Some Uses of Simulation in System Design *

Gary J. Nutt

CU-(CS-059-75

=
.
[@7 | University of Colorado at Boulder

B
N
DEPARTMENT OF COMPUTER SCIENCE

* This work was supported by the National Science Foundation under grant number GJ-42251.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

SOME USES OF SIMULATION IN SYSTEM DESIGN*

by

Gary J. Nutt
Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU-CS-059-75 January, 1975

* This work was supported by the National Science Foundation under
grant number GJ-422571.

ABSTRACT

In this paper, some simulation design techniques used in the
study of a new architecture called the multi associative processor
(MAP) architecture are discussed. The architecture executes multiple
single-instruction-multiple-data stream (SIMD) programs simultaneously
(i.e., it is a specialized multiprocessor). The design analysis of
the system includes topics such as the generation of a suitable job
mix for the machine; simulating the execution of a SIMD program; and
simulating the competition between executing programs for various
shared resources.

The approach to analysis of the MAP system design is based
on a highly detailed (low level) simulation model that interpretively
executes a single SIMD program at a time. This interpreter provides a
medium for testing various SIMD algorithms that could be executed on a
real system corresponding to the hypothetical MAP system. Although the
interpreter does not allow for the simulation of the simultaneous
execution of two or more SIMD programs, the single executions are
measured with a (simulated) hardware or software monitor to obtain
data indicating the performance of that program in an isolated (non-
competitive) environment. These data are then used to drive higher
Tevel (lower detail) simulation models that focus on particular aspects

of the design, e.g., the competition for main memory cycles.

INTRODUCTION

The multi associative pkocesSqr (MAP) computer system is a hypo-
thetical machine employing ejght;cqntro1 units and an arbitrary number
of identical processing elements (see Figure 1), [3]. Each control
unit, in combination with a subset of the processing elements, operates
on a single instruction stream through the control unit and multiple
data streams, one through each processing element (i.e. SIMD operation).
The instruction execution cycle for one control unit and one or more
processing elements can be described as follows: The control unit
fetches an instruction from the main memory and then decodes the in-
struction to obtain a series of Tow level operations that each processing
element must execute in order to carry out the instruction. The con-
trol unit "broadcasts" this set of operations over the instruction bus
shown in Figure 1, one at a time, to the set of processing elements
that are currently assigned to that control unit. The time required

to broadcast one operation is called a control unit cycle. Each

processing element executes the operations on data that resides in a
memory that is local to the processing element. Since it is not likely
that all instructions should apply to each processing element that is
assigned to the control unit, a mechanism to temporarily activate or
deactivate a given processing element is required; we refer to this
mechanism as an "associative unit" and further discussion of the unit
is provided in the paper by Arnold, [1].

The processing element memories are loaded sequentially by the
control unit from the main memory. This loading amounts to data
Toading rather than program loading, since the processing element

memory is not used to store instructions. In order to provide this

capability to transfer data frqm the,main memory to the processing
eTement memories, a data bus is required, as indicated in Figure 1.
Note that the philosophy of this machine will require high utilization
of the instruction bus system and relatively low utilization of the
data bus system provided that high I/0 programs are not executed on
the machine: For this reason, and since the data bus will generally
be wider than the instruction bus, the architecture incorporates
dedicated instruction busses and shared data busses. Although the
general architecture of the machine is specified above, and in Figure 1,
the parameters of the design are subject to the actual condition under
which the machine might be used. For example, the main memory is
shared amongst eight control units and must be designed to support the
simultaneous access of all control units and the I/0 system. What
bandwidth requirements are imposed on the memory system if we assume
that global data and instructions are stored in separate banks? Given
a job load, how many processing elements should be assigned to a given
data bus connection (as indicated in Figure 1). It is these aspects

of the system design that we discuss in the remainder of this paper.

