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ABSTRACT

This paper describes a system that is currently being imple-
mented to generate test data for programs written in ANSI FORTRAN.
Given a path, the system symbolically executes the program and creates
a set of constraints on the program's input variables. If the set of
constraints is linear, linear programming techniques are employed to
solve the system of inequalities. A solution to the system of con-
straints is then a set of test data that will drive execution down
the given path. If it can be determined that the set of constraints
is inconsistent then the given path is shown to be nonexecutable.
To increase the chance of detecting some of the more common programming
errors, artificial constraints are temporarily created that simulate
the error condition and an attempt is made to solve the augmented set
of constraints. A symbolic representation of the program's output
variables in terms of the program's input variables is also created.
The symbolic representation is in a human readable form that facilitates
error detection as well as being a possible aid in allegation generation

and automatic program documentation.






1. Introduction

There is a growing interest in aufomated aids to program testing
and verification. This is becoming more important as software develop-
ment costs rise; particularly in the area of testing and debugging,
and as more and more incorrect programs are disseminated.

The usual approach to program testing relies solely on the intui-
tion of the programmer. The programmer generates data to test the
program until satisfied that the program is correct. The success
of this method depends on the expertise of the programmer and the
complexity of the program. EXperience has shown that this approach
to program testing is inadequate and cost]y] Consequently, several
alternative approaches are being studied. Two of the most active
approaches are program correctness and program validation.

The program correctness method challenges the saying that a pro-
~gram always has one more bug. In this method, assertions are inserted
at transition points in a program and formal theorem proving techniques
are employed to verify the correctness of the assertions at these
points. It is a difficult task, however, to create the assertions.
Because of this difficulty, program correctness methods are not usu-
ally applied to large programs where analysis is most needed.]

The program validation approach assures that the program has been
analyzed and has passed a rigorous set of tests. Program validation
guarantees that the subject program (program being analyzed) is without
certain types of errors. Analysis of this type might include such things
as extensive syntak checking; data flow ana]ysis; graph analysis, and

run time tests of all executable statements.



This paper describes a system that is currently being implemented

to aid in program validation; This system has the following capabil-

ities:

1)

4)

Generates test data to drive execution down a program path.
Test data generation is a useful tool in program validation.
Automatically generating input data for a comprehensive set

of program paths and then executing the program with the

~generated input data, assures the user that the code has

been well tested. Program analysis of this type should
alleviate the problem of program errors occurring in running
programs in segments of code that have never been tested
before.

Detects nonexecutable program paths. Not all program paths
are executable and, therefore, the system attempts to
recognize nonexecutable paths. Detection of executable and
nonexecutable paths is of value in analyzing programs as will
be demonstrated below.

Creates symbolic representations of the programs output
variables as functions of the programs input variables. Sym-
bolic representations of the output variables aid in program
validation by concise1y representing a path's computations.
The symbolic representation is in a human readable form that
facilitates error detection as well as being a possible aid
in allegation generation and automatic program documentation.
Detects certain types of program errors. To further aid in
program validation, an attempt is made to generate data that
will detect some of the more common run time errors, such as

subscripts that are out of bounds.



The'effectiveness of this system in va1idating that a subject
program has been adequately tested dependS‘bn the selection of a com-
prehensive set of paths. In general, it is impossible to exercise
all paths of a program since there may exist an infinite number.
Therefore, a subset of paths must be selected. It has been suggested
that a minimum comprehensive set of paths should execute every state-
ment of the code at least 0nce‘.2 It has also been suggested that not
only should every statement be executed but every branch condition as
we11.3 In Figure 1, for example, all the statements could be executed
without the true condition of statement 7 ever being tested. When all
branch conditions are fol]owed; then all Toops are traversed at least
once and, therefore, this seems to be a more thorough approach.

The test data generation system can also be used in conjunction
with other validation projects. Often these projects are concerned
with only a few paths that meet specific criteria. For example, the
DAVE project, a data flow analysis system,4 automatically detects
paths that contain references to uninitialized variables. The test
data generation system can be used to determine if any of these paths

are executable.
2. Definitions

The flow of control in a program can be represented by a directed

~graph called the contr61 f1bw graph. I is used to denote the successor

operator. Thus, T'x denotes the set of nodes joined to the node x by

edges directed from x. The nodes in the graph are called basic blocks.

