Some Stable Methods for Calculating Inertia
And Solving Symmetric Linear Systems

James R. Bunch
Linda Kaufman

‘CU-CS-063-75

.

/"‘““\

1L

1
m .
V_ﬁUniversity of Colorado at Boulder
" DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO

NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION. |

Some Stable Methods for Calculating Inertia
and Solving Symmetric Linear Systems

by
James R. Bunch
Department of Mathematics ;
University of California at San Diego
La Jolla, California 92037

and
Linda Kaufman
Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-063-75 March 1975

Abstract.
Several decompositions of symmetric matrices for calculating
inertia and solving systems of linear equations are discussed. New

partial pivoting strategies for decomposing symmetric matrices are

introduced and analyzed.

1-1

1. Introduction.

An nXn real matrix A is symmetric if AijzzAji for 1l<i,j<n-.
There are several decompositions of symmetric matrices, e.g. symmetric
t .. .
triangular factorization (the LDL ~ decomposition) [9 7], the Cholesky

decomposition [9 7], the diagonal pivoting decombosition [2,'3, 47, and
the orthogonal decomposition [g]. The decomposition used depends on
the problem to be solved, e.g. solving systems of linear equations,
calculating inertia, or finding eigensystems.

All the statements in this paper concerning real symmetric matrices
also hold for complex Hermitian matrices (AH=A*E Xt) by replacing ¢t
with * throughout.

When solving systems of linear equations where the coefficient
matrix A 1is nonsingular and symmetric, we may always neglect the
symmetry of A and use Gaussian elimination (triangular factorizationm).

3

sy . 3
n~ multiplications,

s 2
n additions, <

n com~

Wl
Wl
[I

This requires

. 2 '
parisons, and n” +n storage to obtain the triangular factorization of
a permutation of A, i.e. PA=LU where L 1is unit lower
triangular, U is upper triangular, and P = is a permutation
matrix. Thus, if we want to solve Ax=b, we solve Ly=Pb for y and

% n2 multiplications and n2

N

then Ux=y for x , each requiring

additions.
Can we take advantage of the symmetry of A to solve Ax=b in

3

% n~ multiplications and 3

n additions?

o=

1-2

If A=LU exists when A is symmetric, then U==DLt, where
D 1is diagonal (i.e. Dij==0 for i# i), and A==LDLt - can be computed

3

3
with % n~ multiplications,

1
n- additions, and 5 n

2

storage. However,

e o

t
A=LDL" need not exist, e.g. [S ﬂ . In fact, PAP"=LDL" need
. . 0 1
not exist for any permutation matrix P ,. e.g. 1 0

But if A is also positive definite or negative definite
(x?Ax >0, or xtAx < 0, respectively, for all x#0), then the

t . . e
LDL decomposition of A exists. If A 1is positive

~ ot ~ 1/2
definite, then Dii >0 for each i, and A=1L 1 where L = LD /

1/2 . Ty .. .
and D7 = dlag{,/Dll, oee ,A/Dnn } ; this is the Cholesky decomposition.
If A 1is symmetric indefinite (there exist x, y#0 such that

xtAx > 0 and ytAy < 0), then these methods can fail (and can be unstable
in finite precision arithmetic [4, pp. 643-6457).

In the eigensystem problem one seeks to find (all or some of) the
eigenvalues (or, all or some of the eigenvalues and corresponding
eigenvectors) of a matrix. We say that A is an eigenvalue of A and
x#0 1is an eigenvector corresponding to A if Ax=\x.

Since an nXn symmetric matrix A has only real eigenvalues 9,
let wu, v, w be thé number of positive, negative, zero eigenvalues,
respectively. The triple (u, v, w) 1is called the inertia of A, while

s=u-v 1is called the signature of A. But n=u+v+w 1is the order

1-3

o=

of A and r=u+4v is the rank of A. Thus, u= (r+s),v=%— (r -s),

and w=n-r. Knowing the order, rank, and signature of a symmetric
matrix A is equivalent to knowing the inertia of A. If A 1is non-
singular, then w=0 and r=n, so knowing the inertia is equivalent

to knowing the signature. Note that in the inertia problem we are
seeking only the signs of the eigenvalues, not the eigenvalues themselves,
and hence we seek some method that would be faster than calculating all
the eigenvalues (cf. Cottle [67).

Suppose A=LDLt, where L is unit lower triangular
and D is diagonal. We shall show below

that u, v, w are equal to the number of positive, negative, zero
elements, respectively on the diagonal of D. Since it requires only

s 1 . t - .
3 multiplications to compute the LD L~ decomposition, this is much

1
Z 0
less work than calculating the eigenvalues.

Unfortunately, the LD Lt decomposition of a symmetric matrix
need not exist if A 1is indefinite. If A 1is positive (negative)

t
definite, then the LDL decomposition of A always exists and the

eigenvalues of A are all positive (negative) since Ax=Ax for x#0

t
X Ax

implies A\ = >0 (<0); so u=n=r=s and v=0=w(v=n=r=s and

X X
u=0=w),
The theoretical foundation for calculating inertia is provided by

Sylvester's Inertia Theorem [7, pp. 371-3727; the inertia of a symmetric

matrix is invariant under nonsingular congruences, i.e. if A is
symmetric and S is nonsingular, then A and SASt have the same
inertia, and hence the same rank and signature.

The classical method for calculating the inertia of a symmetric
matrix is based on Lagrange's method for the reduction of a quadratic form
to a diagonal form.

If A is an nxXn matrix and x is an n-vector, then we say

n
that cp(x)ExtAx = Z Ai K X, is a quadratic form., TIf A is of
is3er
rank r, then we say that ¢(x) is a quadratic form of rank r.
1 t . . t t
Note that BEE (A+A") 1is symmetric and x Bx=x Ax. Hence,
without loss of generality, we may assume that A is symmetric,
Lagrange's method (1759) reduces a quadratic form :p(x)=xtAx to
a diagonal form ztDz, where D .is a diagonal matrix with exactly
r=rank(A) nonzero elements, i.e. xtAx=ztDz where z=8x, det S#0.

t
Since A=S DS, by Sylvester's Inertia Theorem, A and D have the

same inertia.