EVALUATION QF,THE DESIGN

The plan of attack to the eva]uation of the design of the hypo-
thetical MAP system is summarized in Figure 2. The first requirement
is to generate a set of programs that might represent a job load on a
MAP system: Each program is then executed on an interpreter to allow
data to be gathered about the execution in an isolated environment.
After several copies of data have been obtained, these data are used
to drive simpler simulation programs that model resource competition.

In the following, a more detailed discussion of each phase in the
design evaluation is given.

The MAP program interpreter, called MAPSIM, is a complex simula-
tion program used to interpret a single MAP program stored in a pseudo
main memory in absolute binary format. Thus, it is used to model a
single control unit and a multiplicity of processing elements, allowing
actual programs to be written and executed in a noncompetitive envi-
ronment (i.e. resources are always immediately available as required).
The input data to MAPSIM includes a designation of the number of proc-
essing elements to be used, the amount of processing element memory
required, and a MAP program in absolute binary form. MAPSIM is written
in the assembly language of the Control Data 6400 (called COMPASS) since
it is desirable that the program be as efficient as possible during
execution. This is necessary due to the large degree of parallel
processing element activity that must be simulated on the sequential
Control Data machine. Even with MAPSIM coded in assembly language,
the simulated time/real time ratio is much greater than one. This ratio
is highly dependent on the number of processing elements being simulated

and on the activity of the set of processing elements with respect to

the set of operatiqns being brqadcast by the cqntrq1 unit.

In order,to see why this overhead is incurred by MAPSIM, consider
the ‘action taken for each machine instruction eXecution; First, MAPSIM
fetches an instruction from the pseudo main memory, this instruction
is then decoded into a set of actions that the active processing elements
must ekecute; Note that these operations required to simulate the effect
of a machine instruction do not directly correspond to the theoretical
set of operations broadcast over the instruction bus as described
previously. It is only necessary that the whole machine instruction
have the same effect in MAPSIM as the uninterrupted sequence of operations
would have had in a real MAP system. The set of processing elements
currently allocated to a processing element is separated into two
lists; the first list chains together all currently active processing
element descriptors, and the second 1ist includes the remaining pro-
cessing elements. Therefore, to apply the instruction to the set of
active processing elements, the list of active processing elements must
be traversed.

A11 MAP program input and output (to and from the main memory) is
accomplished by including a FORTRAN subroutine, called IOSUBS, with MAPSIM.
The MAP program then makes "supervisory calls" which are passed on to
the FORTRAN input/output routine.

Since MAPSIM expects the program to be defined in an absolute
binary format, it was necessary to provide an assembler to translate
symbolic MAP programs into a binary format. Initially, some crude
attempts were made at writing an assemb]er from scratch, but no really
~good software resulted. For example, the early assemblers would not
handle expressions in the operand field, they had no macro capability,

the pseudo operations were very Timited, etc. It finally occurred

to us to USe the macro capabi]ity Qf the QOMPASS assembler itself.

Then we would have a very powerful asSemb1er with features that would
have required several man-months for us to build from scratch. Each
symboTic MAP program immediately calls a macro that purges all of the
usual COMPASS statements. Subsequent macros are defined for each
operation code such that the operand field can be evaluated by the

usual COMPASS mechanism and then a predetermined bit pattern and address
will be generated for the operation. This approach to assembler writing
has been quite Tucrative, allowing for easy assembler definition, imple-
mentation, and modification.

As is noted in Figure 2, MAPSIM is used to execute a MAP program,
producing user-defined output. This has proven to be a worthwhile
approach, since it has provided a medium for writing and testing a
diversity of programs that illustrate several application areas for
MAP, [4]. Additionally, the existence of MAPSIM gives one the opportuni-
ty to write monitoring routines to simulate software and hardware
monitors. MAPSIM is designed to call a subroutine named MONITOR at
the completion of each instruction cycle.* If the user does not wish
to monitor his program, the default MONITOR simply returns control to
MAPSIM. Otherwise, this option allows one to define any special purpose
simulated monitor to satisfy the current need. Once the monitor has
been called, it is free to inspect any of the tables maintained by
MAPSIM, e.g. the active processing element Tist, the simulated time,
whether or not the instruction made a data reference to main memory,

whether or not the instruction required the data bus, etc. The output

* It is also possible to have MAPSIM call MONITOR only after certain
instruction have been executed. This option is invoked by reassembling
MAPSIM with appropriate assembly-time options set.