A basic block is defined as a maximal sequence of statements having the
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SUBROUTINE SUB(X,Y)
X=X+1

IF(X.GT.Y)GO TO 20
X=Y~X

GO TO 25

X=X-Y

IF(X.GT.-1)G0 TO 30
X==X

RETURN

END

Figure 1



Property that whenever any one of the statements in the basic block
is eXecuted; every statement in the basic block is executed.

The control flow graph is assumed to have one entry point Xg (a
node with indegree zero) and one or more exit points (nodes with out-

degree zero). A control path is a sequence of nodes X115 X590+ 9 X4y

where Xij+1erxij and Xi17X0* Not every control path can be executed.

An execution path is a control path which can be executed. A non-

executable or infeasibleé path is a control path which cannot be executed.

A program input variable is a variable that receives a value by

means of some form of external communication. A program output variable

returns a value by some form of external communication. External
communication can occur in input and output statements and, if the calling
program is not being analyzed in the parameter and common variables as

well.
3. Overview

The system attempts to generate test data to execute the control
paths of the subject program. Programs with Toops may have an infinite
number of control paths, and only a small set of these may be of inter-
est to the user. Hence, this analysis program requires that the path
to be analyzed be specified by the user. The user has a choice between
two modes of operation, static or interactive. In the static mode, a
path is specified initially by a sequence of basic blocks. The static
mode is well suited to handle paths that are automatically generated.
The interactive mode is more human oriented and queries the user at
each conditional branch about which is to be the next basic block in the

path;



In order to generate test‘data for a control path the variab}e
relationships that affect the program flow must be determined; These
variable relationships can be expressed as a set of constraints in
terms of the program's input variables. To generate the constraints
the path is symboTica11y‘eXecuted. When a path is symbolically exe-
cuted values are not assigned to variables as in a normal execution
but instead expressions denoting the evolution of the variables are
assigned. For example, in Figure 1;‘the variable representation of
variable X after statements 1, 2, 3, and 4 are symbolically executed is
X = I2-I1-1 where I1 and I2 denote the input values of parameters X
and Y,krespective1y; The constraint created by the above control path
is I1 + 1 5 I2.

Whenever a conditional transfer of control is encountered one or
more constraints, representing the branch in the conditional statement
that is chosen, is generated. The constraint is then passed to an
inequality solver to check if it is consistent with the existing con-
straints. If the constraint is inconsistent the path is infeasible.
If the constraint is consistent the symbolic execution of the path
continues. At the end of the path, the solution set found by the in-
equality solver is a data set that will force execution of the designated
path.

For example in Figure 1, the path through statements 1, 2, 3, 4,
5, 7, and 9 (control paths are denoted here by statements instead of
basic blocks for clarity) is associated with the following set of con-
straints.

Im+1312
I2 - 11 =-1> -1



One possible solution to thevset of constraints is,IT = Q, 2 =1.
If the user were to call subroutine SUB with actual parameters 0 and 1
this path would be executed. The path through statements 1,2, 3, 6,
8 and 9 is associated with the following set of constraints.
IT+1> 12

Mm+1-123-1"
This set of constraints is inconsistent and the designated control

path is therefore infeasib]e;

During the symbolic execution of the path whenever an output
variable is used to communicate with the external environment the Sym=
bolic representation of the variable is returned to the user instead
of a value. The symbolic representation can be used to detect errors
in the program. By examining the symbolic representations of the out-
put variables, computation errors can often be detected and can some-
times supply hints as to where the error in the computation occurred.
Since the symbolic representation models the path's computations it can
also be used for automatic program documentation and allegation genera-
tion.

There has been other current research in the area of symbolic
execution and test data generation. Both Howden3 and Huang5 have de-
scribed a system for generating path constraints. Both use an approach
that traces backward through the code to determine how the conditional
statement evolved. This approach does not allow early detection of
infeasible paths and would require multiple passes to analyze each
iteration of a loop. Huang has cqmp1ete1y eliminated Toops from his
possible test paths.