Let us consider Lagrange's method in détail. If A11 #0, then

1-5

A A
- _ 12 1n ..
11—-A11 and zl-x1+xﬂ-x2+...+——;-xn. This is

Thus, take D
also called the method of completing the square.
Note that this is identical to the first step of the LDLt

decomposition of A. 1If Allaéo , then A =

- ‘ - - '] - \ A A —
1 0 All ! 0 1 K-l-% . K]:E
oo - L I R R

i
|
A21 : | :
== 1
Aiqy | Lo
11 N 0 \ 0
N ! A A !
ALl 0 N 1 0 b
nl | N | | N
A ! 1 | 1
My 1 L] L i
A1
If A22 e # 0, we may continue with the process.
11

If A11 = 0, but Akk # 0 for some k, then we may interchange

4 th
the k— and first rows and columns and proceed as before, i.e.

A2 B k-1 A1
cp(x)=Akk(+%x + .. —A—;—”xk-l+rxl+

Akkﬂ +---+5k-—~x2+ Z A..—A—ﬁ‘é—k—i X, X
A'kk Fetl Ag D 153=1 1] Apge i
i,jtk |

Ao | Akkl A

Here, take» D11=Akk and ZI=KK+TA;; x2+'~ Ak xk +K—k-1:x +
A

Dt L R

Akk 41 Ak

1-6

In matrix form, let P be the permutation matrix obtained from
interchanging the k—t-:-b— and first columns of the nyxn identity matrix.

Then o(x) = xtAx = xtPtPAPth = (Px)t(PAPt) (Px), where Px =

t £,
(s ®ps vee sy g0 X X gy eee 5 x T and (PAR) = AL

Thus, PAPt =
- _ - — -
! i
! : 1! ﬁk_g :.A}S_l A_.lﬁl
L' o e 0 e O
R, -r —————— - e ' ——————— - -1- ———————————
| |
Bor ! L1
R | N
kp \ 0 : | \ 0
o \ | ! \\
| \\ I A A ! \
A ! : ! \
.__1_15 H \\ 0 : i o _.i'.;k;..l.c_l 0 i \\
Akk | \ I J Akk ! \
o) \ ‘ ! \
b0y |) 0 AN
Ank ‘ \ | I N
— 1 | ! 1
Ak : | :
] | L _
But, what do we do if All = ees = Ann = 0 (or if at some stage of the

process the diagonal of the remaining submatrix is all zero)? If A=0

then the rank of A is zero and we take D=0 and z=x. |If A£0 but

All T oees = Ann = 0, then Arsr;éO for some r#s. We can now interchange
th X th

the r— and first, and the s—— and second, rows and columns, and then

the (2, 1) element of the resulting matrix is nonzero. Without loss

of generality, we may assume A21 #0.

1-7

=1 -1 -
Let Y1 T3 <X1 +‘X2>, Yo =3 <X1 X2>, and yi = x, for

i
3 <i<g<n, i.e. y=T %, where T =S®I s, 85 = and I
n-2 1 -1 n-2

is the identity matrix of order n - 2. Then XFAX = yt(TtAT)y with

(Tt,AT)11 =2, # 0. Thus we may proceed as before.

E Ct
Let us explore the above in matrix form. Let A = s
c B
s 0 "
T = , det E # 0, order (E) = order (S). Then T AT =
0 I
s'es s%* .
. Lagrange chose S to be of order 2 so that S ES =D
cs B

was diagonal. If we used E as a block pivot in A and performed a

-1t

block decomposition, then the reduced matrix is B - CE C =B - CSD-1

stct.
Thus we need not find a 2 X2 matrix S which diagonalizes E, but

we can use E itself and do a block decomposition with the 2Xx2

submatrix E., If the diagonal of A is null then there exists a
nonsingular principal 2 x2 submatrix unless A=0 .

Hence, given any symmetric matrix A, there exists a permutation

matrix P such that

(1.1) paP" = MDM"

where M 1is unit lower triangular, D is block diagonal with blocks

) d = v
of order 1 or 2, and M1+1,i 0 whenever Di+l,i # 0

1-8

Let us look at the determinant of such a block of order 2 -

2

Div1,iP1,441 7 " Pyyn,q <O -

Di+l , 1L

Hence, by Sylvester's Inertia Theorem, one positive and one negative
eigenvalue of A 1is associated with this 2 x2 block.

Let p be the number of 1x1 blocks in D. Hence there are
q = % (n-p) blocks of order 2. Let a, b, ¢ be the number of

positive, negative, and zero 1x1 blocks. Thus the inertia of A is
(2+q, b+q, c), the rank of A is n-c, and the signature of A
is a-b.

In finite precision arithmetic on a computer, in order to maintain
stability and insure a good solution we must prevent large growth
in the elements of the reduced matrices generated during the decomposition
process [4, "9 7 ., Hence, we will want to use 2x2 pivots whenever the
diagonal is small as well as whenever the diagonal is null r# 97.
Our knowledge of the inertia will be preserved as long as the determinant
of each 2x2 pivot remains negative.

Based on the above method, called the diagonal pivoting method,

Bunch {27 showed that inertia can be calculated and nonsingular symmetric

fop)

3 . .
systems of linear equations can be solved by only % n~ multiplications,

additions, and % nz storage. The method is almost as stable as Gaussian

1-9

elimination with complete pivoting. The price paid for stability is

1 .3 1 3 .
>=s N but <= n comparisons.
12 6 ¢
E ¢
Let us consider the first step of the algorithm. Let A =
C B
where E 1is of order s=1 or 2. Let Mg = ?a§ ﬁAij" ul = méx ‘Aii"
V= ‘det E{.
If s=1, then |E| =V . Assume vy # 0. Then
e cf 1 0 E 0 1 c%E
) (n-1) ’
C B C/E I .} |0 A 0 I,

where A(n-l) =B - CCt/E and In-l is the identity matrix of order
n-1. So,
(n-1) 2
max }Aij | = ug + ug/V -
1,]
Thus large element growth will not occur for a 1X1 pivot 1f v = \E*

large relative to By

If E is of order 2 and v#0, then

=
(@]
{ad
=4
(@]
jea}
o
=1
=
3
[y
Q
it

where A(n-2) = B Lot .

