. Index

An expression E covers a path p on a graph G if E is normal with
respect to G, and there is a string q in |E| of which the label sequence
of p is a contiguous substring. If there is a greatest integer n for
which E covers p" , we call it Ip(E), the index of p in E, and say that
E is p-finite; otherwise we define IP(E) = » and say that E is p-
infinite. One checks easily that index satisfies the following
difference equations:

Ip (alphabetical symbol) = 0 or 1
Ip(FuG)=rmepG),IMGH
Ip (F.Gq) < Ip(F)+Ip(G)+1
I (F%) = sup [1p(Fk):k > 0] (3.1)
From these, we find that the difference equations for 2-L dominate those
for 1 + [p’ tf,Ip is finite, so:
Ip(E) < 2L(E) if E is p-finite

and as a cor011ary

Ip(E) < 2N(E) if E is p-finite (3.2)



4. Lower Bounds on N and H for the Complete Graph
Consider the complete graph on n nodes with arcs bearing digtinct

labels, and nodes labelled 1 ;hrough‘n. The desired bound is an

immediate corollary of the following theorem.

Theorem 4!1.fwfheregis~a Toop p éassihg thrqughwhqdéﬁl‘fdr which,

~given any"eXpre&&fcnkE,covering P, N(E) 3-2(h;]);

Proof. We proceed by induction on n; the assertion is trivia1'for
n =1, taking p to be the self loop. Suppose we have a loop p
passing through node 1 on the complete graph on n-1 nodes
satisfying:

For each E covering p, N(E) 2 -2

In the complete graph on n nodes, make Py from p by cyclically

permuting the nodes, replacing node 1 with node k. Thus, for

each k, Py is a copy of p passing through.node k and missing

node k-1 (the minus being taken modulo n to keep the indices

in range). Now consider the loop

. m m
9= Py 3yp Pp 33 --- Py

where m=2"" and aTjKis the arc from node i to node j. Take any

E covering g, and note that for each k,Ip (E) 2 2" by definition
k

of g. By equation 3.2, either N(E) 2 oN-1 (and we are done),
or E is P - infinite for all k.

We now deal with the latter case; in what follows, "minimal",
when applied to subexpressions, means "minimal with respect to

the relation 'subexpression of'". The set of all pk-infinite



subexpressions of E is a subset of the finite set of all sub-
expressions of E and hence has minimal elements; each such

. ,
subexpression Fk and among all these, choose a minimal one and

call it F*.

F* has a hasg;pqint (Dxfnqrmali;y'of E), say nade j. th@se
G* from among tﬁﬁ,FE‘covering Pj+1 (so that the loop that G*
covers misses node j, and the Toop that F# covers passes through
node j). Let e be the expression representing the set whose -
sole element is the null string. Now if, in E, we replace Ff
with e, G% stf]1 covers Pj+1 after the rep]acement, since all
that has been lost are loops on a point that Pj+] misses anyhow,
thus
N(G*) 2 22 4fter the substitution(by inductive hypothesis),

and
N(F*) = 22 pefore the substitution (again by inductive
hypothesis),
from which

N(E) = o1 before the substitution.

End of Proof (of result (1)).

That H = n for the complete graph was first proved by Rina
Cohen [1]. One half (H S n) of this theorem is easy (and will
follow from results in section 10), while the other half cah,
alternatively, be proved by the same methqu used above. The

analogue of theorem 4.1 is:



For each integer m, there is a loop p passing through
node 1 on the complete graph on n nodes for which, given any
expression E covering p, either

N(E) 2 m
or
H(E) = n and Ip(E) = o
The pertinent loop is built from the loop a?l in the case n =1

2m . m o .m
)7 instead of P1aype P2

by taking g = (pya1oPpays---Pra 1“1

With this analog of theorem 4.1 in hand, we consider any

eXpression E]n‘for the set of all paths from node 1 to node n.

(This expression is normal, by the comment at the end of
section 2.) For all integers m, E]n must cover I3 since’E]n‘

is of finite length, H(E]n

So far, we have proven inequality (1) and sketched a proof

) Zn

of equality (3).

5. Contractions

For expressions containing stars, norma]ity and index have
sufficed as tools for isolating the desired features of subexpressions.
For the star-free expressions arising in the remaining cases to be
treated, a different tool is needed, and is introduced here.