The SELECT system 6 developed at Stanford Research Institute gen-

erates test data and creates a symbolic representation of the output



variables for programs written in.a.subset of LISP. SELECT has Timited
~ capabilities in handling procedure ca1ls; Also, the path constraints

and output variable representations are currently represented as a LISP
1ist as opposed to a human recognizable fOrm: ‘

King has implemented a system called EFFIGY7f8 that symbolically
executes a program path and creates a symbolic representation of the
output variables. EFFIGY uses theorem proving techniques to verify
the feasibility of a path but does not generate test data. EFFIGY accepts
programs written in a subset of PL/1 that allows only integer values.

An interactive system has also been developed at TRW that aids the
user in generating test data.2 This system is more user dependent than
the other systems mentioned here.

Both SELECT and EFFIGY analyze programs written in a special
dialect of a language. The test data generation system described here
analyzes programs written in ANSI FORTRAN. It is felt that a popular
user language poses a wider range of problems (such as communication
between procedures and equivalencing of variable names). Also, analysis
of programs written in a popular language should be a more realistic
test for theoretical ideas. FORTRAN was chosen because it is a commonly
used language and there is readily available a large source of programs
in need of validation. The methods described in this paper, however,
are applicable to other Tanguages. In fact, the system translates the

source language into an intermediate code before any program analysis

is attempted.



4. Structure of the Analysis Program

Figure 2 depicts the overall flow of the analysis program. The
data generation system is currently being used as an extension to a
validation system, DAVE, which performs data flow analysis for the pur-

4 During a lexical analysis

pose of validation and error detection.
scan DAVE translates the subject program into a 1ist of tokens. DAVE
also creates a data base of information about each program unit. Each
data base contains a symbo1; common, and Tabel table similar to tables
usually constructed by compilers, a statement table which describes the
input and output variables for each statement and a basic block table
that represents the control flow graph. The token Tlist and tables
described above are also used in the data generation system. In
addition, the program unit data bases and data generation tables are
accessed using a data base package designed to facilitate data base
restructuring.g

The data generation system can run independently of DAVE and in
fact does not use the more sophisticated capabilities of that system. A

preprocessor could be implemented that would simply build the needed

tables and perform none of the analysis.
4.1 Intermediate Code Phase

Before the subject program is analyzed the token Tist is translated
into an intermediate code similar to an assembly language. The 1nter~
mediate code for the statements of a basic block is stored in a doubly

Tinked 1ist that is attached to the basic bTock node of the control flow
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~graph (which is.an entry in,thg baSicvbTock table of the program unit's

data base). Intermediate code representing a conditional statement is

attached to the corresponding edge of the grapht For ekample; in a

Togical if statement of the form IF(EXPRESSION)STATEMENT, the inter-

mediate code representing the expression is attached to the edge that

is followed if the evaluation of the expression is true} Code representing

the complement of the eXpression js attached to the edge that is followed

if the evaluation of the expression is false. An example of the code and

~ control flow graph for the subroutine in Figure T is shown in Figure 3.
Representing the subject program in an intermediate form has several

advantages. First, as was noted; it allows the analysis to be easily

adapted to other languages. The analysis depends on the intermediate code.

Any new language would have to be translated into the intermediate code

but then few other modifications would be necessary to the test data

generation system. Second, since all expressions are represented as a

series of binary operations, it is easy to fold constants and simp1ify

the variable representation during the analysis. Finally, the code 1is

stored as a doubly Tinked Tist to enable future optimization and paral-

Telization of the code.
4.2 Path Selection

The user has a choice between two methods of designating a path,
static or interactive. The static method is designed to accept auto-
matically generated paths whi1e‘the interactive method is designed to
aid a human user in selecting a path:

In the static mode; a path is designated by a sequence of subprogram

names, basic block numbers, and loop counts. The syntax for describing a



X<y

subroutine SUB

N

X<x+1

X<y-X

x<-1

x>y
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X€X=Yy

N

X=X

x>-1

/

/

RETURN

Figure 3
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| set of paths is_giyen by‘the,fq11pwing BNF grammar.
%PATHSET>:;=<PATH>,END
<PATH> : :=<NAME> ,<BBN>, EOP|

<NAME> ,<BBN>, EOP ,<PATH>
<BBN>: :=<N>,<BBN>| <N>| (<BBN>)$<REPEAT>
<NAME>::= Name of subprogram unit
<N>::=basic block number

>

<REPEAT>::=1o0p repeat count (=1)

where <NAME> designates the entry or return to a program unit, EOP
designates the end of a path; and END designates the end of the analysis.
In addition, each path must satisfy the following conditions:
1) it must be a control path;
2) it can enter or return from a subprogram only when the corre-
sponding code contains a procedure reference or return;
3) whenever a path enters a program unit the initial basic block
must be the first executable basic block in the program unit.
For example, consider the path described by SUB1,1,2,5, SUB2,1,7,8,
SUB1,(6,7)$2,EOP,END. In analyzing the path the system will start with
subprogram SUBT and symbolically execute basic blocks 1, 2, and 5.
While executing basic block 5 there is a procedure call to subprogram
SUB2. Subprogram SUB2's basic blocks 1, 7, and 8 are then executed.
In basic block 8 there is a return statement and the analysis returns
to subprogram SUBT, basic block 5. The remaining code in block 5 is
executed. Then the Toop formed by basic blocks 6 and 7 is executed
twice.
If at any time during the analysis of the path, it can be determined

that the path is infeasible, a message is returned to the user and the
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analysis of that path is,terminated. If the;end of the path is en-
countered, the path is executable and the test data that 1s_generated
by the inequality solver is returned to the user;

Another feature that could be easily added to the system is to
allow the user to request that the symbolic representation of a variable
be printed after the execution of any basic b1ock; This facility would
allow the user to investigate the evolution of a variable on a path
and would be useful in isolating a program error. The user can presently
" cause the symbolic representation of a variable to be printed by insert-
ing an output statement in the source code; however, this method is not
as flexible since the sourcé code cannot be modified during the data
generation analysis.

The interactive mode is more human oriented. The user is aided
by the system in selecting a control path. To initiate the analysis
of a path in the interactive mode the user first designates the starting
subprogram unit. If after a basic block xj is executed there is more
than one exit block (an exit block is any of the set of nodes X such
that xierxj) then the system 1ists all the exit blocks. The user chooses
one of these exit blocks as the next node in the control path or ends
the path. The analysis program informs the user when a path has entered
or returned from a program unit.

If in attempting to analyze a block it is determined that the path
is infeasible, a message is issued. The user may then end the analysis,
end the analysis of that path and start a new path, or choose another
exit block from the Tist and let the analysis continue; When the end
of a path is encountered (either in the code or at the user's request)
the data to drive execution down the path is printed and the user may

initiate a new path if desired.



15

The system is,desjgned,so that it can easi]y be modified to save
its current state; For example; if the user wants to follow more
than one of the exit blocks from a basic block he may request that the
current state be saved; He then chooses one of the exit blocks and
continues with the analysis of the path; At a later time he may return

to the saved state to choose another exit block and path;
4,3 Symbolic Execution

Symbolic execution involves assigning expressions to variables
instead of values while following a program path.‘ An ekpression
represents the computation that would have evolved in order to compute
each variable's va]ue; An ekpression is represented internally as a
tree. The trees are similar to expression trees that are often used in
- compilers for translating s.’catements.]0 However, since the tree that is
constructed here may represent several statements instead of one, it is
- called an evolution tree; The symbolic representation of a variable
can be generated by traversing the variable's evolution tree.

An example of an evolution tree for a small segment of code is
~given in figure 4c. The method used to build the tree is similar to
the code optimization techniques for eliminating common subexpressions
described by Cocke and SchwartzH and is outlined below.