20, Cuy F)
i,j v

Let o« be a fixed number with 0 <o <« 1. We shall use a 1xl1

pivot if Wy = Oy If so, we interchange the]_-S-E and ki:E row and

column, where by = max ‘Aiii = IAkk! Without loss of generality,
i
we may assume ‘All‘ = - Hemce, wv=p, and
(n-1)
max lAij | < Q+1/oy, .

i,]

th
If Wy < s where by = ’Arql for r#q, then interchange the r—

and 2-IE row and column and the q—l:'E and IEE row and columm, and use a

2 x 2 pivot. Without loss of generality, we may assume My =]A Then,

21"

~ 2 . 2 2 2 2
VT Bahoy T Agp] T Byt ARy 2B - g > (T-ahu, .

and

mex AP < ne2/- 0l

1-11

Thus, all the elements in all the reduced matrices are bounded
by B(Q{)n-l’ where B(Q/) = max{]‘_i_l/a s [l+2/(1'0!)]1/2}.

Now min B(a) = Bla,) = (1 + N/”1_7)/2 < 2.57, where
O<y<l

o, = (1+JT7)/8 2 0.6404,

Since the largest element in each reduced matrix is calculated,
this is a complete pivoting strategy analogous to Gaussian elimination
with complete pivoting.

Furthermore, Bunch [2] proves that the element growth in the diagonal
pivoting method with complete pivoting is bounded by 3n £(n) in comparison
with /o f(n) for Gaussian elimination with complete pivoting, where

n L \1/2 % log n

£(n) = k-1 <1.8 n

k=

In [3] Bunch discusses various partial pivoting strategies for the
diagonal pivoting method which require only O(nz) comparisons instead
of O(nB), although these increase elemenf growth. In this paper we
shall present and analyze several good partial pivoting algorithms for
the diagonal pivoting method,

In ¢ 2 we shall show that the diagonal pivoting method can be
modified so that only n2 comparisons are needed but element growth

n-1

is now bounded by (2.57)n—l (cf. 2 for Gaussian elimination with

partial pivoting).

1-12

In § 3 other variations of the algorithm are presented and
analyzed.

In §4 the situation for symmetric indefinite band matrices is
discussed. We are unable to give an algorithm which preserves the
banded structure for every bandwidth 2m+1. However, we are able to
give good algorithms for the important special cases »when m=1 and

m=2 (tridiagonal and 5-diagonal).

2-1

2. ‘A'Partial:PiVOting'Strategy

In this section we describe and analyze a partial pivoting strategy
for transforming an n x n symmetric indefinite matrix A by stable con-
gruences into a block diagonal matrix D, where each block is of order
1 or 2. As in Bunch and Parlett's [4] complete pivoting strategy, the
algorithm generates a sequence of matrices A(k) of order k according to

the formula

alk=s) g _ cp-lct

where A(k) has been permuted so that it can be partitioned into

where E is an s x s nonsingular matrix, C is a (k-s)xs matrix, and B
is a (k-s)x(k-s) matrix and s is either 1 or 2, depending on whether a

1 x 1 or2 x 2 pivot is used.

Bunch and Parlett's pivoting strategy may be considered analogous
to Gaussian elimination with complete pivoting. Unfortunately, there
is no stable scheme exactly analogous to Gaussian eliminatﬁon with partial
pivoting; one cannot construct an algorithm for which there is a bound
on the element growth of the sequence A(k) when at each stage only one
column of A(k) is examined (see[31). The method described in this section
guarantees that the element growth in A<k) is bounded while searching

for the largest element in at most two columns in each A(k). For

2-2

future reference we call the strategy algorithm A.

In algorithm A, the matrix A

(1)

(2)

(4)

(k-s)

is determined as follows:

(k)

Determine A'"’, the absolute value of the largest off-

diagonal element in absolute value in the first column of

A(k); i.e.

A(k) — IA(k

- j})l -

- pe 1A
-n'l ™

If |A§$)[> a K(k) where 0 < a <]; perform a 1 x 1 pivot

(k-1)

to obtain A , decrease k by 1 and return to (1). We will

show that a good value for o is (1+—¢ 17)/8.

Determine o(k), the absolute value of the largest off-diagonal

th

element in absolute value in the j~ column of A(k), i.e.

o(k) = max }A(kz |
Kk M

(Recall that Aj] is the largest off-diagonal element in the

first column.)

2
If o k(k) : [A§$)] o(k), then perform a 1 x 1 pivot to
obtain A(k']), decrease k by 1, and return to (1). (We need
this test to guarantee stability.)

(k) (k)

and columns of A*"/, perform a 1 x 1 pivot with the new A"/,

decrease k by 1, and return to (1).

2-3

th (k)

rows and columns of AY/ so

(6) Interchange the second and j
decrease k by 2 and return to (1);

Step (4) of the algorithm deserves an explanation. The step was
designed to screen out a pathological case with 2 x 2 pivoting when the

th column was

largest off-diagonal element in absolute value of the j
larger than that of the first column, i.e. when c(k) > A(k). In this
case, step (4) is equivalent to:
scaling the first first row and column of A(k) so that the
absolute value of the largest element 1in the first column
of A(k) is equal to o(k) and repeating
steps (1) and (2) on the scaled matrix.

In the absence of roundoff error, the reduced matrix A(k's)

generated
by algorithm A and the one generated by using explicit scaling would
be the same. If a 2 x 2 pivot had been performed when the test in
step (4) dictated the use of a 1 x 1 pivot, then the element growth of
A(k'z) could not be bounded apriori. Whenever A(k) 3 o(k), the test

in step (4) cannot be passed and one proceeds with step (5).

Note that whenever a 2 x 2 pivot is used, Agﬁ)Aég) < o A§$)2 < A§§)2
so that a 2 x 2 block in D corresponds to a positive-negative pair of
eigenvalues. This means that if A is positive definite . then D will be
diagonal.

We shall now analyze Algorithm A. Let u = max lAij! and

<o
1=1,J-n

u(k) = max |A§K)i for each reduced matrix alk) that exists
154,350 1Y

(1f A(k) uses a 2 x 2 pivot then A(k"1) does not exist). Note that

both}x(k) and a(k) are less than or equal to ﬁ(k).

