Sample Programs for a Hypothetical Computer

Gary J. Nutt*

CU-CS-058-74 October 1974

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

*This work was supported by the National Science Foundation under grant no. GJ-42251

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ABSTRACT

The multi associative processor (MAP) computer system is a hypo-
thetical machine employing multiple control units and pools of identical
processing elements. Each control unit, along with a subset of the pro-
cessing e]ements; operates on a single instruction stream and multiple
data streams. Processing elements are activated and deactivated by
conditions preserved in an internal register, hence the term associative
processor. In this paper, a brief overview of the MAP system is given,
and a battery of programs for the MAP system is discussed. The programs
are executed via an interpreter to investigate possible application areas
for this architecture as well as to test various designs that have been

incorporated into the model.

Introduction

The multi associative processor (MAP) computer system is a hypo-
thetical machine employing multiple control units and pools of identical
processing e1ements; Each control unit; in combination with a subset of
the processing e]ements; operates on a single instruction stream through
the control unit and multiple data streams, one through each processing
element, (i.e;, SIMD operation). Each processing element contains a

‘select register for which the result of up to eight conditional tests can

be stored (corresponding to the activity bit in an array processor).
Processing element participation in instruction execution is determined
by the current contents of the select register, and a corresponding key
broadcast to each PE by the control unit. It is this capability that
leads to the name "associative processor," and the existence of multiple
control units that leads to the name "multi associative processor.f

In this paper a brief overview of the system is given along with a
description of some programs for the MAP system. The programs may be
considered to be benchmark programs although they are not used so much
for comparative purposes [9,14], but rather as a medium to investigate
possible application areas for the architecture. These programs are
executed on an interprefer in order that their MAP resource utilization
can be monitored and their ability to perform calculations can be tested.
Other "synthetic programs" are also discussed, the purpose of these pro-

grams being to exercise certain portions of the MAP architecture.

‘The MAP Architecture

MAP‘might Jjust as well be an acronym er 9mu1t1 array processor" as
fmthi associative processor." The MAP syétem is composed of eight control
units (CUs) coupled to an arbitrary number of processing elements (PEs),
each with its own private memory for storing data (see Figure 1). Each
control unit decodes an instruction stream from the main memory system,
and broadcasts appropriate microinstructions to a subset of the PEs which
have been previously allocated to that CU. In Figure 1, the dashed lines
indicate a crossbar switch between each control unit and each processing
element. The onnections at the crossbar are determined by the PE allo-
cation state of the machine, i.e., if PE]0 is allocated to CU3, then the
instruction bus leading to PE]0 would be connected only to the instruction
bus Teading from CU3. This connection is static as Tong as the PE is
allocated to the CU. The crossbar switch for instruction broadcast lines
is conceivable because each instruction bus is only 6 bits wide; conflicts
for connections should disappear with a proper PE allocation schenme.

The data bus in Figure 1 is 32-bits in width and thus begins to
increase the cost of implementing a straight-forward crossbar. MAP
employs bus sectors to re11eve‘this situation; a bus sector is a mechanism
by which a pool of k PEs can share a single bus connected to a CU via a
crossbar switch. Thus, if there are j data bus sectors, each serving k
PEs, the crossbar connection points are reduced from 8jk to 8j when com-
pared to a conventional crossbar switch. It is possible for two or more
CUs to have PEs in a common bus sector; in this case, the bus sector
must be multiplexed among the jnvo1ved control units. We note that this
design is possible since a data bus need not be used by a control unit

during the entire decode and execution cycle, in fact, it may not be

used at all for a given machine instruction that would be used in an
associative processor instruction set. The design of the bus system is
crucial to the success of the entire MAP system; and it is this portion

of the architecture toward which most of the initial work haskgravitated;[lzj,
A more complete discussion of the bus system architecture appears in the
paper by Arnold [1];

In the MAP system, PEs are a dynamically allocatable system resource,
each PE being identical to all of its counterparts, (i.e., there is no
"PE array address" as determined by physica] bus connections, at the pro-
~gramming Tevel). A CU is allocated as many PEs as are necessary for a
~given task, and whenever the CU has completed its task, the excess PEs
are returned to the pool to be allocated to other CUs. The anonymity of
PEs precludes the possibi%ity of data passing from one PE to another on
the basis of some array address. Data may be passed from PE-to-PE via
the data bus system, but on programmed considerations based on current
PE states rather than array address. It is, of course, possible to
superimpose the rigid array address on a pool of PEs by explicitly storing
an array address in each PE memory, and using this array address to
simulate conventional array processor activity.