In order to build the tree; input variables and constants are
assigned unique numbers called value numbers. A1l binary expressions
are also assigned value numbers and entered into a computation table.
The computation table contains the operator, the value number of the
two operands; and the value number of the binary eXpression. In an

assignment statement the variable being defined (on the LHS) is given
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the same value number as the expression (on the RHS). A variable's
value number is stored in the variable's Symbo1'tab1e'entry. |

To clarify the eXamp1e'to be given here; an input variable's
value number will have a prefix of fI“‘and a constant's value number
a prefix of "C." Now consider the statements in Figure 4a. B, C, and
D are input variables and let their input value numbers be I1, I2, I3
respectively. The computation table entries for the two arithmetic
expressions are shown in Figure 4b. After the first arithmetic state-
ment 1is symbo]ica]ly‘ekecuted, variable A has the value number 2. When
variable A is referenced in the second arithmetic statement, the value
number 2 is used as the operand. After the second arithmetic statement
is executed, C's original value number of I2 is replaced by its current
value number 3.

In the fourth statement C is an output variable. The symbolic
representation of C can be printed from the evolution tree which is
contained in the computation table. The variable's value number is the
pointer to the root of the variable's evolution tree. If the variable's
value number is not an input or constant value number, it indexes an
entry in the computation table. The operator in the computation table
is the evolution tree node. The operands are the pointers to the left
and right branches of the tree. Input and constant value numbers are
the leaf nodes. The evolution tree and symbolic representation of
variable C are depicted in Figure 4c and 4d.

In a similar mannér path constraints can also be constructed.
Conditional statements are entered into the computation table and
assigned a value number. The evd]ution tree for the constraint can then

be extracted from the computation table.



READ B, C, D
A=B+C*D
C=A+5
WRITE C
Figure 4a
Operator Operand 1 Operand 2
value # value #
* I2 I3
* I1 1
+ 2 C1

Computation table for the code in 4a

Figure 4b
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Expression
value #

1
2
3



Evolution tree for variable C

Figure 4c

C=(I 1)+ (1L 2)*(I3)+1
Symbolic representation of output variable C

Figure 4d

18
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The above method allows cdmmunication between subprograms tq be
handled quite simply. In order to pass ianrmation to a.subprogram,
the ‘actual parameter's value number is passed (even expressions have
value numbers.) On returning to the calling program unit; the dummy
parameter's value number is passed back. In order to pass an array, a
Tist of value numbers must be passed between the program units. Sub-
routine Tinkage causes few problems since the computation table is a
global table that reference value numbers and not 1oca1 variable names.

An input variable receives a new input value every time the variable
would receive an external value. For example, if a read statement is in a
loop, the input variables in the statement receive new input values every
time the Toop is executed.

While symbo]ica11y executing the path, constant expressions are
folded (computed) whenever possible. If the following statements were

encountered on a path

A=2
B=3
C = A-B+1

the actual value of C would be computed and A, B, and C would have con-
stant value numbers. Folding simplifies the evolution tree even though
some of the history of the variable's evolution is lost. If experience
shows that this is a hindrance to validating the program then folding

can be suppressed.
4.4 Evrror Checking

Generating data to force ekecution down a path can assure that the

" code has been tested but cannot assure that all errors have been detected.



20

TQ 1ncrease the chance of detecting.sqme,of the more common prqgramming
errors, artificial constraints are temporarily created to‘simu1ate
error conditions. An attempt is then made to solve the augmented set
of constraints. If there exists a solution set to the augmented con-
straints then errors may occur when ekecuting the code and a message is
therefore issued.