If a1 x 1 pivot is used,

(k 1) (k) _oalk) o a(k)
A 0T A T Ma AT
(k)
Ay

so that by step (2) of Algorithm A
(2.1) W1 Lk 2 (K)

by step (4),

.2) W) (04 0%l (04 g < (K ra)

(2.3) P O IR YR

If a 2 x 2 pivot is used,

(2.4) Agg'z) = alk)

i+2,1 22 42,2721 j+2,1

) oAlY- Afi% 1Aé1))A(+% o1/ fk) Ak)

2
Since [AlK)] o) <o 2007 by step (5) and

' }A(k)[< o oK) by step (4),
which implies that

2
otk P2y or 17w < 7GR (=),

2-5

Equations (2.4) and (2.5) together imply that

—~
=
]
N
—
PTA

6205 00 00, G0 4 o000 500 L (000, 00%) G0

A(k)z(]_QZ)

Since o(k)[A§§)l <a‘A(k)2 and]A§$)] < a k(k) s

—~
0l
(3]
S
iA

g + 00

L) (o (k) 4 5 {K) (k) o(k))/(]_ch)

IA

WK 200 w02y = WK s 22 - 0
By (2.1), (2.2), (2.3), and (2.6),

max 1) Snaxe (14170 MK, (1427 (1-0)) (K23,
k
The growth is minimized when
(141/a)% = (142/(1-0)),
i.e. when a = (1 + V 17)/8 = 0.6406,
in which case

max u(k) < u(2.57)n_].
k

As noted above, algorithm A is equivalent to one which scales the

k) at each step so that the maximum norm of the

first row and column of A(
first and second columns of A(k) are equal. If the scaling had been done
explicitly, then the algorithm would determine a permutation matrix P,

a Tower triangular matrix M, and a block diagonal matrix D such that

pAPT = FOW®
where IM}j! S max (/o , 1/(1-a))
and |0 5 (2.57)"7 »

ij!

2-6

Algorithm A creates the same matrix P, but a unit Tower triangular matrix
M and a block diagonal matrix D such that

APt = mpmt

where M = MS

and D = S']ES']

where S is a diagonal matrix given by

”fl if ([A%%)g z‘ax(k)) or (!Aég)l > uc(k)) or (A(k) > o(k))

kk =)
| mingfae)/1ak)] VAL

otherwise.

>

i.e. Isk,k! =1,

The bound on the elemental growth of D is that of D.

The operation count is detailed in the following flowchart of

Algorithm A.

2-7

(k-s)

computing A ,s=1lor?2

Find A: Comps = k-2

A >0 A Comps, muits = 1
11

Find o: Comps = k-2

|

IAjil >a 0 Comps, mults = 1

Interchange o {A1]I > o A2 (Comps = 1, mults = 2)

(Note ax already known)

Use T x T < Use 2 x 2
Interchange
Y !
Calculate Mutts = 2
determinant : Adds = 1
Calculate = Calculate Mults = 4(k-2)
multipliers: Divs = k-1 multipliers: Divs = 3
Adds = 2(k-2)
Form (Mults,Adds= Form Mults, Adds =
alk=1).§ k(k-1)/2 a(k=2) (k-1)(k-2)

k: = k-1 ke = k-2

2-8

The comparison count is much Tess for Algorithm A than for the
complete pivoting scheme, and in practice this fact has had a much larger
impact than originally anticipated, sometimes cutting the execution time
by about 40%. In the complete pivoting scheme, at each stage of the
algorithm the Targest element in the current submatrix is determined and
the comparison count is bounded by n3/6 and n2/2 + %— (see [2]),
while in Algorithm A at most 2 columns are searched and the comparison

2,

count is at most n
The table given below gives upper bounds for the number of operations

required for solving Ax=b by Algorithm A.

Table of Operation Count

Multiplications| Divisions | Additions Comparisons
Decision Phase 4(n-1) 0 0 n2-1
Decomposition gf_+ §Q?_ n nin-1 Q?+ Q?— 2n 0
Phase 6 4 6 2 6 4 3
Back and for- > 2
ward solving n n n--n 0
Total Q§_+ 703 - 7n §g? n QE_+ 53?_ 5n n2_1
6 a [2 2 6 4 3 '

3-1

3. Variations of the Algorithm

3.1 Estimating u(k). For small n, we can construct examples for which the

element growth bound of (2.57)n']u for Algorithm A of section 2 is attained.
However, we have been unable to construct an example for arbitrary n which
reaches (2.57)n_]u. Furthermore, as with Gaussian elimination with

partial pivoting, large growth does not seem to occur in practice. Neverthe-
less, one would Tike to have a quick method for obtaining an estimate of

u(k) so that whenever the element growth is excessive, a switch can be

made to the~slower executing complete pivoting scheme of Bunch and

Parlett [4],‘for which the element growth is bounded by nf(n)c (e)h(a,n)

1
4Tog(n)

ﬂ &N
where f(n) = H(k]/\K—1))]/2 which grows slowly like n , and
=2

k
c(@)h(e,n) 23 n for o, = (1+ §17)/8.

Businger [5] has presented an inexpensive algorithm for monitoring
the growth in Gaussian elimination with partial pivoting. Because of the
symmetry of our decomposition, Businger's idea is very satisfying when
applied to Algorithm A.

According to (2.1), (2.2), and (2.3) when a 1 x 1 pivot is used to
fing Ak,

é A(k)/u if A(k']) is formed at step (2)
(k-1)

where
UMY

? o is formed at steps (4) or (5).

According to (2.6) when a 2 x 2 pivot is used to find A(k'z),

3-2

Jk2) <),
where B(k) = B(k—})‘ o(k)/(T-a)
Therefore

LSO)

J=k+1

Thus only the n2/2 comparisons to determine u, and k divisions and k

additions are needed to determine a decent estimate to Q(k).
We suggest that whenever

u(k) 2 13n

the complete pivoting strategy of Bunch and Parlett [4] should be used.

3.2 Accumulating inner products: Algorithm B.

In this section we describe a reformulation of Algorithm A which
permits the accumulation of inner products in multiple precision and which
would probably be more suitable for electronic hand calculators. The
method, called Algorithm B, relates to Algorithm A in the same way that the
Crout-Doolittle algorithm for solving a system of equations with a general
matrix relates to Gaussian elimination with partial pivoting. (see [9,]);
Algorithm B was motivated by Aasen's [1] description of Parlett and Reid's
[.gl algorithm.

