More on the QZ Algorithm for Solving
The Generalized Eigenvalue Problem

Linda Kaufman

CU-CS-064-75

e

P

1
%{J University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

e




ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.






More on the QZ Algorithm for Solving
the Generalized Eigenvalue Problem

by

Linda Kaufman
Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-064-75 April 1975



Some Thoughts on the QZ Algorithm
for Solving the Generalized Eigenvalue
Problem

by

Linda Kaufman
Department of Computer Science
University of Colorado
Boulder, Colorado 80302






ABSTRACT

The QZ algorithm of Moler and Stewart solves the generalized
eigenvalue problem of finding X and %;Suéh that A& =‘XB§ for real square
matrices A and B by first simultaneously reducing A to upper Hessenberg
form and B to triangular form then iteratively reducing A to quasi tri-
angular form (no two consecutive elements on the subdiagonal of A
are non-negligible) while preserving the triangularity of B,

The algorithm is analogous to applying the QR algorithm to the standard

1, but matrix inversion is never

eigenvalue problem Cx = ax with C = AB”
explicitly performed and the algorithm is not affected by the condition
of the B matrix. In this paper a slight addition to the QZ algorithm is
presented which permits the decoupling of the problem into two smaller
subproblems when 2 consecutive elements on the subdiagonal of A are small
but neither is negligible compared to the norm of A. We also discuss
the possibility of sometimesausing stabi]ized elementary transformations

instead of Householder transformations.



1. Introduction

In the generalized eigenvalue problem one is given 2 square
matrices A and B and asked to find the set of scalars A and nonzero
vectors g such that

Ax = ABX
Most of the algorithms which purport to solve this problem are less
than satisfactory when B is i11 conditioned. An exception is the QZ
algorithm for real A and B of Moler and Stewart [ 4 ] which does not
require matrix inversion and is unaffected by the condition of B.

The QZ algorithm attempts to find orthogonal matrices Q and Z
which simultaneously reduce A and B to upper triangular form. The
eigenvalues of the original problem can be determined by dividing the
diagonal elements of the triangularized A by the corresponding diagonal
elements of the triangularized B matrix.

The QZ algorithm has 4 sections:

(1) Simultaneously reducing A to upper Hessenberg form (i.e.,

a5 = 0 for i >(j+1))and reducing B to upper triangular form

ji.e. (b.: =0 fori > j)
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(2) Iteratively reducing A to quasi-triangular form while
preserving the triangularity of B. A matrix is quasi-
triangular if no two consecutive elements on the subdiagonal

are nonzero. Thus A will look something Tike:

X X X XXX
X X X X XX
XX X X

X X X

X X X

X



(3) The determination of the eigenvalues from the quasi-
triangular and triangular matrices.

(4) The determination of the eigenvectors.

Step (2) is the heart of the algorithm and the most time con-
suming. It uses a sequence of Householder transformations (see
Wilkinson [ 6]) to try to drive the subdiagonal elements of A to zero
while preserving the triangularity of B. For n x n matrices each

iteration in the step is essentially

(1) Construct the vector a where (1.1)
7 ,
o = ((an—l ;n-1 _ 37 ,)X (?_rlr}_ 41y - %-1n n,n-1
1 bn—1,n-1 b11 bn,n b11 bn,n n-1,n-1
ool Pian A\ . P, 2
b ) b a b,
n-1,n-1 n,n 11 21 22
Nl P12
11 22
L. 2 o+ L ¥y P
27 by by by b)) b 1
an-],n—1 + an,n-] bnél;n
bn—1,n—1 bn—1,n-1 bn,n
a3 = 23
b)s

o3}
il

0 ford <ic<n
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If any of the diagonal elements of B in the formula are 0,
Séﬁ them to u||B||, where u is the precision of the machine.
(2) Find the Householder transformation HE which annihilates a,
and ag and premultiply A and B by H1 to obtain new A and B
matrices. The new B matrix will not be upper triangular.
(3) Multiply A and B on the right and Teft by sequences of House-
holder transformations to chase unwanted nonzero elements
down the second subdiagonal of A and the subdiagonal of B and

out the bottom of the matrices.