Each PE memory contains a data stream for SIMD computations. A PE
memory must be appropriately loaded by the owning CU when the PE is
allocated; this Toading takes place by broadcasting data from the main
memory through the CU to the individual PEs.

In computational ability, each PE can be thought of as a 16-bit
minicomputer with 1024 words of memory. The instruction decode hardware
is replaced by an associative unit to allow selective enabling and dis-

abling of the PE based on a number of conditions. The reader is again

referred to the architecture paper for detai]s Qf the PE.

The other major component shown in Figure 1 is the main memory
system; The interconnection problems encountered here are quite similar
to those encountered in connecting any set of eight Von Neumann-type
processors to a common main memory, and this area is the subject of much
current work (see e.g. [R,15]). The primary differences that appear in a
MAP system would tend to loosen performance constraints, since the number
of memory references during the execution phase of the instruction cycle
would be drastically reduced. Secondly, associative processor programs
(and array processor programs) tend to be more straight-line than the
corresponding conventional processor programs [8]. This allows for more
effective instruction Took ahead in the control unit, decreasing the

possibility of memory conflicts.

‘Analyzing the System

The MAP system is a hypothetical computer system that has been pro-
posed as a medium bf investigation into SIMD architecture; measurement
and evaluation techniques for array processors, and operating systems
design employing parallel techniques [11]. Although we agree that the
ultimate proof of the desirability of having such machines is dependent
Upon actual hardware construction and use, there were at least three
major reasons why we did not pursue thislgoélz First, many portions of
the architecture are subject to redesign and refinements, while other
portions of the design have not yet been considered (e.g., the I/0 sub-
system). Second, the range of user applications for such a machine is
unknown, although others are currently involved in related studies to
sample this range (see e.g. [4]). It appears that there exist several
problem areas that could profit from implementations on either array pro-
cessors or associative array processors, and we shall discuss a few of
those areas below. Finally, the possibility of funding the construction
of a MAP system, in its current design state, does not exist.

As an alternative to actual machine hardware construction, we are
basing our analysis of the MAP system on a series of simulation models
ranging in complexity from an interpreter to simple conflict models.

The foundation for most of this work is the associative processor program
interpreter, called MAPSIM. This program is a simulation of a single
control unit and an arbitrary number of processing elements each with an
arbitrary memory size, as determined by input parameters. The purpose of
MAPSIM is to interpretively execute a MAP program written in a MAP
assembly Tanguage. The interpreter is written in the assembly language

of a Control Data 6400 (called COMPASS), and hence the interpreter must

represent the PE parallelism by employing quasi-parallel programming
techniques. At the present time, two versions of the interpreter eXist,
reflecting two different sets of machine instructions: (The interpreter
does not really execute microinstructions, hence some portion of the
interpreter must be rewritten for each new instruction set that is tested.)
Each MAP instruction set is defined as a symbolic assembly language,
employing many of the pseudo operations available in the CDC 6400 assem-
bler. An assembler for the experimental instruction set is then imple-
mented by purging all of the mnemonic instruction definitions normally in
COMPASS and defining the MAP mnemonics using macros and data definition
statements. This approach allows assemblers for the various languages to
be rapidly written and modified, while still providing an assembler with
relatively good capabilities, (namely, the COMPASS assembler).

EmpToying the symbolic assembler and interpreter, associative pro-
cessor programs can be written andvexeéUted, allowing the current model
to be tested for attractiveness of fhe instruction set or to analyze bus
and memory reference streams, etc. When choosing a program for implementa-
tion on the interpreter, it is possible that the program may exhibit one
or the other or both of the following two properties:

- The program illustrates an application area for MAP,

- The praogram intensively tests some portion of the design.

The ideal situation, from the analyst's viewpoint, is that all programs
exhibit both features; it serves as a prototype program to explore a new
application area and also provides a driving force for the model compo-
nents. In the next section, two programs are described that fit this
mold, a program to solve a Tinear system of equations and another program

to find the minimum weighted path Tength through a graph.

