THE VALIDATICN OF
PARALLEL CO-OPERATING PROCESSES

by

Clarence A. El11is
Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-065-75 April 1975

THE VALIDATION OF PARALLEL CO-OPERATING PROCESSES

Why has the state-of-the art in Operating Systems implementation
not reached the quality of construction found in present day compilers,
and other programs? Brinch-Hansen in his book [1] states that this
situation is due to a lack of understanding of the principles common
to all modern operating systems. I feel that another reason is the
added complexity due to parallelism. There may be many tasks (i.e.,
processes) executing simultaneously: An IBM 360/370 series machine
has many channels plus one or more CPUs accessing memories in parallel;
A CDC 6000 series machine has complex co-operation between a central
processor and 10 to 20 peripheral processors; Any multiprogramming
system has more than one job in memory and competing for resources
af any one time. The above illustrations of parallel co-operating
processes all imply an added dimension of complexity due to parallelism
which frequently turns out to be the source of a surprisingly large
number of (often irreproducible) errors in present-day systems,

(see Randall [2]). This paper presents a simple example of some

types of errors which can occur between two (or more) programs which
are simultaneously executing and attempt to synchronize. It does not
matter whether these programs are running on a multiprocessor system or
on a multiprogramming uniprocessor system. Next, the paper illustrates
how the formalism of L systems [9-12] can be applied to this (or any)
set of programs, and used to rigorously prove the correctness or
incorrectness of their interaction. Furthermore, the proof procedure
is effective, and thus can be mechanically carried out on a computer.

This paper is a report on preliminary research so, for example, it is

not known if efficient cqmputer techniques can be devised to make
mechanical proofs feasib1e‘on rea]istica11y large sets of programs.
There exists a wide range of problems similar in nature to the problem
discussed here for which this formalism may be usefu1; These problems
are not discussed herein, and remain thus far uneXp]ored.

Consider the two FORTRAN programs, P1 and P2, shown in figure 1,
and suppose that they are simultaneously executing on two processors
within a multiprocessor system. The portion of each program in

brackets labelled critical section is a sequence of statements which

do not access any shared data. The two programs are supposed to
continually cycle through their critical then their non-critical
sections; but we assume that if both programs are in their critical
sections at the same time, then errors can occur. Thus, the global
integer variable T and some control statements are used as a syn-
chronization mechanism by the programs to communicate and thereby
insure that only one of the programs is executing code inside of its
critical section at a time. The formal proof of correctness of this

synchronization mechanism (and others) is the subject of this paper.

PROGRAM P1

COMMON T

INTEGER T

COMMON shared data

1 IF (T "NE* 1) GO TO 1

NANANAAN

critical section 1

ANNNNNNN

SO

non-critical section 1

PROGRAM P2

COMMON T

INTEGER T

COMMON shared data

IF (T "NE* 2) GO TO 2

INNNNNNY

critical section 2

BASSSSR

AN

non-critical section 2

ASSRSEAN

ASSENSNNY

* Assume variable T is initially set to 1

Do the control statements in the above progranms insure that at most
one of the two parallel co-operating processes is within its critical
section at any time? This is one instance of the mutual exclusion
problem discussed by Dijkstra [4,5]. It is worthwhile to digress
slightly to explain why this problem is of significance. Suppose the
critical section of Fortran code in both P1 and P2 is simply X = X+1
where X is in common. Then the compiled machine language code for
this Fortran statement, assuming a 1-address machine, might consist of
three instructions: 1. Toad accumulator from location X,

2. add one to accumulator,

3. store accumulator into Tocation X.
We assume that each of the two processors, executing P1 and P2
respectively, have their own accumulators. Next, assume that X is
supposed to count the number of times that critical sections are executed,
so X is initially set to zero. If one processor and then the other
enters and executes the critical three instructions, then the value

of X will be two because of the sequence:

¢—————— X has value 0

¢———— X has value 1
¢ X has value 1

(-----x has value 2

On the other hand, suppose that the processor timings are such that

Toad accumulator
add T to accumulator
store accumulator
lToad accumulator
add 1 to accumulator
store accumulator