It is hoped that within a few iterations some of the subdiagonal
elements of A will be so small that numerically they may be considered
as zero. The algorithm only works on a portion of the original
problem in which all the subdiagonal elements of A are non-negiligible,
and the value of n in our description is the dimension of that portion.
Since each jteration requires~13n2 multiplications when eigenvectors
are not requested and 21nnO when they are, where Ny is the dimension
of the original problem, it is desirable to reduce the problem to as
small a portion as possible. In section 2 we describe a modification
of the QZ algorithm which sometimes permits the reduction of the size
of the problem. It is based on an idea of Francis [1] for the QR
algorithm for solving Ax = A x. The modification considers the case
when two consecutive elements on the subdiagonal of A are non-negligible,
but sufficiently small that it is numerically safe to decouple the
problem into two smaller problems. This situation is not uncommoh.

In section 3 we discuss an essential modification of the algorithm
which will guarantee that if the second subdiagonal element of B is zero:
then within 1 iteration either ay1 Or as, will be zero in exact arithmetic.
One can construct examples with 522 = 0, on which the original algorithm
will breakdown. In section 4 we propose substituting stabilized elementary

transformations for the orthogonal column transformations.



Section 2: Two consecutive small elements

In this section we describe a modification to step 2 of the
QZ algorithm which in some cases will save computational effort.

Let us consider matrices A -and B with the following form.

A B
X X|X X X X X XXX X XXX
X X|X X X X X X X X X XX
B ovow XXX XX X X X X X X
X X X X X XX XX
X X X X X X X
X X X X X
X X X

An element a5 of A will be considered negligible if laijlgll AllZ u
where u is the precision of the machine. We assume that none of the
subdiagonal elements of A are negligible so ordinarily the QZ algorithm
would be applied to the full matrices.

Let us assume that instead of applying the QZ algorithm to the
full matrices, we begin the iteration with their mth columns and

use a__,b b

mm’® “mm? am+],m+1’ m+1,m+]
formulae in (1.31). The transformation,Q]kaffects the m

etc., for a1],b]],a22,b22, etc. in the
th, m+15t, and m+2nd
rows of the entire A matrix including its m-]St column. If the elements
introduced in the m—]St column below the subdiagonal are non-negligible

th row and column has introduced a large

then our starting with the m
perturbation into the problem. On the contrary, if they are negiigible
we have not introduced a perturbation larger than that which the other
elements of the matrix probably already possess because of roundoff

error, and we have managed to decrease the operation count.



Let us Took at el m-1° and An42 m-1 after applying Q, to A.
They are given by
Iel,m-1 T X7 Panr® /0

(2.1)
qe2.m-1 =Y T ¥pum-133 /O

where o = sign (a1) (a12 + a22 +»<332)”2

Certainly we have not introduced a great perturbation if jam+] n-1 F

ra

2 m-1 | are negligible i.e.

(aner,ma1l * Tz maal) < upjar]

hich b
?21%) i%plies (}am,m_]ll (lazl + [a3]) < o ul[A]]

Since computing square roots is costly, and we know that [a]| <0, a
practical criterion for negligibility would be

|a

m,m-1 (iazl + [a3l) < ia]i UIIAil . (2.2)

Subsequent column transformations in the iteration will not
affect the (m-1)st column of A. Subsequent row transformations will
affect the column, but one is guaranteed that

2y gl € 08 + A2

where x and y are given in (2.1) for
i>m.
Thus criterion (2.2) is a sufficient test for a negligible perturbation
for all subsequent transformations in the iteration.
This analysis leads to the idea that for m = n-2,n-3 until 1 one
should form the corresponding 21535, and ag and if criterion (2.2)

th row and column. Of

is satisfied,begin the iteration with the m
course the formulae for the a's are complicated and the idea is open
to the criticism that often as much work can be expended in looking

for a decoupling as would be saved if the decoupling were not performed.