It is also possible that a program can be written that illustrates
a useful application of the machine, but is not particularly useful to
be run on the interpreter for some reason; The scheduling program pre=
sented in the next section is an ekample of this type of program. Since
the interpreter does not handle multiple control units nor does it re-
present any job queue for the simulated system, there is no realistic
environment in which to execute the scheduling program.

The primary constraint on the programs mentioned above is that they
illustrate some application for which the associative array processor
can be particularly useful. It is not possible to ensure that these pro-
~grams will provide a maximum load on the various components of the
machine (e.g., the memory-CU interface or the CU-PE interface). Thus,
we have also contrived a set of programs that will exhibit controlled
behavior with respect to certain portions of the machine. These programs
allow the designer to place a controlled Toad on any particular portion
of the system that he desires. For example, the designer could use a
program of this type to place a maximum Toad on the memory system by
frequently executing instructions that make data references to the main
memory. The description of such a contrived program is included in a
later section.

MAPSIM has been designed so that simulated hardware monitors can
easily be inserted into the interpreter. This allows the model to be
intensively monitored during each execution of a program. These monitors
can either collect selected trace data, or compute: distributions which
describe the performance of the individual programs. It is then possible

to use this data to drive Tower detail models which incorporate multiple

control units; and to conduct the performance analysis of shared

resources in these models, [12].

Much of the initial motivation for the design of a multi associative
processor was prbvided by the suspicion that portions of an operating
system could be carried out as parallel tasks. It had been observed that
the associative and array systems that we knew about used some sort of
sequential processor to actually implement the operating system, for
example, the STARAN employs a PDP-11 for this purpose [6] and thé I1liac
IV uses a Burroughs B6700 [2]. In order for the operating system to take
advantage of the SIMD operation to execute certain parallel tasks, it is
necessary to either multiplex a single control unit, or provide more than
one control unit. Although the former alternative would result in a
simpler hardware design, it would tend to degrade performance from a
resource utilization point of view since any operation by a process
requiring k data streams would cause all n-k PEs to be idle. In an
operating system, we can expect the amount of sequential processing to be
significant, and our experience with other application programs indicates
that there may also be considerable portions of time in which the corres-
ponding process is sequential. Therefore, the multi control unit approach
was chosen.

Scheduling processes to resources can be viewed as a parallel task
if there exists more than one process competing for some set of resources.
The first program, shown in Figure 2 as a flowchart, is a scheduling pro-
gram for PE allocations. Using a preemptive policy, this program might
be executed by the supervisor each time a process makes a PE request.

We are assuming that each process has previously been assigned a priority,
and that each PE assigned to a process has a word in its PE memory repre-

senting the priority of the process to which it is currently allocated

10

as well as a process identifier. (In the sample program, it is assumed
that PE symbolic address PRIORITY is the process priority, and PROCESSID
is the process 1dentity;) The "preempt" instruction in box 2 allows the
operating system control unit to temporarily obtain all PEs. In box 3,
the PEs are activated and in box 4, each PE loads the PRIORITY of the
owning process into its'accumu]ator; The Towest priority processes are
temporarily preempted in box 6 to see if they are running at a priority
less than the requested process; if not; boxes 10 and 11 place all PEs

in their state when the program was in box 1 (after queueing the PE request)
and resumes processing. If the priority of the NewProcess is higher than
the temporarily preempted process(es), the program checks to see if a
sufficient number of PEs are available. If not, the cycle through boxes
5,6,7,8, and 9 are repeated until the program exits to box 10 or box 12,
where the PE allocation to the NewProcess is carried out.

In th%s program, the parallel activity takes place in nearly all
positions of the algorithm, as indicated by the boxes with four vertical
lines rather than two. The only Tooping required to carry out the algo-
rithm is in the systematic discovery of Tower priority processes, one
Tevel at a time (i.e., boxes 5-9). The sequential portions of the algo-
rithm occur when the requesting process is queued due to Tlack of PEs
(Box 10).

Two other system functions that benefit from SIMD operation are high
level Tanguage compilation and deadlock detection and avoidance. The PEPE
system has been used to compile parallel FORTRAN programs, using both a
"horizontal" and a "vertical" approach [7]. The horizontal approach
involves multiple data stream operation on a single program statement at

a time, while the vertical approach compiles many statements in parallel.