YOS WN —
NN N = et

accumulator 2 is Toaded (step 4 above) before the store accumulator

1 instruction which precedes it (step 3). - Then X has value 1 because
of the sequence:

1" load accumulator 1 é&-—X has value 0

o1 add 1 to accumulator 1

3'(=step 4 above) Tload accumulator 2 & X has value 0
4'(=step 3 above) store accumulator 1 ¢—— X has value 1
5! add 1 to accumulator 2

6' store accumulator 2 ¢é— X has value 1

5

We see that a final valug of 1 (incqrrgct) or 2(correct) may be stored
in X depending upon the sequence of events; That is; this system
exhibits nondeterministic behavior [6] which is dependent upon relative
times of execution of instructions by the two processors. The same
type of error could occur if two jobs both access a shared data file

or some other serially reusable resource. Errors of this type tend to
be particularly elusive because of their time dependence. The prob-
ability of a particular time sequence of events may be Tow, so that the
system may run for a long time before the error occurs, (e.g. Wood [3]).
The system with which I worked at Bell Telephone Labs was a supposedly
fail-safe system which we had thoroughly tested for several months.
Soon after it was released, the system crashed due to an error similar
in nature to this one. Worst of all, we had no clues to the error
because the particular timing sequence causing the error was unknown
and irreproducible. A way of avoiding this problem is to implement
some form of mutual exclusion.

Mutual exclusion, as exhibited in the two programs of figure 1,
does insure that only one processor at a time will enter its critical
section so that correct count values will always be stored in X. MWe
did not discuss the case in which steps 3 and 4 above were executed
at exactly the same time. We always assume that if a variable X is
simultaneously assigned two values (from two processor accumulators
perhaps), this race condition will be resolved and one or the other of
the values will be stored. Thus we rule out the possibility that a
combination of the two results or garbage will be stored. Similarly,
the effect of testing a variable and simultaneously setting the variable

is that the test will indicate the results either before or after

6

setting the variab]e, but nqt the resu?ts with respect to some intermedi-
ate va]ue; This criterion justifies use of the global variable T

which may be simultaneously accessed in figure 1. We demand that our
solutions work independent of which processor wins the race, and
furthermore, we demand independence of the relative speeds of the proc-
essors. They may be the same speed, different speeds, varying speeds,

or the programs may be time-sliced on a single processor in any fashion.
This requirement, which is referred to in the literature [4] as speed

independence, makes our solutions and our model applicable to both

multiprocessor and multiprogramming systems since operations may take
an arbitrary but finite amount of time to complete.

There is a problem with the program to implement mutual exclusion
presented in figure 1. If a program, say P1, terminates inside of its
non-critical section, then we demand that the other program must still
be able to continue executing through its critical--non-critical sections
Toop. In figure 1, if P1 stops, it will never again set T = 2, so
that P2 will eventually enter a nonterminating loop at statement 2
waiting for T to be set to 2. Thus we reject this solution because it
does not satisfy the above requirement, which we will refer to as

criterion 1, partial operability.

Figure 2
PROGRAM P1 PROGRAM P2
COMMON T1, T2 COMMON T1, T2
INTEGER T1, T2 INTEGER T1, T2
COMMON shared data COMMON shared data
1 T =1 2 T2 =1
11 IF(T2 *NE* 0) GO TO 11 22 IF(TT *NE* 0) GO TO 22
ANNSNNNY SNNNANAN
critical section 1 critical section 2

Al MR\

ENSONNNNIAEE ARARERENS
non-critical sect1Qq\}\\ non-critical section 2

BSSSAN FASSSSSNNY

GO TO 1 GO TO 2

END END

* Assume variables T1 and T2 areinitially set to 0

Figure 2 offers a sq]utiqn to the mutua] exc1usion probTem which
satisfieS‘cfiterion 1 by 1ntroducing two variables T1 and T2 in place
of the global T; T1 is only modified by PT before and after it executes
its critical section where T1 = 1 implies P1 is inside and T1 =0
implies it is outside of its critical section. If P1 stops within its
non-critical section, theh T1 = 0. Thus P2, which tests T1 for zero at
statement 22 will continue to operate correctly. The same argument
holds for the case in which P2 stops because the programs are symmetric.
The introduction of the two symmetric variables T1 and T2 has relieved
one problem, but caused another: If both processes execute the same
statement at (approximately) the same time within their respective
programs, then when they both execute their IF tests, both will Toop