Therefore the computation of the a's should be done as efficiently as
possib]e:' In particular, all eXpressions in,(1.1))which can be computed once
and not repeated for each value of m, should certainly be done only

once; Therefore it is suggested that the quantities
9 =.an—1;n~1/bn-1,n—1
t=a /b

n,n’ n,n

AN TLNE I

. (2.3)
W= an~1,n/bn,n'y
X =V ‘bn~1,‘/bn,n
z=q+ t-x

be computed before hand. Also one should have u||A|| handy. This can

be done once for the whole program:,

Now consider multiplying the formulae for a;, a,, a; in (1.7)
by b22. If b22 is nonzero, neither'QT%né?”criterionuCZ;Z) is changedsy
and one has saved a few mu1tip1fcafions. If it is zero, one zero must
appear on the subdiagonal Qf«A by tﬁe end of the iteration, as the

analysis given in Section 3 indicates.

If the formulae in (1.1) are also multiplied by b1], the formulae
become more complicated and no computational effort is saved. However,
one does discover that if bm‘m is zero then it is equivalent to setting

3

a]=a

1
o



In this case criterion (2.2) is simply

anm | ullAl] .

Iam,m~1 X qniim < | m,m

If the criterion is passed and Q] is applied to A and B,one will

discover that B will remain upper triangular and A will have the form

XXX X X X X
X XX X X XX
mt? vow XX X X XX ;
X X X X
X X X X
X X X
X X

so that the problem has been completely decoupled. One should now
begin the iteration with the (m+1)st row and column by following
Moler's and Stewart's [%J suggestion of deflation from the top if -
bm+1,m+] is zero. If bm+1,m+]
s and aq calculated determine Q] for the iteration.

is not zero, the Tast values of a],

An Algorithm to determine if decoupling can be safely done:

1) Assume a for i=k,k+1,...n are non neglible. Compute

+1,1,

the quantities given in (2.3) with bn,n and bn—W,n—l
replaced by u||B[|if they are zero.

2) Set m to n-2. (We assume (n-k) > 2.)

3) If bm . is not 0, go to step (4). If m> k and

>

| a > | ul [A[]

m,m-1" am+1,m’ am,ml

go to step(6). Compute the Householder reflection which annihilates

the second elements in the vector (am )T and apply it

th

a
.M’ m+1 ,m

to the m™ and m+1St rows of A and B. Increment m and k by 1,fand

if m is greater than n-2, the whole iteration is complete. If
b is nonzero, go to step (6), else return to the beginning

2

of step(3).



4) Compute the quantities

€7 nn m/b

4= 3/ Pmm

r=g-d

s =t-d

ay = ((rxswixocd)/e) by ey ¥ B~ % e

cxb - b

8 = 3y e " P mer T Pt mer (279)

37 T2, m]
If mis k go to step 6)

5) If |am . 1[ (la,| + la3{ > [a]| UI]AII ‘then:decrease m by 1
and return to step(3).

6) Start the main part of the second step of the QZ algorithm at
row m. Remember that column transformations must be applied

to rows k through m and that if k#m, Q1 will change the sign

of am,m—1’

This algorithm requires at most 11(n-3) + 9 multiplications and
10(n-3) + 9 additions and n-3 comparisons. Considering the fact that

each iteration of step (2) of the QZ algorithm costs 1302

+ 0(n)
multiplications and the same numbgr of additions when eigenvectors are
not computed and significantly more when they are, the price of this
modification to the algorithm is not as exorbitant as it might seem

at first g1ance; In the long view it should certainly pay for itself

by decreasing the values of n in the n2 term.



It is interesting to consider the behavior of the algorithm on the

following example.