11

Deadlock detection algorithms_genera]ly involve some systematic search
over a set of states for all processes and all resources to determine if
there exists some sequence of resource allocations and deallocations that
will allow the system to continue operation; Avoidance algorithms must
perform a similar search to determine a resource allocation policy. In
both cases, it would appear that the associative processor approach could
substantially reduce the involved search time.

A second application for which the MAP system can be efficiently pro-
grammed comes from numerical mathematics. The example program presented
here is rather simple compared to some programs that could be written to
solve problems in this area, but the program does illustrate the method-
ology [10]. The flowchart given in Figure 3 solves a linear system of
equations, Ax = b, using the Gauss-Jordan method with maximum pivoting.
This method is chosen over the usual Gauss elimination with back substi-
tution, since the approach given here actually results in fewer operations
than the back substitution method. Each column of the coefficient matrix
is stored in a single PE memory, along with an initial column number desig-
nation, ICOLNO, and a current column number designation, CCOLNO; (see
boxes 1-3). Box 4 finishes the sequential loading process by storing the
b-vector in the last PE memory, and initializes a row/column counter,
CURRENTELT. In Box 5, all PEs containing column vectors to the right of
the "current column" are activated (on the first loop through boxes 5-9,
all PEs would be activated). To choose the maximum pivotal element, the
program will load each accumulator with the corresponding scalar row-by-
row. After each row is loaded, the maximum absolute value is chosen
from the accumulators, and this maximum can be compared with any maximum

obtained from a previous row. Whenever a potentially maximum element is

12

chosen, the value, row designation; and current column numbers are stored
in the main memory. Once the maximum element has been determined, a row
exchange can be carried out by activating all PEs and then dqing a simple
load-store exchange sequence: Column ekchanges take place by exchanging
CCOLNO contents. In box 8, with all PEs having CCOLNO greater than or
equal the CURRENT ELT, coefficients off:the diagonal can beseliminated.
Once the coefficient matrix has been reduced to an identity matrix, the
resulting solution to the system can be obtained by using ICOLNO and
CCOLNO to determine the column transformations that were used.

The third program illustrates an application from the field of com-
binatorial mathematics. This program reads a graph composed of nodes
and arcs with associated weights (see Figure 4). A path from the initial
node toc the final node is determined such that the sum of the weights on
the arcs of the path is minimal. Again, the program is sequential while
loading the graph description into the PEs. Each node in the graph is
allocated a PE and the following information is stored in the PE memory:
the node identification, a list of all nodes to which this node is con-
nected, a Tist with elements corresponding to the previous 1ist which de-
_notes the weight associated with the directed arc. The -algorithm initially
chooses the terminal node as a distinguishing element in the graph (box 4).
It then determines which nodes have directed arcs leading into the dis-
tinguished node; (this causes a sequential Toop in the program that is
bounded by the maximum number of connections leading from any node). The
set of all nodes leading into the distinguishéd elements can then be used
to compute new estimates to a minimum path (box 6). Choosing the result-
ing PE with the current minimum path length (weight) as the distinguished
element, the above operations are continued until the initial node is

chosen as the distinguished element.

13

Other application areas for which the MAP system might be useful in-
clude Tinear programming, radar trackihg (as discussed in several other
array processor descriptions [3,8,12]),fawtificia] 1nte1]jgence applica-
tions that involve large searches through trees, etc. We have yet to
explore these areas, although subsequent work includes writing sample

MAP programs for some of these areas.

14

.....

As was mentioned previously, there are two reasons for writing and
testing programs for the MAP system: To eXp]ore application areas for
the machine and to provide actual programs to exercise the various compo-
nents of the machine: In the preceding section, a few examples were pro-
vided to illustrate the utility of the architecture. In this section
some programs are discussed that have been contrived in order to exercise
individual components of the machine; It is necessary to ménufacture such
programs, since the sample application programs do not necessarily repre-
sent all characteristics of all classes of programs that could be executed
on a MAP system. This approach of using "synthetic programs" is motivated
by Buchholz, although his synthetic programs were produced in order to
~gain an approximation of the performance of two different machines on a
set of jobs that required a large amount of file maintenance [5].