on this test forever. This is the condition T1 = T2 = 1, so statements
11 and 22 will allow neither process to enter its critical section.
This behavior represents a situation of deadlock as defined by Holt
[7], Coffman [8], and others. We thus reject the solution of figure 2
saying that it does not satisfy the non-deadlock criterion which we
will refer to as criterion 2. Notice that it is possible to have a
large, complex sequence of tests within the synchronization control
section of the programs which may never allow the processes to enter
their critical section, although the processes are not "stuck" on a
single statement. If the programs are such that under certain speed
assumptions the processes will wait forever, (even though under other
assumptions one or the other will eventually enter its critical
section) then we still reject this solution. This rejection is con-
sistent with our demand for speed-independence. Justification: We
want to eliminate (as much as possible) code within our operating

system which will malfunction if a processor or channel is traded in

for a faster one. This problem will be dubbed the critical blocking

problem, and a solution of this type will be rejected because it does
not fulfill criterion 3. If; in figure 2; we put the test statements
11 and 22 before the assignment statements 1 and 2, then we avoid
all critical blocking and deadlock. This solution is presented in

figure 3.

- Figure 3

10

PROGRAM P1

COMMON T1, T2
INTEGER T1, T2
COMMON shared data

IF(T2 "NE* 0) GO TO 1
T1 =1

RASASSS

critical section 1

AN\

T1 =20

AN

non-critical section 1

PROGRAM P2

COMMON TT, T2
INTEGER T1, T2
COMMON shared data

IF(T1 "NE® 0) GO TO 2
T2 =

LAY

critical section 2

BRLSSANNNN

T2 =20

Y

non-critical section 2

ASSSANNNY

AIRARAAY

* Assume variables T1 and T2 are initially set to O

11

We (at last) seem to haye fqund a suitab]g sq]utiqn. Criteria 1, 2, and
3 are all satisfied. However, a closer scrutinization of this solution
reveals that if statements 1 and 2 are executed simultaneously, then
the statements following these will be executed and both processes

will then enter their critical sections. Oh dear: We have defeated
our original purpose which was to not allow both processes to enter
their critical sections. We will, then, define criterion 4 as the
mutual exclusion condition that two (or more) processes must not be
allowed to simultaneously execute code inside of their critical
sections. We must reject this third solution because it violates
criterion 4. In the next section, using the formalism of L-systems
[9-11], we present an abstraction of the set of programs given in
figure 3 and show that criteria 1 through 4 can be mechanically
verified or invalidated. This validation technique is applicable

to any set of programs offered as a solution to the mutual exclusion

problem. The appendix shows a correct solution to our problem.

12

Section 2: Application of L Systems to Mutual Exclusion

The following discussion will brief]y introduce the formalism of
L systems using the notation of Rozenberg [10]. It will then be
shown that the question of whether a set of programs fulfill the four
- criteria is equivalent to certain decidable questions concerning the
emptiness of particular sets of strings and sequences. Finally, it is
indicated that there are a number of other related operating systems
problems which are amenable to analysis via the formalism of L systems.

Intuitively, L systems are similar to phrase structure grammars
with the following significant alterations:

(1) Elimination of the distinction between terminal and non-
terminal symbols so that all symbols in the vocabulary are assumed to
be both terminal and nonterminal, and

(2) Simultaneous replacement of all symbols in a string at each
derivation step.

The latter feature creates a very natural model of parallelism, and
thereby motivates use of L-systems for the study of asynchronous co-
operating processes. The following are a few of the definitions of
Ehrenfeucht and Rozenberg [10], presented in slightly simplified form.
Definition 1: An L system with tables and with interactions (abbre-
viated TIL system) is a construct G = <E,P,g,w;>where
2 is a finite nonempty set called the alphabet of G,
g is a symbol not in £ used as an end marker, w is a
word over the alphabet @ called the axiom or initial
string, and P is a finite nonempty set, such that each
element P& p(called a table of G) is a finite nonempty

relation satisfying the following:

13

PcU
RINE
i+]
m+n

N £g'y 29 x 2 x sMg"y x a¥

0

n s

N
k
2

where keN and 2¢N. (N = set of natural numbers).

and for every-{},a,@>’in U ’{91} 2 ox 1 ox Em{gn}

1,3,m,n>0

itj=k

mn=4

there exists a vy in I* such thaty<§,a,5,y>éP.