prqvided by the.mqnitqring rquting (and the cher routines it may
invoke) is defined by the user. He may»generate a set of full trace
data, a partia] trace, or merely collect statistics to define a dis-
tribution reflecting the character of the MAP program. It is also
possible to use the monitoring routines to perform certain computations
that would normally be classified as artifact, (for an example of such
an application, see [4]).

Although MAPSIM has been carefully written in assembly language to
minimize the required execution time, the monitoring routines will
usually be written in some combination of COMPASS and FORTRAN. ATl-
though these routines may be called very frequently they will most
1ikely perform only a minimal amount of computation. They must also be
able to do flexible I/0. Furthermore, we see the MAPSIM code as being
very static, while the monitoring routines will be everchanging to
reflect the current interest of the analyst.

As an example of the use of the monitoring routines, consider the
problem of determining the load on the interface between the control
unit and the main memory as generated by a given program. One can
distinguish between instruction fetches and global data references to
the main memory. In order to determine the load, then, the monitor
must examine the activity caused by each instruction executed on the
control unit. After each instruction is processed, its execution time
is Tooked up in an operator table. This time is wused as the time since
the last instruction fetch, and the data can be written to an auxiliary
file to generate the trace of instruction fetches or it can be entered
into a data structure to generate a distribution of the frequency of
instruction fetches. Figure 3 is a distribution of the instruction fetch

frequency for a given program to compute the shortest path between two

nodes in a graph.

In order to determine‘the global data reference distribution, one
must determine if the current instruction referenced memory or not.
This information can also be saved in a table. If the instruction does
not reference data, the instruction time is added to an accumulator
that keeps track of the time since the last data reference; otherwise,
a portion of the instruction execution time for this instruction is
added to the time since the Tast reference and then the sum is entered
into a distribution. Again, this data could be used to generate a
full trace of data references. Figure 4 indicates the distribution
for the same program execution used to derive Figure 3.

MAPSIM has been a useful tool for analyzing single program exe-
~cution. It has allowed us to explore such potential application areas
as numerical mathematics, operating systems, and operations research.
Furthermore, we have been able to expose several weaknesses in the
original instruction set for the machine; this has resulted in the
implementation of a second version of the assembler and interpreter.

However, this approach to design evaluation avoids all forms of
resource competition, hence, the design of the critical portions of the
hardware cannot be directly studied. For example, MAP must allow for
up to nine simultaneous requests for access to the main memory (see
Figure 1). There are several strategies to the design of such a memory:
One may choose a n-way interleaved memory, hoping to reduce conflicts;
or each control unit may have a dedicated instruction memory, and share
a ninth module among all control units and the I/0 system. In this
Tatter design we are still led to consider interleaving. The other

critical resource for which competition is ignored in MAPSIM is the data

bus system.

There are two approaches that could be taken at this juncture:
MAPSIM could be refined to eXecute eight instruction streams in a quasi-
parallel fashion, or data can be taken from the single control unit
version and used to drive simpler (i.e. less detailed) models of MAP
that simulate the competition for resources and the parallel activity.
Although the former possibility has not been disregarded, it is not
the initial method of investigation that has been applied to the prob-
fem. The current version of MAPSIM is already a complex program; the
introduction of more parallelism into the interpreter would require a
significant programming effort that we are not willing to attempt with
our current resources. A benefit of the multi control unit MAPSIM
approach that is not available with the alternate approach has to do
with the design and evaluation of operating systems for MAP. Without
simultaneous multiple instruction execution, one cannot really test
certain facets of the machine having to do with interprocess communica-
tion and coordination.