A B
1 35 7 9 2 4 1 2 4 5 6 7
2 4 6 8 1 3 5 1 3 4 5 6
1 2 3 4 5 8 1 2 3 4 5
10777 5 3 1 12 3 4
1075 8 1 12 3
1 1 2 1 1
1 1 1
The algorithm was implemented on the CDC 6400 where u = 274 7 x 1071°

For the first 3 jterations when m was 4, (a],az,aa) was approximately
10

(10°7,10,1) and thus criterion (2.2) was passed and the iterations began
at row 4. At the end of iteration 3, the subdiagonal of A Tooked 1ike
(2,1, 1077, -3.29610°"1, 1.0x107%, 1.11x10° )T

and an unplanned, welcomed phenomenon occured: criterion (2.2) was

passed when m was 5. Hence the fourth iteration started at row 5. By

the end of this iteration, a5 Was small enough that it could be neglected.
The following iteration again started at row 4, and at its completion

the subdiagonal of A looked 1ike

(2,171,107, 29007, 1emao', 23071

Thus the last 3 rows of A were in quasi-triangular form and one could
concentrate on the top 4x4 matrix, which was reduced to quasi-triangular
form in 2 iterations.

With the original algorithm all iterations began at row 1. The
algorithm also reduced the problem to the top 4x4 submatrices after 5
iterations, but 3,3 had grown considerably and the subdiagonal of A

lTooked 1ike

(-3x107% ,-2.3, 1.5x107% , -2x1072% |, 110710, 2.3x1071%)T,
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In contrast to the modified algorithm, 3 iterations were required to
reduce the problem to the top 3 rows and 2 more to completely reduce

the A matrix to quasi-triangular form. Thus the original algorithm
required 3 more small iterations. When eigenvectors were required about
50% more time was required for the original algorithm than for the
modified one.

The eigenvalues computed by the two algorithms are given below:

Modified Algorithm Original Algorithm
~9.9999999999994x10™ ! -9.9999999999983x10™ !
~9.2218442367418x10" 12 ~1.4617199904744x10™ 1%
1.9999999999999 1.9999999999998
6.9999999943482 6.9999999943482
~1.7320508076675 ~1.7320508076675
4.0000000019230 4.0000000019228
1.7320508073967 1.7320508073967

Obviously there is not much difference between the sets of eigen-
values, but since the problem has eigenvalues at -1,2, and 0, those
given by the modified algorithm are preferable.

Although 1in the above example, searching for small elements
increased the efficiency of the algorithm significantly and gave
slightly more accurate eigenvalues, in general one should not expect
this to be the case. On various random examples generated, the time
for both algorithms were very similar.
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Section 3: An analysis when b22 is zero

In [5] Ward analyzes of the convergence of the QZ algorithm when
the formula for a is given by (1.1). His theorems specifically exclude
the case when b22 is 0, for in this case the algorithm can fail to con-

verge as witnessed by the following example:

A B
T-1 01 0 1 10 0 0 0 1
=1 00 0 1 O 001 10
-1 -1 1 0 1 -1 0 0 1
1 01 0 1 1 0
1 1 0 1 -1
1 -1 0

After normalization, the vector a will always be (O,O,1,O,O%O)Twand~both
matrices will alternate between the origina] ones given above and the

matrices A" and B' given below.

A' B'
-1-1 0 1 0 1 -1 00 0 0 1
10 0 01 O 00 1T 1 0
-1 1T 1T 0 1 1 0 0 1
-1 01 0 1 1 0
1 10 1 -1
1 -1 0

Actually, all known implementations of the QZ algorithm use an
ad-hoc vector for a if convergence is not attained after 10 iterations.

If, however, the formula for a in (1.1) had originally been multi-
plied by b22, then a would have been (-1,0,-1,0,0,0) and after 1 itera-

tion a32 would be zero.
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This is not an isolated example and we shall show that a zero will
always appear on the subdiagonal of A if b22 is 0 and if the algorithm
ié carried out in exact arithmetic with the formula for %smu1tip1ied
by b22.