The critical portions of the MAP architecture are the main memory
design and the CU-PE bus system design. The main memory system has
crucial interfaces between itself and the I/0 system as well as between
itself and the control units. Although we do not view the MAP system as
being useful for programs requiring a high frequency of input or output
operations (relative to computational effort), it is desirable to exer-
cise the I/0 system interface with the main memory.

There are requirements for at least four distinct synthetic .programs
to test the MAP design: The first synthetic program is designed to test
the control unit/main memory interface, and we shall describe it in some
detail to explain the approach used in all of these programs. The para-
meters to this program must describe the frequency of execution of in-

structions that make data references to the main memory, the main memory

15

addresses that are referenced, and the Tength of time for which the pro-
~gram should run. The frequency and address can be specified using a pair
of distribution functions; (that may be sampled as the program eXecutes),
to compute the amount of time between memory references to data and the
address involved in the data reference. In Figure 5 a flowchart of the
memory veference program is given, where the boxes made up of dashed Tines
constitute artifact to the program compared to its specification. The
synthetic program is to be executed on the interpreter, hence the arti-
fact that appears in the flowchart can be removed by executing the corres-
ponding code outside the realm of the interpreter. Provisions have been
made in the interpreter to allow for this, by including a call to the
monitoring routine at the completion of each instruction cycle simulated
by the interpreter. Hence, the program is written to do normal initializa-
tion (such as request PEs, etc.) after which the monitor will perform the
processing described in boxes 2,3,4, and either 5 or 7. At that point,
the monitor returns control to the interpreter for the execution of MAP
code corresponding to box 6 or 8, etc. The monitoring routine also gathers
the data describing machine performance.

The second program should allow the designer to specify a distribu-
tion of input/output requests to be made by the program, as well as a
service distribution to describe the number and length of records to be
transmitted between the I/0 system and the main memory. The contrived
program will then simulate an I/0 load, inserting appropriate computation
time between I/0 requests based on samples of the two distributions.

The third required program exercises the multiplexed data bus that
connects the control units to the bus sectors (see Figure 1). This
program will explicitly deal with PE activation and deactivation as well

as the provision of an appropriate number of instructions that require

16

data transmission over the bus system, (note that not all instructions
use the data bus;'and that those instructions that do transmit data do
not require the bus for the duration of the instruction execution phase).
In order to specify a load for this program, the user must provide dis-
tributions describing the frequency of activation/deactivation instruc-
tions, the number and identity of the PEs involved, and the frequency of
instructions requiring that data bus. It is then possible to control the
Toad on the data bus system in order to test the bus sector design and
its parameters.

The Tast contrived program needed to test the architecture is similar
to the previous program, except the PE allocation and deallocation
operations must be taken into account.

The four synthetic programs have been designed to exercise various
components of the architecture, but it is apparent that each program con-
stitutes only a single instruction stream. Hence, the programs do not
really provide an adequate test of the architecture, although they are
helpful. The solution to this problem can be obtained in one of two ways:
the interpreter can be rewritten to simulate multiple control units; or
simpler models that incorporate multiple control units can be written,
and these models can be tested with reference streams obtained from the
interpreter. Our present approach is the latter one, since the interpreter
program is already very large and time-consuming to execute. A discussion
of the result of experiments involving the CU<memory and the :CU<PE inter-

faces appears in another paper, [12].

17

The utility of the associative array proceSSor system'in'ekecuting
algorithms has been ekp1ored by writing some sample algorithms for various
application areas; The scheduling algorithm indicates that there are
- good applications for the architecture in operating systems. The most
pleasing observation to be made about this application area is that the
multiple control units make it conceivable to have the operating system
executed on the same hardware as the user programs. This provides a
capability for graceful degradation in the event of certain hardware
failures, and also encourages the design of hierarchical software systems.
However, the current work on the operating system for MAP has not been
very successful due in part to the absence of multiple control units in
MAPSIM. |

There is very 1ittle that needs to be said about the applicability
of array-type processors to numerical problems, since there is a large
body of information on this application produced as a by-product of the
ITliac IV studies. The primary improvements to be made in algorithm
execution by a MAP system aré concerned with the use of the select regis-
ter to save conditions encountered during a computation, hence allowing
more convenient activation and deactivation of various subsets of the
processing elements. Another consideration that may either hamper or
help the MAP programmer when solving matrix problems in the absence of
any PE address. This may be beneficial if PE-PE data exchanges are not
of the "north-south-east-west" variety, but may be a hindrance if the

exchanges are of the prescribed form.