Subscripts that are out of bounds are a common and often elusive
programming error and will be used to illustrate the error detection
capabilities. Assume the allowable subscript range of an array is
declared to be between 1 and 100. When array element X(I) is referenced
on the path, the two constraints 15100 and IZ1 are created. If either
of these constraints is consistent with the existing constraints an
error message is returned to the user. If both are inconsistent with
the existing constraints; they are removed from the set of constraints
and the symboTic execution of the path continues. The current imple-

mentation also tries to detect division by zero in a similar way.
4.5 Inequality Solver

When a conditional branch is encountered during the symbolic
execution of a path, a constraint is generated. If the constraint can be
evaluated to a true or false value then the path analysis continues or
an infeasible path message is returned to the user, respectively. More
often, however, the constraint depends on an input variable and therefore,
a true or false value cannot be assigned to the constraint. The constraint
is then passed to an inequality solver. The inequality solver attempts
to find a solution to the set of constraints and therefore confirm that

the set of constraints is consistent. If a solution eXists, the sym-
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bolic execution of the path,cqntinues. If the constraints are incon-
sistent or cannot be handled by the inequality solver, a message is
returned to the user:

If the set of constraints is linear then Tinear programming
techniques can be employed to solve the system; The general form of a
linear programming problem is

Max 0(x)

Subject to Ax<b

x20

where 0 is a linear function called the objective function, x is an m
vector, b is an n Vector; and A is an nxm matrix with m>n. The vector
X is the set of input variables, and the constraints generated by the
system are transformed into the form AxSh. A few examples of some of
the possible transformation techniques are outiined below. These are
intended to demonstrate the applicability of linear programming to
solving the path constraints.

The constraint ai.xizbi can be easily transformed into the  form

J

by multiplying the constraint by -1. The constraint ai.x1.=bj can be

J

.5~bj. The constraint

replaced by the two constraints aijxjfbj and —aiij

aijxi<bj can be transformed using a technique called the big M methoci.]2
Using this technique the constraint becomes aijxi+yfbj where y>0. To
cause y to be greater than zero, My is added to the objective function
where M is a large value. The modified problem is then

Max O'(x)=0(X)+My

Subject to

<

A feasible solution exists only when y>0.
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The constraint aijxj¥ b{ can be replaced by either of the two
inequalities aijxi<bi or ainjsbi which can then be transformed by the
methods outlined above. If it is then determined at some point in the
analysis that the set of inequalities is inconsistent; the alternative
- constraint will then be attempted; If there are N distinct constraints
on the given path then there are ZN possible sets of constraints. Solu-
tions to all 2N sets of constraints would have to be unsuccessfully
attempted before it could be determined that the path is infeasible.

To avoid having to use the trial and error approach described
above, another technique may be emp]oyed; assuming there is an upper
and Tower bound on the constraint. Assume aijxjﬁbi is the constraint
and Lfaijxjfu. Then the follow constraints are added to the system of
inequalities.

(b-L)y + a;.x; > b

1373

(b-U)(1-y) + a;5%5 < b

y 1
where U and -L are chosen to be large numbers and y(Ofyf]) is an integer
variable. This same technique can be employed to handle disjunctive
constraints.

The input variables will not necessarily be restricted to non-
negative values as required by the Tinear programming problem. If
variable X5 is not constrained to be non-negative then this can be
handled by substituting (xp—xq) for xj where xp, quo. The Tinear
programming system solves for xp and xq which will then be used to
compute Xj'

Each time a new constraint is generated during the symboTic

execution of a path, the inequality solver is called. The inequality
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solver first checks to see;if,the new constraint is consistent with
the Tast solution. If it is; the 1inequality solver is done. If it is
not consistent; the constraint is added to the linear programming
problem. A nice property of some linear programming algorithms is that
when a constraint is added to a previously solved problem, the previous
solution can be used to find a solution to the augmented problem. This
is more efficient then solving the augmented problem as a totally new

Tinear programming prob1em.12

By exploiting this property, the speed
of the data generation system will be significantly increased.

The vector x of input variables may be of various data types; real,
integer, logical, hollerith, or comp]ex. There exist Tinear programming
systems that handle mixed integer and real data types so this causes no
prob‘]ems.]2 | Logical data types can be handled by converting true and
false to the values 1 and O respectively. When a Togical input variable,
say L, is first encountered on the path, it is designated as an integer
variable and the constraints 0L and L1 are generated. Hollerith
variables are treated as integer variables. Complex variables, however,
cannot be handled by the Tinear programming inequality solver.