A contraction of a regular expression E is an expression obtained
from E by applying the following transformations to E until the
resulting expression is free of unions and stars.

Tl: replace Fw G with F or with G

T2: replace a F* with an n-fold concatenation of F with itself,

nzaQ



One observes immediateiy:
Lemma 5.1.

A string w is in |E| <=> there is a contraction C of E for which
IC| = {w}.

The virtue of this seemingly unnatural redefinition of elementhood
for regular sets is that the resulting C's can be written as trees
and used 1in counting arguments, as will be done in the next section.

We make a simple preliminary application here.

Theorem 5.1 = If E is an expression for the set of all paths from
node 1 to node n in the half-complete graph on n nodes, then

L(E) = n-1.

Proof: First observe that any starred subexpression of E can be
replaced with e, since |E| is finite; thus only T1 is involved in
contracting E. Since T1 does not increase L,L(E) 2 L(C) for any
contraction C of E, and if |C| = the longest path from 1 to n,

then L(C) = n-1.
End of Proof.
Since writing out E as a union of concatenations gives L(E) = n-1,

we have proven result (13).

6. Lower Bounds on N:and.W for the Half-complete Graph

We need the following preliminary facts:
Lemma 6.1. The number M of (binary) concatenations in an expression

E is s N(E) - 1.
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Proof.
M(alphabetical symbol) = 0
M(E © F) = M(E) + M(F)
M(E-F) = M(E) + M(F) + 1
M(Ef) = M(E)
Comparing these equations with those for N, we find that
1 +Mis dominated by N. |

End of Proof.

Lemma 6.2. If E is normal with respect to a graph G, so is any

contraction of E.

Proof. There is 1ittle to prove. We need only extend the functions
init and fin to the new subexpressions created when replacing a
star by an n-fold concatenation; their values are taken to be

the base point of the star, and all the conditions for normality

survive.

End of Proof.

Let p be any path from node 1 to node n on the half-complete
graph for which the number of nodes that p passes through (excluding
node 1 and node n) is k. If E is any expression for the set of all
paths through the half-complete graph, then by Lemma 5.1 there is a
contraction of E that describes the path.p, and this contraction can

be written as a binary tree whose nodes are concatenations, and whose
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tips are the.branchvlabels of p. Since, by the remark at the end of
section 2, E is normal, we can associate with each of these con-
catenationS*a node of the half-complete graph, namely fin (F) where
F is the left factor in the concatenation (see section 2).

The situation now is that we have the path p of length k+1
arcs represented by a binary tree having k non-tip (tree) nodes and
k+1 tips, each of whose non-tip (tree) nodes is labeled with one of the

n-2 (graph) node numbers. We next derive an upper estimate for the
numbgr of thgsevtreesAny‘firsp caunting un]ahg]ed tregs, and then
mu]tfp]ying by*tﬁe'number of labelings. ,Tﬁe nﬁmber'of unlabeled
trees is at most‘4k; since each child of each non-tip (tree) node

fs either a tip or not, and this set of R)quaternary’chﬁices fixes
the unlabeled tree. The,numﬁer of labelings of non»tfp (tree) nodes
is, of course, S (n—2)k, but we need an estimate that involves the
number N of alphabetical symbols in the expression E. To get such
an estimate, consider the longest path through the tree; at its tip
lies one of the N symbols of the expression E, and once this symbol
is chosen, the 1abe1ingrof that path‘throughkthe tree is fixed (see
secfion 2 and 1emma‘6.2).4 This trée path passes through at least
1g(k+1) non-tip (tree) nodes so there are at most (n-2)(k'1g(k+1))
ways of labeling the remaining nodes of the tree. Putting this all
together, we find that the number of possible trees is at most

k (k-Tg(k+1))

4% - N+ (n-2) .