Alternatively, the Tow level models are relatively inexpensive
to build and execute. The particular portion of the system that is the
subject of interest can be isolated and rigorously tested with the
trace data or distributions from monitored MAPSIM runs. In the next
section, we discuss an example of the use of such a model to examine
parameters for the memory system design. These models are generally much
less complex than MAPSIM, and tend to focus on a particular aspect of
the system. The emphasis here is generally on the time required to
~generate the model, hence we may use a variety of high Tevel Tanguages

to implement the simulation program rather than assembly language.

A MAP MEMORY SYSTEM MODEL

In this section we discuss a simple simulation model of the connec-
tion between the main memory system and the control units. It is
assumed that the the memory system is composed of two separate subsystems:
One to store all control unit programs and the other to store all global
data. The memory cycle time for the model is determined as some multiple
of control unit cycle time (as mentioned in the introduction). Current
technology for building main memories and control units would suggest
that a memory cycle is equal to about eight control unit cycles, i.e.,
a control unit cycle is assumed to be about 100 ns and a physical memory
cycle would be about 800 ns using a core memory technology. In the
memory model, the memory cycle time is an input parameter; a value of
sixteen is consistent with the technology for building auxiliary core
storage, a value of eight corresponds to current technology for primary
memory core storage, and a value of four corresponds to semiconductor
memory technology. In one case we use a value of two for the memory
cycle time and in this case we are supposing that the average amount
of time that a control unit requires for an instruction fetch is di-
minished by the existence of an instruction look-ahead buffer in each
control unit. In order to produce a better model of this latter
situation, one really should redefine the distribution of control unit
references to the instruction memory reflecting the less frequent num-
ber of memory references. The model would also have to be changed to
reflect the interleaving that would be required with the instruction
look-ahead approach. The current model still produces useful results,
since it will indicate if further refinement is necessary, or if the

present approach is sufficient.

10

The simulation Tanguage used tQ write the memory conf}ict mode1
is the E-net system, [2]. This Tanguage was chosen since the analysis
s somewhat preliminary in nature, (i.e., can the memory system be
designed to handle the Toad without resorting to the instruction
buffering within control units or to separate memory modules), there-
fore, it is desirable to be able to rapidly produce the simulation
program without being too concerned about the run-time efficiency of
the program. The model incorporates eight control units, each oper-
ative, independent of the others, and a memory system with a seven
place queue. The inter-reference times for the memory system are
specified either by the distribution shown in Figure 3 (for the instruc-
tion references) or by Figure 4 (for the data references).

Our premonition about the heavy use of the instruction memory
was born out by the simulation runs. Noting that the mean time between
instruction fetches was found to be about 5 cycles, then a single memory
requiring eight cycles for a reference was destined for trouble. There-
fore, the model was exercised with a memory cycle time of 2, 4, and 8
units of time and a summary of the results is shown in Figure 5. It
was unnecessary to run the model with a cycle time of one, since this
amounts to specifying a private instruction memory for each control
unit. The figure plots the per cent of the total simulated time that
exactly n jobs were waiting for the memory against n, (05n37). For
the cycle time of eight units, the mean number of jobs waiting for the
memory is about 6.3; if the cycle time is set to four, the mean number
of jobs drops to about 5.7; for a cycle time of two units, the mean is
about 4.4 jobs. Our conclusion is that distinct instruction memories

are required for each control unit in order to keep the memory conflict

11

down to some reasonable figure, since even the cycle time of two control
unit cycles produced an excessive amount of blockage at the memory.
This eXperiment is slightly pessimistic since control unit blockage
due to other factors such as bus conflict have been ignored.