Linear programming techniques are restricted to systems of linear
constraints. Therefore, not all paths can be completely analyzed. It
is felt that the research will show that a Targe proportion of programs
have Tinear constraints and will not be Timited by this restriction.
Cursory observations of programs as well as Knuth's analysis of FORTRAN
|:>rograms]3 reinforce this view; When the constraints are nonlinear

and the inequality solver fai]s; the constraints themselves should still

be an aid to humans in selecting test data and in validating the program.
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5. Problems and Future Research

, The test data generation system that has been described above is
meant to be an experimental system. There are various areas that need
to be investigated further. In addition, there are some extensions
that would enhance the system's efficiency and effectiveness that should

be eXp]ored. A brief description of some of these areas will be given

below.

5.1 Intermediate Code Translation

The current system could be made more efficient if optimization and
parallelization techniques were applied to the intermediate code. Optimiza-
tion such as common subexpression elimination, folding, and removing
- code from Toops as well as parallelization of array expressions would
reduce execution time and storage requirements. Since there exists a
wealth of information on code optimization, it will not be discussed
here. A brief description of parallelization that would benefit the test
data generation system will now described, however.

Consider the code below.

DO 10 I = 1,1000
10 A(I) =0
The only feasible path requires that the Toop be symbolically executed
1000 times; creating an array element entry for each array element defined
in the Toop. If parallelization were employed a series of array elements
could be denoted by an interval such as [n];nz,n3;n4]_where n, is the
start of the array subscript; nzisvgreater or equal to the final array

subscript, ng is the increment value used to compute the next subscript
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in the series, and Ny js the nested Toop Tevel. This;nqtation is
similar to the DO notation in FORTRAN; Using this notation; the Toop
above could be written as A[1,1000,1;1]=0; Only one array entry would
be needed to store this information in the computation stack and the
path would be traversed only once during the symbolic execution. Pro-
~ cedures for implementing the parallelization will not be given here.

It is interesting to note that the information required in program
validation, code optimization and parallelization are all quite similar.
Perhaps future compilers will build a standard data base of information
about the program which can be used for validation, optimization, and

parallelization.
5.2 Path Selection

If parallelization techniques are not employed, a problem arises
in analyzing loops when the designated number of Toop traversals does
not agree with the number of traversals dictated by the code. This
problem arises when a loop is closed (i.e. has only 1 entry and 1 exit
point) and the number of traversals does not depend on input variables.
This appears to be a common occurrence, especially during the initializa-
tion of arrays. For example, again consider the code

DO 10 I = 1,7000
100 A(I)=0

If the user requests that the loop be traversed any number of times other
than 1000, an infeasible path is detected; Loops similar to the above
are probably not a major concern to the user since they have no affect
on the input variables. However, it is a burden on the user that the

exact number of Toop traversals be known since it may not always be as
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obvious as in the aboye examp]e;

The system can be extended to return the required number of Toop
traversals for closed loops not dependent on input variables. It may
also be desirable to override the user's request in these circumstances
and (after issuing the appropriate message) execute the Toop the re-
quired number of times.

There are various other circumstances where information on the
structure of the program's executable paths can be recognized. Problems

of this type need to be explored further.
5.3 Symbolic Execution

A major problem in analyzing programs is the inability to recognize
distinct array elements. If an array's subscript depends on an input
variable, it is impossible to tell vhich element is being referenced.

To i1lustrate this problem, consider the following statements with
input variable J.

DIMENSION A(10)

A(5)
A(I)

1
—

A(Jd)+2

A(J) may or may not be the same array element as A(5). There are
several alternative methods of handling this problem; however, none
are completely satisfactory.

One such approach is to mark any variable that is ambiguously
defined as undetermined. If both variables I and J in the above code
depend on input variables then array A is marked as undetermined. If

only variable J depends on an input variable, then only array element
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A(I) is.marked as undetermined., Any variab]e that subsequgntly depends
on an undetermined variable is also marked as undetermined. This method
hinders the generation of test data only if a constraint depends on an
undetermined variab1e§

A second alternative is the approach used by the SELECT system to
analyze LISP type programs;6 A value for the ambiguous subscript is
chosen by the system; If an infeasible path is subsequently detected,
the analysis program then backtracks and tries another subscript value.
The path is marked as infeasible only after all possible subscripts
have been attempted and failed; The problem with this method is that
it may prove too costly, especially for FORTRAN programs with large
arrays. For the above example with both I and J as input variables,
there would be 100 possible subscript combinations for that one state-
ment alone.