On the other hand, the number paths:p of length k+1 through the half-

complete graph is the binomial coefficient <:1ké;)since choosing the

path's interior nodes fixes the path. We will underestimate this
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ok
number as (n-2) to get the inequality
kk
k
(n E) s gk . N - (n-2)<k_1g(k+]))
Gk

By cancelling the common factor of (n-Z)K‘and rearranging, we find:

vz 290 gtk
(4K)K (4&)t
or
Nz exp, [(1g(n-2)-k) Tgk - 2k]

Choosing k = 1/3 1gn we find, after a little algebra:
N2 (n- 2)2/3 [19(1/3 19(n -2)) =11 (result (8))

A lower bound on W is found by observing that L x W = N, and

]

since every expression for the ha]f-comp]ete graph has L = n-1, then

Wz (n 2) /3 [19(1/3 ]g n 2) 5/2 ] (Y‘QSU]t (.H))

7. A Lower Bound on N for Set of all Paths of Length £ £
Between Given Nodes in the Complete Graph on n Nodes

The method of the preceding section works, with minor modifications,
in this case as well. Since in this case, a path of length £ = k+]
may touch up to k nodes, excluding end points and may touch a node

k on the left side of the

Y
more than once, (niz} ~is replaced with n
main inequality. Furthermore, we don't get to choose k, so we are

teft with:
okox gk Ly (k=1g(ken)
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SO

This gives result (6).

8. An Upper Bound on N for the Set of All
Paths of Length = k '

Consider a finite, directed, graph on n nodes with at most one
(labeled) branch between any pair of nodes. Let T be the matrix of
one-step transitions, i.e., the i, j-element of T = the label on the
branch that goes from node i to node j if there is such a branch and
0 otherwise.

Let I be the identity matrix, and "1ift" the algebra of regular
expressions to matrices of regular expressions in the obvious way
(union acts like addition, concatenation 1like multiplication, and
e like unity).

2 k

Let F (T) = [ TwT " w .., wl", Asiswﬂ]lmmm,Fkﬁ)isa

i
matrix whose i, j-element is a regular expression for the set of all

paths of length < k from node i to node j.

Let g(k) be number of symbols in largest entry of matrix Tk; using

ko pktl TE:l- for k odd and Tk = Tk/2 Tk/2

T 7 7

T for k even, we

find

k+1 k-1
g(k) £ n [g(—ﬁ—ﬁ + g(—i—)] for k odd and g(k) s 2ng(k/2) for k even,
and g(1) =1
Claim: g(k) s (2n)r1gk1
Proof goes by induction and rests on fact that if k is odd,

MMg(k+1)T = [1gk].
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Let f(k) be number of symbols in largest entry of matrix

F(T) = L+T+ TR L
since Kl
F(T) =T 2 FE;l_(T) + F&:l.(T> for k odd and
2 2

Fk(T) = Tk/2 (Fk/2 (T) - 1) + Fk/Z (T) for k even, we have

f(k) =n (g(E%lQ + f(E%lJ] + f(K%lJ for k odd and
f(k) < n (g(k/2) + f(k/2)] + f(k/2) for k even.
Claim: f(k) s (2n+1)r]9k7 (result (7)),

Again, the proof goes by induction, using the fact that if k is odd,
Mg(k+1)T = T1gk

We note in passing that the resulting expressions preserve ambiguity.

9. Path Decomposition

At several points in what follows, we shall need the fact that
each path on a graph of n nodes can be written as:
(path on = n/2 nodes) (loop) (path on % n/2 nodes)
where, integer division by 2 is intended, e.g. 3/2 = 1. For, by choosing the
shortest prefix of the path that hits n/2 + 1 distinct nodes, and
the shortest suffix that hits n/2 + 1 distinct nodes, we force some

node to be hit by both.
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10. Upper Bounds on N and H for the’Comp]ete Graph on n Nodes

A standard [2] method for deriving a regular expression for the
set of all paths between two nodes of a graph proceeds as follows:

1. Number the nodes so that the node pair for which the paths are
being represented is (1,n). Let the expression labelling the arc from
node i to node j be a...

i
2. Choose k so 1 < k < n, and for each i # k, J # k, replace a..