Each element of P is called a production and is usually written in the

form <§,a,§ »Y, or if the rule is context-free it is written a»v denoting

{A,a,A}»Y where A means the empty string. In specifying productions in

a table of a TIL system, one may omit those which cannot be used in any

rewriting process which starts with the axiom of the system. This re-

writing proceeds via derivations as explained next.

Definition 2:

Definition 3:

Let G = <Z,P,g,w> be a TIL system. Let x = a]az...anez*
and yer*, We say that x directly derives y in G(written x=§%y)

ifys= Ya¥ou ¥, for some YT’YZ"'°’Yn€Z* such that there
exists a table P inZand for every i in {1,2,...,n}, P

contains a production of the form {=q,a;,87)>v] where =1

is the Tast k symbols of gka]...ai_1 and Bi is the first

The transitive and reflexive
*
closure of the relation an;§y is denoted xzﬁm;y, then we

% symbols of ai+]...ang .

say that x derives y in G.

Define the language generated by a TIL system G to be L(G) =

*
’{XGZ*IW::§;§X . A Tanguage generated by a TIL system is

called an L language, or more specifically, a TIL Tanguage.

14

Returning to the mutual exclusion problem, the essence of the pro-

grams shown in figure 3 can be represented by flowcharts or graphs(as

given below)where each node is given a 1abe1; a; through ei; corresponding

to the label attached to statements in figure 3.

Since we are not interested

in the details of eiactly what operations are performed within the critical

section, this entire section is abstracted to a single node Tabelled c;

1

Similarly all code within the non-critical section of process Pi along

with the GO TO statement following it is represented by node e

//’test T N\ 1ockedi
N2
I un]ocked

W,wn.m.m.

(1 1ock T

s A w_, e

‘*/

critical
section

/
1
i
!
i

|

(;ﬁun1ock T]m>

T n————

4

non- cr1t1ca1
section

!

The state of the total system

NN
Tocked

\
{ii%st Tl/;Bm”““”“

/:MEﬂJOCked

section

critical %

N

(un1ock T2

_/

¢

non-critical i
section

|

at any particular instant of time can then be

captured by a string S1T] 2T2 where S1 takes on values from the set 21 =

'{ai,bi,ci,di,ei} denoting which box of the flowchart is currently being

executed by process i.

Ti takes on a value of 1 meaning that process i

is logking the critical region for its own exclusive use, or 0 implying

that process j is not within its critical region (unlocked).

The elements

15

of these va]ue sets will fqrm the a1phabet of the L system model.
z=z1U22U{0,1}. Note that by subscripting the node labels we can model
asymmetric solutions involving an arbitrary number of processes although
Dijkstra only considers symmetrical so1utions; Elsewhere in this paper we
will employ the notation Si(Y) to meah the value taken on by Si within
string y. Thus within our example, if v = a,0c,1, then S, (y) = a, and
Sz(y) = Cy. Given some instantaneous description, there are a finite
number of possible "next configurations' of the system which may be attained
by some action by process 1, by process 2; or by both. This leads to the
idea of 'rules of change' of the system which can be specified by pro-
ductions within tables of the L system. Finally, the axiom w of the
system specifies the flowchart box at which each process should start
along with the initial values of variables. In our example, w = a]1a21.

The formal specification of our system G includes

(a) L= {a-’ ’b] sc'] sd‘] se] sazsbzaczsdzsezaoa]}a
(b) g =+#,
(c) w= a'l lazl
(d) P =
Table 1 Table 2
1 a] - a]
2 <;A,a],66q> > by Sarme as
N table 1
3 . <A,a] ,65}/? - a]
4 (LA,b],Q> > ¢
5 b.‘ > b] \7}&3.‘ ,O‘,A{i =1
6 {obysTy - by
7 Cqp = c1
8 C] - d1 Same as
9 &1 > & table 1
10 e] -+ a1

16

Table 1 Table 2
11 {},d]?£>+- e,
12 d; > dy <dpsThas 0
130 <A’,’d‘]',o}—:>;' d
14 0 ~ 0 <fa1]c1|d][e],0,%>~+ 0
15 T -1 <;a][b1|c1[e1,1,§>-+ 1

The tables only give productions denoting the progress of process 1.