In Algorithm B, for a given symmetric matrix A, the matrices P,S,D,
and M are cometed such that

PAP = MS

and

3-3

where P is a permutation matrix, M is aunit lower triangular matrix,
and D is a block diagonal matrix where each block is either of order 1
or 2. Whenever Dk+1,k =0, Mk-],k=o' Because of the structure of M and
D, the matrix S is an upper Hessenberg matrix with Sk+1,k= 0 whenever
Dk+],k= 0. In the parlance of section 2, a 1 x 1 pivot corresponds to
Sk+],k= 0. The decision to use a 1 x 1 pivot is based on the same criteria
as in Algorithm A.

Algorithm B is developed by equating both sides of equations (3.1)
and (3.2). At the kth step, the first k-1 colums of M and P and the first
k-1 rows of S, D, and P have been determined. It is assumed that the
bottom (n-k+1) submatrix of P is the identity matrix. Equating the kth
column of (3.2) yields Si,k for i < k and equating the kth columns of (3.1)
yields Sk,k' If alx 1 pivot is used, then from (3‘])M1,k for i > k
can be obtained and by (3.2) Dk = Sk,k' On the other hand, if a 2 x 2
pivot is used, then equation (3.2) gives Si,k+] for 1 < k and equation
(3.1) gives Sk+1,k+1 and Sk+1,k’ The remaining elements of the kM and
(k+1)5t columns of M are found by solving (n-k-1) systems of order 2

kth

obtained by equating the and (k+1)St columns of both members of

(3.1). The k™ and (k+1)5F rows of D are immediate from (3.2).

th

More precisely, at the k™ stage one proceeds as follows:

(1) Compute S;p: = Dy M 4+ Dy i M so1 * Dy M, i
for i < k.
(Note either D; j.qor Dy 447 1s zero or both are zero.)
' k-1 N
Compute Qj: = Aik - E Mijsjk . for i~ k.

J=1

]

(§5]
!
-y

(2) Let a: = |Q.]: = max |Q.].
I keian
If Q) 2 o where 0 <<,
set Mik: = Ai/Qk for i >k
Dk = Skk* = Qo
D1,k = P kr1® = Sk=1,k = 05

increment k by 1 and return to ().

As in Algorithm A, a good value of o is (1 N 17)/8.

(3) Interchange the k+13% and jth rows of M, then interghange the
‘k+1st' and jth rows and columns of A, and interchange Qj and Qk+1'
Compute S; ar = DysMys * D5 My 501 * Dy My i
for i <k,
’ k-1
and Ri: = Aij - mzl Mimsm,k+1 for i > k .
(4) 1f olQ | 2 a AZ, then set
k
Dt = S Y
Ptk = Dt T Sk 7 0

and . - -
Mik' = Qi/Qk for 1 > k ,

and increment k by 1 and return to.l.

(5) Let o = max(r, max lRil)'
k+l<i<n ©

3-5

h

If]Rkl > o 0, then interchange the K™ and (k+1)5* rows of M

and interchange the kth and (k+1)St rows and columns of A and set

Dyt = S

k' T Skt T Reere

=S = 0,

Dst,k® 7 Dioka1™ = Skt k¢

M : o= Ri/Dkk for i > k+1,

i,k
and increment k by 1 and return to step (1).

(6) Set Dkk: = Skk: = Qk s
Skat kT Sk T Dkt T Bkt T Qe o
Diat ka1t T Sk, ka1t T R o

.= 2 .
Mo = (QRy Ry Qi)/ (QR 1 =Qyq) for i > k41

M

i,k+1° (R1Qk-Q1 Qk+])/(QkRk'ﬂ —Qk+]) for 1 > k+1

M =D =0,

k+1,k* - k2, k+1’
increment k by 2 and return to (1).

If at the (k--])St stage of the algorithm, execution terminated at
either step 4 or 5, the quantities Si K for i < k and Qi for i = k at the

kth

stage have been computed except for one multiplication and one addi-
tion. If step (1) is modified to reflect this fact, then Algorithm B
requires the same number of mu]tip]icationé as Algorithm A.

In practiée the matrices M,A,S, and D and the vectors Q and R may

be stored in an nxn array.

As before, an optimal va]ué of a is @0 = (]*—@17)/8 and f0r<10,

3-6

< n-1
10551 = (2.57) 15?f§sAATJI

3.3 'Other strategies. Other partial pivoting strategies, similar to

Algorithm A, exist, including Algorithms C and D given below.

In Algorithm ¢, A™S) 45 determined as fo11ows:

(k)} = max lA(g)}

: (k) -
(1) Determine yu,]App Lmex 1Ay

“and permute the first and pth rows and columns of A(k) SO

that [a{K)] =, (K,

(2) Determine A(k) =]A(§)§ = max]A§k>,
S E

(3) If ul(k) Za K(k), use A§$) as a1 x 1 pivot to obtain A(k-}),

decrement k by 1, and return to (1). As before a good value for

a is (1+317)8.

: (k) _ (k)
(4) Determine ¢ nggz lAm,j |
m#
2
(5) If a Z(K) < 1A§¥)l c(k), use A§$) as a1l x 1 pivot to

obtain A(k']), decrement k by 1, and return to (1).

(6) Interchange the second and jth rows and columns of A(k) SO

s

that [Aé%)l =‘A(k) and perform a 2 x 2 pivot to obtain A(K-2)

decrement k by 2 and return to (1).

Because the maximum element of a positive definite matrix is on the

diagonal, when Algorithm C is applied to a positive definite matrix A,

3-7

one obtains the decomposition

pAPt = MpMt

with| Mijl 2 1. For some applications this is very desirable.
Unfortunately, on most problems, Algorithm C is more costly than Algorithm
A because at each stage the diagonal is searched and extra interchanges
might be required. In Algorithm A between n2/2 + 0(n) and n? + 0(n)
comparisons are needed to determine the inot strategy while in Algorithm

C between 3n2/4 + 0(n) and 3n2/2 + 0(n) comparisons are needed to determine
the pivot strategy. The bound on element growth in A(k) for Algorithm

C is the same as for Algorithm A.