1]
o * LR » . N 3
with aij‘“ aikakkakj' (This explicity represents all paths passing
through node k elsewhere in the graph, thus eliminating the need for
node k.)
3. Continue eliminating nodes until only 1 and n are left. Then

use the fact that all paths from 1 to n on
a

a_ .
nn

are represented by

* * *
(a]] * a]nannan1) 21n%nn

When this method is used on the complete graph on n nodes, symmetry
guarantees that at each step of the way, all arc expreésions will have
the same length. Since each node elimination quadruples the size of
each remaining arc expression, and since the last step sextuples the
size, we have

n-2)

N ? 6 - 4( (result (2))

That H S n follows immediately from the same construction (half of

result (3)).
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11.  An Upper Bound on L for the Complete Graph on n Node&

Let P..(n) be the set of all paths from node i to ndde j on
the complete graph on n nodes, and let P( ) (n) be the set of all
paths in Pij(n) that do not pass through node k. We shall abbreviate
L(Pij
abbreviate L(Pij(n)) as L_(n) when i=j (s stands for "same").

(n)) as Ld(n),when,i # j (d stands for "different"), and

The same abbreviations will be used for W as well as L.

since

we have

Lg(n) = 2 + Ly(n-1) .

By representing each path as
(path on = n/2 nodes) (Toop) (path on < p/2 nodes)
we get
Pij(n) =W T(R,S)
all pairs R,S
of subsets containing
at most n/2 nodes

where each term T(R,S) is of the form

from which
. < -

Ly(n) f~2Ld(n/2) + L (n) .

Substituting the former equation in the latter, we get

Ly(n) = 2L,(n/2) + Ly(n-1) +2
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We substitute this equation n/2 times into itself in the L (n-1)
position to get

Ly(n) = n(Ly(n/2) +1) = 2n(L,(n/2))
SO

LAY

(result (5))

Ly(n)

12. An Upper Bound on Width for the Complete Graph on n Nodes

In the preceding section we made L small by using a very "wide"
(large union of terms) formula. Here we shall go the other way and
make W small by using a very "long" (large L) formula. We first

consider paths from a node to itself:

P () = [V N
- all pairs R, S of T(R,S)

subsets containing

|_at most n/2 nodes |

where each term T(R,S) is of the form

Vi Pi(n/2) Péﬁ),(h)[Pki(nzz) :

Next, convert this large (starred) union to a large product by the
identity
L kK

(vihhe = (@A) -

so that the width of the entire formula is at most the width of
ST . oy (1) ’ 5 .

the widest term of the form Pfk(n/z) Pkk (h) Bkiﬁp/%g . Since
Pik(n/zj and Pki(n/z) are of width Wd(n/Z), whf]e'PéQI(n) is of

width U_(n-1) we have:
Hg(n) < max (W (n-1), Wy(n/2)).
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To get a second inequality involving W‘ and Wd, use

SIORAMGEMOL LY

where the Q's, although p0331b1y*1nv0]v1ng paths through any node,

contain only paths of length at most n/2, and hence have expre351ons

of size < (2n+])[1g(n/2), by result (7), so

i, < nomax [(2n + n9/20T ()1

By repeatedly replacing ws(n) with max [ws(n-1), wd(n/z)] we get

iy < nmax [2ne)) 19VEIT g (n/2)1.
Now if the first argument of the max ever dominates the second, it will

continue to do so for all larger n, since

w2 (2(n72) + NHIVAT < (onag)[Toln/2IT

Since the first argument already dominates for n = 2, we‘have:

W, <0 (2ne)l19(072)1 (result (4))

d

13. Upper Bounds on N and W for the Half-Complete
Graph on n Nodes

Each of these bounds follows easily from facts derived eariier.
By substituting k = n in the formula for all paths of length = k we
find N & (2n+1){19n] . We have not improved on the bound
W s n(2n+1)[]g(n/2) derived for the complete graph

(Since the half- complete graph can be made from the complete
~graph by annulling edges, the same bound applies in this case.
Alternatively, the,same bound can be derived directly, via a matrix

calculation 1ike the one used in section 8.)
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14. Comments and Conclusions

It is too bad that most of these measures are worse than polynomial
in n. anfdentally; if difference of sets is allowed as an operation,
everything becomes polynomial; for example,

\fij P{j(h), thejset 0f all paths on the n¥n0de.complete graph,
can be‘written in terms of tba,set A of all arcs, as:
A* - U A*abAx
where the union is taken over all pairs (a, b) of edges for which b
does not follow a. A similar construction works for intersection of
sets.
We would be pleased if some other researchers were inspired to

narrow some of the gaps between upper and lower bounds.
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