Further productions would need to be specified to intorporate process 2.

A computer program given graphs of any programs fof mutual -exclusion could
construct the tables. It is also asserted that the program Can check for
correctness of a proposed solution to the mutual exclusion problem or any

of a number of other synchronization problems. The basic technique for
doing this is explained in the remainder of this paper. First, further
interpretation of the tables is needed. Consider the case in which process 1
is within flowchart box a}testing to see if it can enter its critical

section (S1 = a]), process 2 is within its non-critical section (S2 = ez),
and T] = 0, T2 = 0. This total state is represented by y = a]OeZO. To
obtain one possible next state, we must select a table (Tlet's choose table 1)
and apply one production from this table to each symbol in y. Thus if P1
completes successful execution of its IF statement (depicted by production 2,
§1,a],éag>+b1 and P1 leaves its non-critical section (e2+a2), then the

corresponding derivation is a]OeZO::xn§ b]Oa 0. This is due to the fact

2
that the only choice of productions for 0 is 0-0. Note that<<1,a],55@>+b1
means that a; can be replaced by b] if it is followed by any two symbols
followed by a 0. This derivation step shows an example of the simultaneous
occurrence of two asynchronous events. Our assumption of speed independence

implies that a slow process should be able to remain at one node for an

arbitrary but finite number of transitions before moving to the next node.

17

Thus, for each symbol «ex, there must be a production,m+«. If in the
above examp1e,’the'IF statement takes a Tonger time to execute, then process
1 would not yet complete execution of its IF statement. This situation can
be depicted by utilizing production 1 of table 1, aT+a1; to produce the
derivation a10e20;2z§a10a20; Table 2 is provided to guarantee that the
action of leaving node b] is coupled with the action of changing T1 from
0 to 1 (see productions 4 and 5); Incorrect behavior would occur if one of
these actions could take place without the other. Similarly, this table
would be selected when it is time to change T back from 1 to 0 when Teaving
node d, (see productions 11 and 12).

Given this L system G as a model of the asynchronous programs of
figure 3, the question fIs it impossible for both programs to simultaneously
be within their critical sections?" can be cast as the following question
concerning set emptiness within the model. Condition 4: Is the set 64
empty? Cy ='{yQL(G)|(ciéy) A (cjey) for some i,jéN, i # j). In the example
just developed, this means that we consider the set of strings y containing
both of the symbols Cq and Cos and inquire if any of the strings can be
derived from w = a]OaZO (i.e. is ye L(G)). Since Ci means that process
7 1s in its critical section, a string such as y = cilcy| within L(G) means
tha: C4
Wﬁxﬁ:}Y, it is possible for both programs to enter their critical sections.

is non-empty. Thus, by a sequence of 1legal actions specified by

Similarly it can be argued that an answer of 'yes' to the set inclusion
question implies that there is no way to drive the system to a state such
that both programs are within their critical sections. Thus criterion 4

is satisfied. In the example, there is a legitimate derivation w = a10a20;:%
b]ObZO;::::§c]1bZO::$:§ c11021. This L system fails to meet condition 4,

so the set of programs (figure 3) must fail to meet their mutual exclusion

18

criterion (criterion 4). ¥f the L system depicting the progranms of figure 2
were examined it would be found that the adult Tanguage [10, section 2.4] of
G is non-empty. This is precisely the necessary and sufficient condition
for (total) deadlock. Thus; we can state Condition 2: Is the set A(G)
empty? and .the answer is 'yes' (1;e.; condition 2 is satisfied) if and
only if criterion 2 is satisfied with respect to the corresponding set of
programs. The related criterion of no critical blocking is satisfied if
and only if the following question can be answered affirmatively. Condi-
tion 3: Is the set of C3 empty? 03 consists of the set of infinite
derivations, w = Y ==Y P N }1. such that