A third alternative attempts to classify nonfolding subscripts in
terms of an input variable. Array subscripts are allowed that reduce
to the form I+C where I is an input variable and C is a constant. In
this method, if an array is subscripted in terms of an input variable
it must always be subscripted in terms of that input variable or the
array element is ambiguous. Ambiguous array references will be marked
as undetermined as outlined in the first method described above.

This method seems to be a reasonable approach since cursory obser-
vations of programs have shown that nonfolding subscripts often reduce
to the form I+C. The major drawback of this method is its inability
to handle arrays passed as parameters between program units. Fortran
allows segments of arrays to be passed and array dimensions to be re-

defined between one program unit and another. Neither of these program
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constructs can readiTy'belaccommodated using nonconstant subscripts.

The current imp]ementation employs the first method outlined above
for handling arrays. Using this method; information can be obtained on
the frequency of ambiguous array subscripts and analysis failure due to
this problem; The second method of automatically selecting subscripts
and backtracking when necessary can easily be implemented at a Tater
time if desired. To implement the third approach would require extensive
modifications to the current implementation.

Another difficulty that arises in FORTRAN is in analyzing the REWIND
and BACKSPACE statements correctly. To analyze these statements a
history of the input and output variables for each file must be maintained.
The number of items read or written on a file may depend on an input
variable and therefore may not be determinab]e; The current implementa-
tion cannot handle REWIND or BACKSPACE statements and ignores these state-
ments. This is not considered a serious problem, however, since these

statements occur relatively infrequently.
5.4 Inequality Solver

The path constraints and symbolic representation of the output
variables may be quite unwieldy. As was noted, constant expressions are
folded during the symbolic execution of the path, but this is only done
within a binary eXpression. The inequality solver, however, requires
that the constraints be in a simplified form. The simplification can be
easily accomplished by passing the expression to a system that is designed
to do symbolic algebraic manipulations such as ALTRAN.14” Therefore, both
the path constraints and output variable expressions are simpTlified by

ALTRAN immediately after they are generated.
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It may a]so‘be desirable to allow the user to suppress the simpli-
fication of eXpressions.' The unsimp1ified eXpression is‘in a form that
represents the variable's evolution while the simplified eXpression,
though concise, Toses some of the historical information; For example,
the eXpression A = (2*I1) + (I1+2) contains more information than the
simplified expression A = 3#I1+2. The unsimplified form may be desired,

especially when the user suspects a program error.

A major drawback of the inequality solver described in section 4.5
is that only linear constraints can be accepted by linear programming
algorithms. Though this may not affect many programs, the system
would be enhanced with a more general inequality solver. There exist
various techniques for handling special nonlinear cases.]z’15 These
techniques must be examined further. The modularity of the test data

generation system allows various inequality solvers to be tested.
6. Conclusion

The test data generation system described in this paper symbolically
executes a path and provides a symbolic representation of the output
variables and path constraints in terms of the program's input variables.
Common run time errors such as subscripts that are out of bounds and
division by zero may also be detected. Using the path constraints an
attempt is made to generate test data that would cause execution of the
selected path or to determine that the path is infeasible. The capabil-
ities provided by this system should aid in program testing and validation.

The system is Timited in its ability to handle all constructs of
FORTRAN, particularly array references that depend on input variables.

In addition, test data generation is currently confined to paths that
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. can be described by a set of 1inear path cqnstraints. Even in program
paths where the analysis is incomplete due to the system's limitations,
knowledge will be gained about the program from the path‘constraints
and symbolic representation of the output variab]es;

This system is currently being imp]emented; It is hoped that
from this experimental system more can be Tearned about the structure
of programs such as the types of array usage and the compTeXity of path
constraints. This information should aid future research in program

validation and test data generation.
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