Let us assume we are applying the seconddstep of thé QZ‘éféokithm
to an upper Hessenberg matrix A with no negligible subdiagonal elements
and an upper triangular matrix B with b22 = 0. Since the problem can be
deflated from the top when bH = 0, we'll-assume b1] is nonzero. The
algorithm begins with the creation of the vector a using the formulae in

(1.1) multiplied by b22 as in section 2. Since b22 is assumed to be 0,

we have

41 = a1 = aygbyo/byy

8y = 85y = ap1by,/by,

(3.1)
43 = a3 -
a. =0 123

Thus a = a5 - b]z/b1]%] where éiﬁdenotes the ith'column of the A matrix.

Then the a?gorithm‘constructs the Householder transformation Q]

such that Qa = -sign (a])[[%[[é%]

where £ is the first column of the identity matrix and applies Q] to

A and B.

Because of the formula for a we have

(82 - bya/byyay) = -sion (a)]]al e (3.2)
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This fact is the key to the following theorem:

"Theorem: After one iteration, the double shift QZ algorithm applied to an
upper Hessenberg matrix A with no zero subdiagonal elements and an upper
triangular matrix B with b1] nonzero and bzé zero, produces an A matrix in
which either 351 is zero or a32 is zero if exact arithmetic is used.
Eﬁggﬁ; The matrix B' = Q]B has the form

XXX XXX
XXX XXX
XXX XXX

X XX

X X
X
and the third part of the iteration (see section 1) begins with the con-
struction of V] such that B‘V1 is upper triangular. The matrix V] is the
product of two matrices V1'V1" where V]' is the Householder transformation
designed to zero b31' and b32' and V1" is the Householder transformation

designed to zero the (2,1) element of B'' = B'V]'.

It is easy to verify that

byy " = byqay/o
bgy'= byjag/o
byy'= bypay/o ,
and b, '=b.,a,/0 where o ==sign (a,) “a 2 a2 4ap
32 “P12%3 1gn 18y ey 2 3

where a1s 8,5 and a; are given in (3.1)§

and that the top 3x3 submatrix of V]' is given by

/1 - b 24 - bybyd? Sbod N\
/1= by -~ byoby, 11
e(e+b33') eie+b33‘) e
2 22
b pby 1 - by,°d bypd

&letbgy") e e /
_byyd - by,d 1.-(b33! + e) ///
e e e p
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12 2, a2 . .
where d = a3/c and e = (EJbS] + b32 + by ) sign (b33 ) .

The elements bz]'? and bzz‘f are thus
e | 22 2.2 E
bp1'" = Pyq| 2p1-byp d" - Byp d )’fﬁz‘gwj (3.3)
B e(eth,, ) e(eth,, ) e '
and b 4 242 o

22" = big 3l byt 4 - b P ) - dbyy'
o eletdyy') eletdss') e l
We can now distinguish 2 cases: ) N
Case 1: b2,1'l is nonzero so that‘V1" is not the identity matrix.
Case 2: b2,1l‘ is zero which by (3.3) implies b2’2“ is also zero

since bn is nonzero.

For Case 1, one can show that the first column of V] is

1 .
= (bes = bss 0 0)
Z 2" 12’ -‘-l’ s e e
Ibyo° * by
Hence AV1$1 is
(byo@y = byq2p)

1
5 >
Qbm * by

and by (3.2) we have

QlAV]g1 = Bg] for some complicated constant g.