In the case of the data memory, our intuition told us that we
- could probably get by with a single uninterleaved memory. The results
of the simulation, shown in Figure 6, proved this not to be the case.
The model was run with cycle times of 4, 8, and 16 units and the memory
interference, even for a cycle time of four, was significant. The mean
number of jobs waiting for memory was found to be about 2.7, with a
cycle time of four. Again, the control unit is assumed to be free
from other resource conflicts. The program that was used to generate
the memory reference distribution was a relatively short program, and
a significant portion of the execution time for the program is used to
load data into processing element memories from the main memory. In a
more realistic situation, programs would be expected to make fewer
data references, thus increasing the mean time between references to
the data memory. Although more MAPSIM programs should be tested before
gathering any firm conclusions about the memory design, the current
data indicates that an effective memory cycle time of four control

unit cycles is plausible for the data memory.

12

SUMMARY

The'mu1ti'a330ciative processqr‘system is a new architecture
that is highly dependent upon the'design of the methods of connecting
the control units both to the main memory system and to the set of
processing elements. The‘design of MAP is based wholly on a set of
simulation models ranging from the detailed single program interpreter
written in assembly language to high level models such as the memory
system model written in a special purpose simulation Tanguage.

The current status of the MAP project is that a detailed interpreter
with a simulated monitoring capability is in production and sample array
processor programs are being written and executed. Data from these
sample programs are now being collected and used to drive higher Tevel

models, such as the memory model and a FORTRAN model of the bus system.

REFERENCES

1. Arno]dA D., "Multi Associative Processor Systems Architecture",
Un1vers1ty of Colorado, Department of Computer. Sc1ence ‘Technical
Report No. CU-CS-051-74, (August, 1974) o

2. Nutt, G. J., "Evaluation Net Simulation System Reference Manual",

University of Colorado, Department of Computer Science, Technical
Report No. CU-CS-042-74, (April, 1974).

............

4. Nutt, G. J., "Sample Programs for a Hypothetical Computer",
University of Colorado, Department of Computer Science, Technical
Report No. CU-CS-058-74, (October, 1974).

INPUT/OUTPUT

SYSTEM

MAIN MEMORY

wscl+¢+11+ll....4.!.?!!*.!..-!!4.!.%!!4.
i . .
1 __ ~ L = I I]
B W m sl Lot
L T B TEo
{ “ ! M Y = “ | “
m H — I} ” I- M/c m
N [1 ' t . 8 . '
= S Sl s e !v+l.~_,ll+l-.l!..m...amslfawu
| i | | 1 !
P | v i ><m | i
=~ ¢] ¥ i «] ’ N .
i e e
| | | L
| | ”] “ I : m “
b b I | m
RN RN N
N IR N
” M 1L l 1l I
o | & o i B = & il A &

FIGURE 1

MAP Source Program

- MAP
{M“}1st1ng Assembler
\h\\
v

MAP Object Program

gé — - e o 1

‘ MAP .
Interpreter Monitor i
Monitdr Data

~

MAP i

Design N Multiple Control |

Parameters Unit Model z

}

Predicted Performance

Modeling Components

Figure 2

204-
Population: 461

E§ Mean: 5.1

o

3
5 104-
3R

5 T0
CU cycles between instruction references
Figure 3
20+ Population: 134
Mean: 16.9

‘o

)

(o]

)

S 10+

BQ l

|”| b L »ll R I
10 20 25 30

5 15

CU cycles between data references

Figure 4

% of time n jobs waiting

% of time n jobs waiting

50—+ 4
| 4 CU cycles/memory cycle
40— ~ (mean = 5.7 jobs) ~—
2 CU cycles/memory cycle :
(mean = 4.4 jobs) _
20~

8 CU cycles/memory cycle
(mean = 6.3 jobs) -

o1
o
!

B
(e}
i

n
o
|

1 ==
1 2 3 4 5 6 7

Exact number of jobs waiting for instruction word

Figure 5

16 CU cycles/memory cyc1e

i (mean = 5.7 jobs) Q/A\

8 CU cyc]es/memory cycle
(mean - 4.8 jobs)

| 4 CU cyc]es/memory cycle (/%\ // \

(mean = 2.7 JObS

/
TN \

.
]

6 7

Exact number of jobs waiting for data word

Figure 6