In Algorithm D, A(k's) is determined as follows:
a2 (k) k) (k)
(1) Determine x*"/ = {Aj] { Zimgx]Ail | .

i=k
(2) If A%§) Z ax(k),kuse A§§) as a 1 x 1 pivot to obtain
A(k"]), decrement k by 1, and return to (1). Below we shall

show that a good value of o is about 0.525.

: (k) _ (k)
(3) Determine o nggﬁ }Am?j |
()2 < 1 ak)) (k) (k) .
(4) If a2 - §A11 [o\"/, then use Ajp7 as a1 x 1 pivot to
obtain A(k']), decrement k by 1, and return to (1).

(5) Interchange the second and jth

(k)

rows and columns of A SO

that IA§$)| = K(k), perform a 2 x 2 pivot to obtain A(k'z),

decrement k by 2 and return to (1).

Whenever a 1 x 1 pivot is used in Algorithm D, no interchanges
are performed, which means less bookkeeping; fewer references to memory
in general, and fewer opportunities to interfere with the structure of
the system. In particular, the algorithm is quite amenable tb tridjagonal

systems.

The disadvantage of Algorithm D is a larger bound in the element

growth in the matrix. As in § 2, let u(k) = <max< |A | . As in
159,55k
Algorithm A, whenever a 1 x 1 pivot is used,
WK 0 sy

When a 2 x 2 pivot is used,

2
| A(k){ lAég)E < IA§§)1 Sk (k)

o A 3

SO

b= (AR a0 Ak (k)2 (1-0), which is a slightly

29 21 | > A

smaller bound on v than in Algorithm A.

2
Because [A(k)l < o() and IA§$)| o(k) < a A(k) , equation (2.4) implies

L 02) < 1 (3ha) £ (1-0)] 06D,

Thus u(k) S max {2]+]/a)n-k’ [1 +(3+a)/(1-a)](n—k)/i} L

which is minimized when
(141/0)% = 1 + (3+a)/(1-a) .

This occurs when o is approximately 0.525, giving a bound of (2.92)" "y ,

which is larger than in Algorithm A.

4-1

4.1 Band Matrices

Many of the problems in numerical linear algebra with symmetric
indefinite matrices involve band matrices. A band matrix A is said
to have bandwidth m if Aij = 0 for |i-j| > m. When A is band one
would like to use an algorithm, Tike Gaussian elimination with partial
pivoting, which takes advantage of the band structure of the matrix to
increase the efficiency of the algorithm.

Unfortunately, except for m=1 and m=2, none of the algorithms
outlined in sections 2 and 3 guarantee the preservation of the band
structure of the matrix. The row and column interchanges used to

guarantee stability destroy the band structure of the system.

Algorithm D does the least damage of all the algorithms A - D,
since interchanges only occur when a 2 x 2 pivot is used, and hence

only in this case is the bandwidth increased. Let m_ be the bandwidth

k
of the matrix A(k) generated by Algorithm D. When a 1 x 1 pivot is

used,

m_q = m:~1 if m, > m
m otherwise

th

When a 2 x 2 pivot is used, m _, = max(m -2, m, j+m-2). where the j

(k-2),

and pnd columns are interchanged before the creation of A Since

<

. < . -
J - m. one is assured that m _, : m, +m-2 and m - m+ D-2-5-(m-2).

For m > 2, one must concede that the band structure might be ruined.
In section 4.2 we discuss the tridiagonal case (m = 1) and in

section 4.3 we present an algorithm for the 5 diagonal case (m = 2).

42

4.2 Tridiagonal Matrices

Let T by a symmetric, tridiagdnal matrix, i.e. Tij = 0 for |i-j|>1.
Of the many algorithms that have been proposed to solve Tx = b, Gaussian
elimination with partial pivoting has prerd the least time-consuming.
However, Gaussian elimination with partial pivoting does not preserve
symmetry. In [3] Bunch has proposed a symmetry preserving algorithm
which can be used to determine the inertia of T as well as solve a
system of equations. Like those given in sections 2 and 3, the algorithm
finds the MDMt decomposition of (1.1) by generating a sequence of tri-
diagonal matrices T(k) of order k. We show the first step which is
typical:

Let o be a fixed number such that O<a<l.

1) If 'Tlll 2 T2]2, then use a 1 x 1 pivot to generate rn-1),

2) If 1T11[<a T212, then use a 2 x 2 pivot to generate T(n'z).

Bunch [3] shows that the bound on element growth is minimized
when o = (¥5-1)/(2u) where u = max | Ti |. With this value of o,
153%n

max fTéK)I = (3+N¥B)
1%,k 1

Table 4.1 gives the operation counts and storage requirements for
Bunch's algorithm [3] and Gaussian elimination with partial pivoting.
When storage is crucial, Bunch's algorithm [3] is preferable to

Gaussian elimination with partial pivoting.

4-3 .

' Tab]e"4.1:“'Opefation‘COunt:"Tridiagona] Case.

Bunch's Modified Gaussian
Original Algorithm Elimination
W Algorithm with Partial
S) Pivoting
Decomposition | Solving ||Decomposition |Solving||Decomposition Solving
____ Only | Tx=b Only Tx=b Only Tx=b
ip1icati 1 gl p 3 1 3
Multiplications 35 0+ 5 D 8ln Sp 3%—n -5 7z n-3p 3n n
Additions n 4n-p n dn-p 2n 5n
Comparisons zﬁ-h + %~p 2%—n+%p 3n+p 3n+p n n
Storage 3n 4n 3n An 5n 6n
required

p represents the number of 1 x 1 pivots

For certain huge problems, where the whole matrix cannot fit into
storage, and for applications where it is not always necessary to have
the complete decomposition, Bunch's algorithm has the unfortunate aspect
that to determine o the whole matrix must be examined to find u. This
problem can be remedied by changing the test in step (1) to:

1) If max (%AZ}I, [Asol s [A32]) X [Alli 2 AZTZ’ then use a

1 x 1 pivot. Here o is simply (3+£§”3.

The bound oh element growth with this modification is the same,

3

but the decomposition now requires 4n+p multiplications and gn +5p

comparisons.