18

The examples presented here point out the problem with implementing
algorithms that require a significant amount of PE memory loading. The
current architecture requires that this be a serial task, and the anony-
mity of PEs makes STARAN-type or I1liac IV-type I/0 impossible. This re-
striction excludes many problems which might otherwise be solved using a
vertical: approach; e,g;; a payroll program that simultaneously processed
n employees.

A nice programming effect induced by the architecture is that
parallel programs tend to have fewer branches than the corresponding se-
quential program. A branch point normally occurs because a data depen-
dent condition forces one section of code to be executed for some execu-
tions and another section of code to be executed for others. In an
array processor both sections will, in general, be executed for different
subsets of PEs.

The synthetic programs are generally not very useful to test the
single control unit execution. The primary purpose of such programs is
to observe the machine reaction at shared resource areas, and no shared
resources are included in MAPSIM. On the other hand, the monitored data
from the synthetic programs has been quite valuable when used to drive
the lower detail simulation programs that do model shared resources.

The most significant result to come from algorithm encoding and
execution was in the area of instruction set analysis. The design pre-
mise behind instruction set selection was that the control unit should
be a microprocessor so that a variety of machine instruction sets could
be tried, without drastically affecting the basic hardware design. ATl
instruction sets must then be implementable from the microinstructions.

The first instruction set was built from our intuition of how an associative

19

processor set should Took, (we‘had no previous experience). This set
included the usual arithmetic/logic instructions;‘some main memory in-
struction, some branch instructions, and a set of associative instructions.
After we wrote a few programé in the first version of the instruction set,
several weaknesses became apparent. For example, although we had pro-
vided an instruction to set a switch (in the PE) dependent upon accumu-
Tator value, two more associative instructions were required to find out
how the switch had been set. The application programmer experience was
fed back to the system architects, (in this case, the same people con-
stituted both groups), and a new version of the instruction set resulted.
This implied that parts of the interpreter had to be rewritten, although
incorporating a new instruction set is not nearly as difficult as writing

the first interpreter.

20

‘ Aknow1edgement ’

The work described in this paper would not haye been pqssib]e without
the financial support of the National Science Foundation under grant
number GJ-42251; The author also acknowledges the contributions of
Clarence E11is to the early ideas in MAP and to Roger Arnold and Karl

Williamson for their participation in this work.

21

References

1.

10.

11.

12.

13.

14.

15.

Arnold, R'D ' M"Multi Associative Processor Systems Architecture,"
University of Colorado Department of Computer Science Technlca1 ‘
Report No. CU-CS-051-74 (August 1974)

Barnes, G.H.; Brown, R.M.; Kato, M.; Kuck, D.J.; Slotnick, D.L.; and
Stokes, R.A., "The I1liac IV Computer," IEEE Transactions on
Computers, Vol. C-17, No. 8 (August 1968), pp. 746-757.

Batcher, K.E.; "STARAN Parallel Processor System Hardware," AFIPS
Proceedings of the NCC, Vol. 43 (1974), pp. 405-410.

Berra, P.B; "Some Problems in Associative Processor Applications to
Data Base Management " AFIPS Proceedings of the NCC, Vol. 43 (1974),

pp. 1-5.

Buchholz, W; "A Synthetic Job for Measuring System Performance," IBM
Systems Journa1 Vol. 8, No. 4 (1969), pp. 309-318.

Davis, E.W., "STARAN Parallel Processor System Software,” AFIPS Pro-
ceedings of “the NCC, Vol. 43 (1974), pp. 17-22.

E11is, C.A., "Parallel Compiling Techniques," Proceedings of the ACM
National Conference (1971).

Githens, J.A., "A Fully Parallel Computer for Radar Data Processing,"
NAECON 1970 Record (1970), pp. 290-297.

Lucas, H.C. Jr., "Performance Evaluation and Monitoring," ACM
Computing Surveys, Vol. 3, No. 3 (September 1971), pp. 79-91.

Mirankar, W.L., "A Survey of Parallelism in Numerical Analysis,"
SIAM Review, Vol. 13, No. 4 (October 1971), pp. 524-547.