1 GEN (i)

2. (7 ((Sily) = =)(Fokosily,) #)

The set C3 consists of infinite derivations because it is necessary to

capture the states of the system after an arbitrarily long initial period
of time during which a process may loop within its control statements
before entering its critical section. Part 1 of the specification of the
set Cy [(%)(IN) (/>N ciéy,)] states that condition 3 will fail if there is
any derivation such that after some initial period of time (depicted by

Yo through YN) the symbol ci%ﬁZ(for some i) never appears. This means

that the critical section is never again entered by process i which 1is
exactly the condition of critical blocking. Part 2 of the specification of
C3 [efi)((Si(Yk) = oc)«D(L}%>k9~8i(vk) #=)] is appended to rule out the possi-
bility that some process might take an infinitely Tong time to perform

some operation. Recall that the productions «>= were added to allow

speed independence, and that operations were allowed to take arbitrary

but finite amounts of time. Thus we must only consider sequences which for

each process state Si do not consist only of applications of the production

19

e, This is indicated by the formal statement: if Si takes on value

« in the k-th string of a derivation (Sj(y,) = «), then S; must take on
another vaiue at some later time (ﬁ&>k3»$i(yz) # «). Finally, the criterion
of partial operability can be examined by simply applying the previous
three set emptiness questions to the following subsets of L(G): For each
v'eL(G) containing less than n (but more than zero) symbols of the form
e; where n = number of processes; apply the emptiness tests to L(G')
where G' = (2',P',#,vy') where ' is the set of all symbols in I except
those symbols in Zi—ei for each eiey'. P' is the restriction of P to z'.
Thus only productions which generate valid strings of symbols over &'

can be used. This means that eieei must always be employed. Thus, in
considering blocking and deadlock, the processes which are effectively
stopped should not be considered.

For any L system G formed from any finite set of mutual exclusion
programs, the set emptiness questions are decidable, and so the four
conditions can be mechanically verified to prove or disprove the correct-
ness of a solution. A brief sketch of the argument verifying that condition
3 is decidable will be given here. This condition is selected because it
involves infinite sequences and thus is one of the least obviously decidable
conditions.

Proposition: The question "Is C3 empty?" can be answered after a finite
number of test steps.

Justification:

a. In considering infinite sequences of strings YgoY1sYpse++ @S possible

members of C3, it is sufficient to only consider those sequences such that

Yigp = Yy This is true because given any sequence, it is in C3 if and only

if its underlying real-time subsequence 1is in C3. This subsequence is

20

obtained by col1apsing yi,Yi+1?.,.,yz to yi fqr each case of yi_]fyi=yi+] =

= Yp_1 T YeF V4 In the original sequence. The real-time subsequence
is valid bétause Yi—]iﬁﬂ%§yi =Y£::$%yx+] implies Yi-1:x:%5Yi:xxm%Yz+1. The
real-time subsequence is infinite because repetitions ,yi = yi+1 = ..,
are guaranteed to be finite by part 2 of the specification of C3. Notice
that deadlocked sequences are not in the setC3 because they do not
fulfill the criterion for critical blocking. They are instead detected by
condition 2;
b. In considering infinite real-time sequences (1;e. yi+1 # yi) as possible
members of CS’ it is sufficient to only consider finite sequences of length
IL(G)] + 1. We inquire if there is any sequence of this length beginning
with any yeL(G) which does not contain one or more ciex. If So, then since
L(G) only contains a finite number of strings, there must be a (nontrivial)
'lToop' in which some yigmﬁzg%yi. This loop can be repeated indefinitely to
obtain an infinite sequence excluding Ci. Finally, since yieL(G),
W = yﬁgzwéyi. Thus a sequence beginning with Yo can be constructed. Con-
versely, if there is some real-time sequence in C5, then some yieL(G) must
be repeated in this sequence within |L(G)| + 1 derivation steps and there
must be some Ci not contained in any of the strings within these derivation
steps. This situation will then be detected by simply looking at finite
strings of length |L(G)| + 1.