4-4

Bunch's original algorithm can be modified s1ightly to obtain an
operation count closer to that of Gaussian elimination when solving
Tinear equations, The modification involves realizing that one need
not construct the MDMt decomposition explicitly but only that part
of the decomposition which is useful 1n solving linear equations.

To solve Ax = b one solves Mc = b for ¢, Dy = ¢ for y and Mtx =y

X. Let us assume that the first block of D is 2 x 2 and hence

Y1 = (OyyeyDyyepl/ o and vy = (Dypcp=Dpyeq)/ m

where n = D22D11"D§] . Since n is also needed during the formation of

D and M, it is usually available. One may also write

where g = D]1/D2], Yy = D22/D21 and § = DZZDll/DZ] - DZI = D226 - DZ]'

If B,y, and & have been constructed in the decomposition phase and
saved in place of D}?,D21, and D22, then two multiplications are

eliminated. Since

the gquantities B and § can be used in the decomposition phase, and, in
fact, constructing B,y, and & does not add to the multiplication count
when forming M and D when a 2 x 2 is used.

If a1 x 1 is performed whenever IT}]] - ITZT!’ or whenever!B}ia!T21[,
a multiplication is eliminated for each 1 x 1 pivot in the decomposition
phase and the resuylt is equivalent to that obtained with Bunch's original
scheme. Of COQrse, one must still perform the extra comparison,
’TI1I > jTZTi,which avoids problems in the formation of g.

Columns 3 and 4 of Table 4.1 give the operation count for this

algorithm,

4-5

4.3 Five-diagonal Matrices.

In this section we consider two methods for a symmetric indefinite
five-diagonal matrix F, i.e. Fij =0 for |i-j| > 2. Such a matrix
arises during the solution of partial differential equations with
periodic boundary conditions. As in the case of tridiagonal matrices,
Gaussian elimination with partial pivoting is still the least time-
consuming stable algorithm for solving Fx = b, but it destroys symmetry.
In this section we describe two symmetry-preserving algorithms,E and F,
which, for an irreducible matrix F, determine matrices P, M, and D
such that
(4.1) prpt = Mot
as in (1.1). Here Mij =0 for i >J + 3. With decomposition (4.1)
one can solve Fx = b with less storage than Gaussian elimination with
partial pivoting but with a slightly higher operation count.

The algorithms follow the ideas used in sections 2 and 3 and generate

a sequence of five diagonal matrics F(k)

of order k. They were designed
so that the bound on the element growth of F(k) is independent of k
and the operation count is kept as low as possible.
Both algorithms have the same bound on element growth. The bound
on the operation count for Algorithm E is slightly higher than that of
Algorithm F, but in Algorithm E the probability of attaining the bound is Tless.
The first step of each algorithm is typical.

‘Algorithm E:

(1) If [Fpyl 2 [Fgql - then

let o = max (!FZ]I , IF32l , !F42[),

(n-1)

(a) If o[F]}] 3 an]Z, generate F using a 1 x 1 pivot.

4-6

(b) If |F Z o, then interchange the first and second
22

rows and columns of F and perform a 1 x 1 pivot on the new

F to generate F(n'l).

(c) Use a 2 x 2 pivot to generate F(n—Z)‘
(2) If [Fyy | < [F5 |, then
let ¢ = max |F, .
2<i<h | 13!

(a) Ifo {F}]] Za Fi32’ then perform a 1 x 1 pivot to
)

generate F(n'1 .
(b) Interchange the second and third rows and columns of F

and perform a 2 x 2 pivot step to generate F(n~2)_

Algorithm F:

(1) If [Fyq| 2 [Fgqls then
(n-1)

(a) if IFlll z uIFZ]}, then generate F using a 1 x 1
pivot.

(b) Let o = max (!F21[,]F32|,1F421).

If {Fzzi Z 5, then interchange the first and second rows and
columns of F and perform a 1 x 1 pivot on the new F.

(n-1)

(c) Ifo]F]]] 2. F2]2, generate F using a 1 x 1

pivot.
(d) Use a 2 x 2 pivot to generate F(n-2).

(2y If 5F21[< §F31{ then do the same as (2) in Algorithm E.

Step (1b) in each algorithm was included to ensure that the bound
on {Fé;)]‘wou1d be independent of k. In Algorithm F step (la) was

included so that the bound on !F§§)| would be independent of k.

In both algorithms, F(K)

is 5-diagonal for all k, and the lower
submatrix of F(k) of order (k-3) is that of F. Thus if

max |F..] € u, then !Fgg)l Sy fori>3andj> 3.
159.4isp W 1J ,

=1 ’J-.

A complete analysis of the element growth for Algorithm E is given

below. The main results are also valid for Algorithm F and follow

similarly.

It is easiest to bound the element growth of the matrices in

Algorithm E by bounding the elements in the third row of F(k), using

these results to bound !Fég)l and !F§§)l, and in turn using these bounds

to obtain a bound on [F§$)] .

The third row:

In steps la, 1c, and 2a, the third row is not affected so

Rk

In step 1b ,[Fég)] 2 fF§§)| for i = 1,2,3,4 so that

(k) F(k)/ F(k)l <]F(k) [<

(k=1), _
IF3)| - |~Fap" Fo17/ Fpp 42

H

L I L L I U LTI

L L U S A R ST Ol

4-7

2
In step 26, max [FL)E(K) % 5o that

2<i<h 31 ‘ 31
pSk2) gl (plk) plk) o plk) gLy,
T

< R EID® (14a) = (140

T-a
k
F?f]) (1-a)

and for j=2.3:

(k-2)) . (k) (k) (k) (k)
[Py 7' = [Fg 24y F5?)F1})Fz+3 3
(K tk)2
(F33" Fyqp’ - Fap')
K K =]
IRl IR e < “{1 Sl B e
1- @ "o
Since 1 <]+ for 0<o<l, we know
-0

s udiy for ant k.