Nutt, G.J., "An Overview of the Multi Associative Processor Study,"
Proceed1ngs of the ACM National Conference (1974)

Nutt, G.J., "The Analysis of Certain Critical Components of an
Array Processor", submitted for publication. '

Rudoiph, J.A., "A Production Implementation of an Associative Array
Processor," AFIPS Proceedings of the FJCC, Vol. 41, Pt. I (1972),
pp. 229-241.

Strauss, J.C., "A Benchmark Study," AFIPS Proceedings of the FJCC,
Vol. 41, Pt. II (1972), pp. 1225-1233.

Wulf, W.A. and Bell, C.G., "C.MMP -- A Multi-mini-processor,"
AFIPS Proceedings of the FJCC, Vol. 41, Pt. II (1972), pp. 765-777.

22

INPUT/OUTPUT

SYSTEM

MAIN MEMORY

CU8

CUZ

CU1

A,

, \
“.!“......:T:.....4:+:..+..--.:.4.:“::.._,
Coy | tologl Lo
| | bob 2 v |
1o LB L
P, o b m_ < |
P m by E S 1 ,

_ | =5 R
| | i 1 ! ’)d
e i i
(- J !] » I
1 ! i t I ! ;a_ _ !
¢ § 8 8 [® A e ' .
I e B et S e e S s
. | “ ! m I g
h _ | i _ i I i “
. b P
b _ “ _ _ || “
I J = I J = |,
i _/: 21 Zm s “ TN
1o i 1y | |
i] 11] 1]

FIGURE 1

START)

NewProcess arrives
with priority,P,
needing N PEs

/

Preempt all CUs,
0bta1n1ng all PEs |}

P ———— T

Load accumulator

3
ﬂ Activate all PEs
4
l from PRIORITY

o |

—

Activate remainde#
of the set i

Select all PEs
with Towest prioritn

!

8

10

Q

ueue NewProcess

~PRIORITY <P

T

11

l Mark active PEs

temporarily deallocated

<N PEs activateds Re

sume processing

as befor preemption

BTock PROCESSID;
Place NewProcess
on current Ccu

< RETURN)

15

R@CESSID<!----NewProcessl -

PRIORITY «—P

n Leave N PEs active

Resume all CUs

FIGURE 2

23

< START)

1 Y

Request n+1 PEs;

Activate all;
i1

: 5

Select one PE;
Load column 73
CCOLNO =—~ICOLNO w—1;
7= 4]

Select Tast unloaded PE;
Load b; CCOLNO €=ICOLNO«—1;
CURRENT ELT 41

5 ,i

Activate all PEs with

CCOLNO % CURRENT ELT

Y

Choose maximum pivot element “

f ~—— [ON)

Y

Perform column exchanges
(by exchanging CCOLNOs)

8 1

Perform row exchanges; "

Eliminate all coefficients, a5
(such that j # CURRENT ELT);
CURRENT ELT <~ CURRENT ELT + 1

T %\
—<CURRENT ELT <'n

FIGURE 3

24

25

Request n PEs for graph
with n nodes;
Activate all PEs

3]

Select one unloaded PE;
Load node ID; Load Tist
designating all connecting

nodes with arc weights

Activate the PE with the
terminal node ID; ‘
Set its MINPTH to zero;
CURRENT NODE «--terminal node

. -

Activate all PEs might
be connected to CURRENT NODE;
Search the Tist to see if
CURRENT NODE appears and
mark yes or no

; ;

Activate predecessors of
CURRENT NODE; Compute new
minimum paths to
CURRENT NODE

: 7)
HA "~ Set new MINPTH based on "”

the new minimum weight, or
on the first reference to predecesipr

L :

8
Activate one PE with smallest -
MINPTH; Set CURRENT NODE

nitia] node

FIGURE 4

26

1

//.I;requency distribution ,7
7 Address distribution, ~
Af/NO‘ of requests,N /

2 - o

r-SéE_M(Hg. of data requests R
completed) to zero '

N 6 |
43— —

i Compute number,k, of Execute idle cycle once
idle cycles before
_ the next data reference

Ty - S— . SRR PR p—

4 . 7N ~ 5 |
\ : Pres———— B e O
N ~ !

N 7 '
Zo Y
™™ “Compute address for
, memory-‘reference; |

i
e MEeNM-T

Reference main memory

FIGURE 5