This completes the justification of the decidability of condition 3.
One crucial factor was the finite fixed size of L(G). However, current
systems allow dynamic requests for resources and dynamic creation of
processes and subprocesses by any existing process. This implies that
strings of L(G) would not all be of the same length. The area of dynamic
systems presents some even more tantalizing problems than the one in-

vestigated here. These dynamic systems problems further justify use of L

21

systems rather than qther ana]ytic quels (such as graphs and hyper-
~graphs [13], suggested by Lee Osterweil). Attempts at formal proof of
parallel programs have, thus far, used inductive techniques (specifying all
possibilities, or assertions about programs; e;g? [14, 15, 16]), but L
systems hold the promise of applying deductive reasoning to classes of
programs to obtain results without enumeration of all possibilities. As
Rozenberg [9] said, fundoubted]y; one of the most important [topics] in

the theory of L systems is the analysis of local behavior to predict
~global propertiesﬁ. Another area deserving further study is concerned
with investigation of efficient techniques for implementing a proving
program for criteria 1 through 4 or extensions thereof. (This might be

an appropriate thesis area for some student). It is a pleasure to terminate
this paper by acknowledging Gregor Rozenberg and Andrezj Ehrenfeucht for
the fascinating lectures (and aside discussions) which introduced the

wonders of L systems.

22

* APPENDIX - A CORRECT SOLUTION TO THE MUTUAL EXCLUSION PROBLEM

PROGRAM P1

COMMON T, T1, T2, shared data

INTEGER T, T1, T2
1 T1 = 1

11 IF (T2 .EQ.)) GO TO 1111
IF (T .EQ. 1) GO TO 11
T =0
11 IF (T .EQ. 2) 60 TO 111
60 TO 1

— 1

1111 \\\5\ A \\\ . x\ .

!

cr1t1ca1 sect1on 1 a
™
{

NN

non-critical section 1

AN NN N

s

GO TO 1
END

PROGRAM P2

COMMON T, T1, T2, shared data

INTEGER T, T1, T2

2 T2 =1
22 F (T1 .EQ. 0) GO TO 2222
(T .EQ. 2) GO TO 22
T2 =0
222 IF (T .EQ. 1) GO TO 222
GO TO 2

I S
2222\\ NNN NN N
critical section 2

\\\\\\\

T=1
T2 =0

RN N N ANV

non-critical section 2 \

mw\\\\\\\,

GO TO 2

END

* Assume variables T, T1, and T2 are initially set to 0

10.
11.

12.

13.
14.

15.

16.

REFERENCES

Brinch-Hansen, P. ;‘Operating'systéms'PkihCib]es, Prentice-Hall,
New Jersey, 1973.

Randall, B., and Naur, P. (Ed.) Software Engineering, NATO Science
Affairs Div., Brussels, 1968. '

Wood; D; "An EXamp1e in Synchronization of- Cooperating Processes:
Theory and Practice" Operating Systems Review 7,3.

Dijkstra, E. W., "Solution of a Problem in Concurrent Programming"

'CACM 8,9.

Dijkstra, E. W., "Cooperating Sequential Processes" in Programming

‘Languages, F. Genuys (Ed.), Academic Press, N.Y., 1968.

Denning, P; and Coffman, E;;Operating‘systems Theory, Prentice-Hall,
N.Jd., 1973.

Holt, R. C., "On Deadlock in Computer Systems", Ph.D. thesis, Cornell
University, Ithaca, New York, 1971.

Coffman, E., Elphick, M., and Shoshani, A., "System Deadlocks",
Computing Surveys 3,2.

Rozenberg, G., and Ehrenfeucht, A., Lectures on L Systems, presented
at summer 1974 colloquia.

Rozenberg, G., L Systems, Springer Verlag, N.Y., 1974.

Lindenmayer, A. and Rozenberg, G., "Developmental Systems and Languages"
in 4th ACM STOC Conference, 1972.

Rozenberg, G., "TOL Systems and Languages", Information and Control,
v. 23.

Osterweil, L. Private communications.

Knuth, D. E., "Additional Comments on a Problem in Concurrent Pro-

- gramming Control," CACM 9,5.

Habermann, A. N. "Synchronization of Communicating Processes", CACM
15,3. ' '

Birman, A., "On Proving Correctness of Microprograms", IBM J. R&D
18,3 (May 1974). R