Future column transformations in the iteration do not touch the first column
and future row transformations only touch the zero elements of the first
column of Q1AV1. Thus the zero element in the (2,1) position will never

be affected and so at the beginning of the next iteration a,, will be zero.
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For Case 2, V1'F is the identity matrix. The vectors AV1e1 and AV-Ig2

are
AV = (1-b,.2d% ) - d? - bi.d a
®1 il Ly byobq7d7 2, 11 %3
~eletbgs') (e+b33 ) |
=-byq (- & (by12y * bypgp) * 9‘—%3) t 2
e(e+b33') e
=byg + 27 = byy (gtgy) G.4)
bn
and
2
AV.e, ==b.,( d (byqa, + bysa,) +d a,) +
152 12eTé'¥E3“§') 1181 7 P1282 < A3 R
bipg * 22 - (3.5)
Let A'' designate Q1AV].
From (3.2),(34), and (3.5) we have
r(,\i)zll = b]Z(Q]’% - S‘ign (a“)| !a I '2%] + Q'l,?l) s
byyg
a1 P10 gy )
byy
which implies that
i ] - i LI I 11
B2 T Pp ¥ g 332 = Doy
by 1
and §42 = b12 a41 (3;6)
11

The next segment of step (3) of the iteration involves finding the
transformation Q2 in the (2,3;4) plane which zeroes aST{l and a41“
By (3.6) this transformation will also zero a32" and a42". Since we
have assumed bz]'* is zero which implies b22'g is zero, the matrices QZA"
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and QZB" wiTT‘quk 11ke

XXX XXX XXX XXX
XX XXXX XX XX
XX XX XXX X

XX XX X XXX

X XX X X

X X X

Future transformations in the iteration will not affect Lhe zero

element in the (3,2) position of the A matrix.
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Section 4; VUsing Elementary Transformations.

Each iteration of the second part of the QZ algorithm might be
summarized as follows:
1) Compute shift parameters M and Ao s the eigenvalues of the

problem

2) Find an orthogonal matrix Q such that Q(AB"] - A1I)(AB‘]v?AZI)
is upper triangular.
3) Find an orthogonal matrix Z such that QBZ is upper triangular.

4) Replace A by QAZ and B by QBZ.

The basis of the QZ algorithm is that each iteration is equivalent
to an iteration of the QR algorithm (see [1]) applied to C = gt with
shifts A and Ay as defined above. The proof of this fact, given
in [4], is independent of the form of Z.and hence 7 need not be
orthogonal. In fact Z could be a product of stabilized elementary
transformations such as in Gaussian elimination with partial pivoting.
The new matrices A" = QAZ and B" = QBZ would not necessarily be those
produced by the original algorithms, but; in the absence of rqundqff error,

t WOuld‘be the same.

the product AB™
The advantage of using elementary transformations is efficiency. The

operation counts given in the table 4.1 certainly indicate that per
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iteration using stabilized elementary transformations is faster. It
is possible, however, for the total execution for the new algorithm to

require more or fewer iterations. Because the shift strategy is based on

-1

A and B and not on AB ', one would not expect the two algorithms to follow

the same steps. If the shift were changed to the eigenvalues of the

-1

Tower 2 x 2 submatrix ' of AB ' ,then both algorithms would produce the same

Q each iteration, in the absence of roundoff error, and the product AB']
would always be the same. In practice the time for the second phase of
the new algorithm is about 75% that of the original one when eigenvectors

are not computed and 70% that of the original one when they are.

Table 4.1: Operation count per 1teration<1)

Original Algorithm Elementary Elementary
S : Transformations I | Transformations II

Eigenvectors - Eigenvectors . Eigenvectors

Without | With Without] With Without| With

Square roots 3n 3n n n 2n 2n
Mu]tip]ications(z ]3n2 Z]nno 8n2 11nno 8n2 1OnnO
Additions'?) 13n° 21nn, 8n2 11nn 8n’ 10nn,
; (2)3(3{,, 2 2 2

Memory Accesses | 46n 78nn 232n Z44nn0 232n Z4Onno
S4an” | <56nn_ S4an® | ss2nn

(1) n refers to the size of the current subproblem and Ny to the size of
the original problem.

(2) terms of order n are ignored.