Assuming 1/2%0°1, one is assured that |F§§)l S u(T%EJ
and thg)l (Tl-). A full analysis for the case 0%a51/2 leads
to the conclusion that the best value of o is 1/2. Thus one

might as well assume 1/2<o<1,

4-8

4-9

The second row:

In step 1la,
F] max (186D RS EEK) = Gp (T
which implies lF%%)] Z o | Féﬁ)l

and [F)] 2 k)]

ik D) e RS R
S |, ;+1| +-% max (IF l IF I,ngg)l)
< M 1, T4y |
AR =

If 1b had been deleted and the definition of o in 1a

changed to o = max (IF21)|)
1=i<4

then the bound on]F (k- 1)I would have been

(k-1 1 1 k), 1+
IF)l < 15, Wt o max (!F§2)‘ , Tffi)}

that 1s’dependent on k.

In step 1b,

L R AR R I IR RS
and

I S O I IS (-

In step 1c, when a 2 x 2 pivot is used, IF§$)| max| Fo.| < uFle
1
50 1F (k-2) . ng) - Féz) F%%) Féz) !
k k k)2
' k) egg) - ry)
<PF e grl), F(k) > U(H_%Jl_ .
0 e [
and ’F(k - Fég),.(Féz)Féﬁ) 8 F4§, 1! i
AREQNSO i
11 22

2 1+a
EE e TR RS e f_u[l P)}u (2/(1-a).

kf (1 - a)

k
no2a, [F{K) e |F31 < e

<1<

so that for j=1,2
IF(k 1? <

FR 1 max R .
3 3+1 o 2<i<5 (1—&)

e |—
—

The case of 2b is exactly that of 1c with the subscripts '2' and
'3' interchanged. One can easily show that for step 2b,

|F§§_2)f < (k-2)

b1) and [F | < u(2/(0 -a)).
Thus, assuming %— <a< 1,

fFé;)l < u {2+ 1/a)/(1-0) and IFé%)[< w2+ 1/a)/(1-a)
for all k.

4-11

In order to bound \F§§) |, we do the following:

In step la,
(a.2) [FDD = eSS e R <« L RS EOL TR
< u (e + 1) (2+ 1/0)/(1-0).
In step 1b >
2
P max (FOL RS TR < o 6T wnien smpides
IF]"; l < a |F.!§k)| so that
(k-1) .
(a.3) 17y 1= LR DR e B < e 2100/ (1),

In step lc »

(k-2 _ k) (k K)o (k K) (k) (k) (K) -
lF Yo- (é) | (Fél)F§2) Féz)Fé1)) §1) (ng)F§1)‘ Fgl)Féwngz) i
3 -1
K)o (k k
- PG F§1)
2
e R Y N R R 1
2
Féﬁ)(] -)
) T
(4.4) < u (]100 + Eti; + Ef”z)) e (4+2a)/(1 -o)2
- (1-a) J
In step Z2a ,

(4.5) IF§¥'1)| < TR+ L max I ;

and in step 2b,

4-12

e N N 07 Ul 7 R G e s la MG
G-y
AR U U i U AL ol
R
(4.6) < @+ /et (34 a)/(1 - 0))/(1-0) = ul-a” +ha + 1)/(a(1-0)").

Obviously, for a< 1, the bound on]F§$>] of (4.2) is greater than
those of (4.3) and (4.5). Whenever a2 < 1/3 , the bound of (4.4)
is Tess than that of (4.6), and within this range, the bound on
[F§§)|is minimized when the formulae given in (4.2) and (4.6) are equal.

This occurs when

(1+a) (1-0) (20 +1)

1
o~
—
+
S

Q

1

Q
p——g

3 2)
or o +5a0 - a-1 = 0,

which occurs when o is approximately 0.52524. For this value of q
>

(k)
35l < 23.88

The operation count for each algorithm is largest when rows and
columns are interchanged. The bound on the operation count is slightly
higher for Algorithm E since more checking .is done before the algorithm
concedes that one must interchange rows and columns before performing a

1 x 1 pivot. But because of the extra checks, the bound will not be

attained as often as it would be in Algorithm F.

In Table 4.2, p is the number of 1 x 1 pivots. If storage 1s
crucial, A}gorithm E or F should be used rather than Gaussian elimination
with partial pivoting.

Table 4.2: Operation Count: Five diagonal Matrices

Algorithm E ‘ Algorithm F .+ Gaussian elimination
. with partial pivoting

Decomposition | Solvingi, Decomposition} Solving gDecomposition Solving

Only Fx=b | Only Fx=b ¢ Only Fx=b
|
Multipli- | j
cations: || 10n + 2p 19n 1 10n 19n-2p ; 10n 17n
Additions: {|11 _ + I 25 1 11 L1 25 1
A i e i L T 14n
Compari- | W
. i
S ())| 3(n+p) 3(ntp) | 2n 2n
f | |
Storage: 4n 5n i 4n 5n :i 8n 9n
x

For Algorithm F, the bounds on the multiplication, addition, and

comparison count cannot all be attained simultaneously. The bounds on

multiplication and addition are attained only if all 1 x 1 pivots are

done in (1b) and all the 2 x 2's in (2b). In this case at most 5-~(n+p)

2

comparisons can be done. The bound on the comparison count is attained
only if al1 1 x 1 pivots are done in (1c) and all the 2 x 2's in

(1d). In this case 9n-2p additions and 15n«p multiplications are

needed to solve a system of equations.

References
J. 0. Aasen, "On the reduction of a symmetric matrix to tridiagonal
form", BIT, 11 (1971), pp. 233-242.

J. R. Bunch, "Analysis of the diagonal pivoting method", SIAM
Numerical Analysis, 8 (1971), pp. 656-680.

J. R. Bunch, "Partial pivoting strategies for symmetric matrices",
SIAM Numerical Analysis, 11 (1974), pp. 521-528.

J. R. Bunch and B. N. Parlett, "Direct methods for solving symmetric
indefinite systems of Tinear equations", SIAM Numerical Analysis
8 (1971), pp. 639-655.

P. A. Businger, "Monitoring the numerical stability of Gaussian
elimination”, Numerische Mathematik 16 (1971), pp. 360-361.

R. W. Cottle, "Manifestations of the Schur complement”, Linear
Algebra and its Applications, 8 (1974), pp. 189-211.

L. Mirsky, An Introduction to Linear Algebra, Clarendon Press,
Oxford, 1955,

B. N. Parlett and J. K. Reid, "On the solution of a system of
Tinear equations whose matrix is symmetric but not definite",
BIT, 10 (1970), pp. 386-397.

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon
Press, Oxford, 1965.