(3) the exact number of memory accesses when using linear transformations
depends on whether pivoting is performed.
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The disadvantage of the new algorithm is stability. For both algor-
ithms one can show that there exist matrices E, F, Q and Z such that the

computed matrices A and B satisfy

A= QAZ+Eand B=QBZ+F
where ||E|| and ||F|| are bounded. However, the apriori bounds are much
less for the original algorithm. If Ai and Bi represent the 1th computed
A and B matrices and & and B the s computed matrices, then

HEN < kqu 1A 1 g1 e 1L < b 3 141111

where k1 and k2 are constants, u is the precision of the machine and Ni

is the product of the column transformations subsequently applied to Ai

to form A. When using orthogonal transformations [|A1.[|2 is approximately
[[All, » [[Bs[], s approximately |IB]], and I{Nil\z is approximately

1 for i=1,2. . . s. When using elementary transformations one finds
that the product of 2j column transformations can have numbers larger than
the jth Fibonacci number. Thus the bounds on [|N.{[, [[B;|]| and ||A]],
are huge.

In practice it is extremely rare that the proposed algorithm will
cause trouble. However, from experience with similar algorithms with
similar claims, I have no doubt that users will eventually find examples
for which significant element growth occurs. A user has finally deter-
mined a comp]ex hermetian matrix with well separated eigenvalues, [2] for
which the LR algorithm ([6]), which uses stabilized elementary transforma-
tions exclusively, computes very poor eigenvectors and eigenvalues

‘s]ight1y in error (i.e. 9 accurate decimal places when one would expect

14). Several experiments were performed with this matrix. When the

matrix was changed to a real one of twice the size and B was set to the
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identity matrix, the eigenvalue and eigenvectors computed by the proposed
QZ algorithm yie1déd relétive#residua1s of 10']2 rather than 10-]4. The
resu1ts obtained when using a modification of the LZ algorithm [3] were

a bit more disturbfng. ’The’LZ algorithm is designed for ;omp]ex A% = ABé.
It uses stabilized elementary transformations and has the same genéra]
outline as the QZ algorithm, except that the vector a in (1.1) is defined
differently. In the modification of the LZ algorithm orthogonal row
transformations were substituted for stabilized elementary row transforma-
tions, so that the situation was similar to the proposed QZ algorithm.
Like thoée obtained using the LR algorithm, the computed eigenvectors had
at times only 3 accurate decimal places,but the computed eigenvalues were
correct to about 13 decimal places. Experience with this example suggests
that using elementary transformations may sometimes cause trouble.

The huge numbers in the bounds for ||E|]| and ||F|| can be signifi-
cantly decreased if the arithmetic is rearranged when using elementary
transformations.

Thus far we've assumed that the elementary transformations are re-
placing the column transformations of the Moler and Stewart algorithm.
Thus a typfca] sequence of transformations would be a Householder
transformation in the (K ', k+1nk, and k+2) planes to zero 342 k-1 and
41, k-1 followed by two column eiementary‘transformations: one in the
(kvh,‘k+1, k+2) planes to zero bk+2,k and bk+2,k3 the other in the
(k;kt1) planes to 2ero by,q j -

One could also use the f61quing sequence of transformations

1) Zero 842 k-1 using a Householder transformation in the (k+2,k+1)

planes

2) Zero bk&Z,k+1 using an elementary'column transformation in the

(k+2,k+1) planes
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3) Zero Q1 ko1 using a Householder transformation in the (k+1,k)

planes

4) Zero bk+1 K using an elementary column transformation in the

(k+1,k) planes.

For this algorithm the bound on ||A|| does not grow as fast; after t
iterations, the computed matrix A,&'Satisfiles<][At{|1 < gt l!Afij .~ The
operation count for this algorithm is given in columns 5 and 6 of table 4.1.
Note one could also use elementary transformations for the first part
of the QZ algorithm and face the same tradeoff between operation count and

apriori stability bounds.
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