POLISH, A Fortran Program to
Edit Fortran Programs

by

John Dorrenbacher, David Paddock
David Wisneski, and Lloyd D. Fosdick

Department of Computer Science

University of Colorado
Boulder, Colorado 80309

Report #CU-CS-050-76(Revised) May, 1976

* This work supported in part by National Science Foundation Grant
DCR 75-09972.



ABSTRACT

POLISH is a program which will read ANS Fortran programs and
rewrite them in a stylized format desigﬁed to be easy for the reader
and conservative in itsﬂuse of space. Although some editing features,
such as spacing conventions about tokens are fixed, many are subject

to user control. POLISH itself is written in ANS Fortran.

Keywords: Fortran text editor. .



1. INTRODUCTION

The text editor POLISH reformats a FORTRAN program to give it
systematic spacing, indentation, labelling, and other stylistic
features desirable for the reader. The edited program has a differ-
ent physical appearance but ft is identical to the original program with
respect to its execution characteristics. Figures 1, 2, and 3 illus-
trate the kind of editing done by POLISH. Style is a matter of
taste, but almost any reasonable stylistic conventions will produce a
program 1isting more pleasing to the eye and easier for the human reader
to follow. Other FORTRAN text editors are TIDY [1], FORDOC [2],
FORTREDIT [2]. Particular features of POLISH which distinguish it from
others are that it is written in ANS FORTRAN (cf. Appendix D), no
manual insertion of editing cues in the unedited text is necessary but
such cues may be used, Tine widths may be controlled, and spacing between
tokens is controlled. Since early in 1974 POLISH has been used to
prepare the FORTRAN Tistings which appear in the Algorithms Department
of the Communications of the ACM and more recently in ACM Transactions
on Mathematical Software; see for example [3]. ‘

POLISH is a subroutine subprogram. Parameters which control
certain editing features are passed to POLISH through COMMON storage.
When called into execution it will read the unedited FORTRAN text from
a file and write the edited FORTRAN text onto another file; both files
are specified by the user. Aside from certain exceptions noted in
Section 2, it is assumed that the text to be edited is a syntactica]]y
correct ANS FORTRAN program. There é?e some circumstances in which it

is desirable to inhibit editing of a text segment; most typically in

-



C EXAMPLE 1.
C THIS IS A NONSENSE PROGRAM ILLUSTRATING SOME FEATURES OF EDITING
C DONE BY POLISH.
C
COMPLEX Z
EQUIVALENCE (C,D),(E,F) , (G , H)
DATA C,A/3.0, 2.0/
A=1.0 \
B=3.0*C+D * E / F
CD(I , J )=AB(I,J)-EF(I+1)
DO 10 I=1,50
X=X+Y
C =C +D
DO10K=1,40
E=E+1.0
DO 10 L=1,100
10 M=M+1
IF(A.LT. C)GOTO3
IF(A .LE.D)GO TO 3
IF(A .EQ. C)GOTO 3 ; )
IF(A .LT. B .AND. C.LE.D.OR.X.EQ.Y.OR.A+B.NE.C*D.AND. 6.0.LE.A-B)
+GOTO3 '
X=X * % S+A
X=- 3.0
X=+ 3.0
IF(.NOT. C .OR..NOT.D)GOTO7
2=(3.0,2.0)+(2.0, 4.0)
STOP ,
END

~ W

Figure 1.a: Program before processing by POLISH.



C EXAMPLE 1.

C THIS IS A NONSENSE PROGRAM ILLUSTRATING SOME FEATURES OF EDITING

C DONE BY POLISH.

10
20

30
40
50

COMPLEX 7%

EQUIVALENCE (C,D),  (E,F), (G,H)

DATA C, A /3.0,2.0/

A=1.0

B = 3.0%C + D*E/F

CD(I,J) = AB(I,J) - EF(I+1)

DO 50 I=1,50
X
C
D

[}
honXx
hom=x + +

O 4 0
14

O«

03
M
CONTINUE
CONTINUE
CONTINUE
IF (A.LT.C) GO TO 10
IF (A.LE.D) GO TO 10
IF (A.EQ.C) GO TO 10

Y
D
=l’
-+
L
M

1]
+

0
100
1

IF (A.LT.B .AND. C.LE.D .OR. X. EQ.Y .OR. A+B.NE. C*D .AND.

* 6.0.LE.A-B) GO TO 10

X = X**5 + A

X.= =3.0

X = +3.0

IF (.NOT.C .OR. .NOT.D) GO TO 20
Z = (3.0,2.0) + (2.0,4.0)

STOP

END

Figure 1.b: Program after processing by POLISH.

MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN



PN Ne! Qa0 QOO0O0

aQO0O0O0n

EXAMPLE 2. ,
THIS IS ANOTHER NONSENSE PROGRAM ILLUSTRATING SOME FEATURES OF
EDITING DONE BY POLISH.

X=1.0
OBSERVE HOW THIS BLOCK OF COMMENTS
IS LEFT ADJUSTED, PRESERVING THE
RELATIVE INDENTATION.
Y=2.0
THIS BLOCK HAS A COMMENT LINE WHICH IS TOO LONG (CF. KEYS(1l)) SO BREAK
AND APPEND PROCEDURES ARE APPLIED. THIS MAY NOT ALWAYS HAPPEN AND
DEPENDS ON THE KEYS PARAMETER VALUES.
z=3.0
THIS BLOCK ALSO HAS A COMMENT LINE WHICH IS TOO LONG, HOWEVER BREAK
AND APPEND PROCEDURES ARE NOT APPLIED IN THIS CASE BECAUSE THIS
COMMENT BLOCK CONSISTS OF MORE THAN THREE LINES. NOTE THAT THE
DEFAULT VALUE FOR KEYS(10) IS 3.
z=1.0
WRITE(6,10)
10 FORMAT(*NOTE REPOSITIONING OF THIS STATEMENT*)
WRITE(6,20)
20 FORMAT(*NOTE STRING DELIMITER REPLACEMENT*)
WRITE(6,30)X,Y,7Z
30 FORMAT(3H X=,E20.10,3H Y=,E20.10,3H Z=,E20.10/*OBSERVE THE SPLIT
+WHICH IS DONE HERE*)
STOP
END

Figure 2.a: Program before processing by POLISH.



oEeKe! [oNeNe! oNeNe!

OO0 n

EXAMPLE 2. ‘
THIS IS ANOTHER NONSENSE PROGRAM ILLUSTRATING SOME FEATURES OF
EDITING DONE BY POLISH. ‘ 1

X = 1.0
OBSERVE HOW THIS BLOCK OF COMMENTS
IS LEFT ADJUSTED, PRESERVING THE
RELATIVE INDENTATION.

Y = 2.0
THIS BLOCK HAS A COMMENT LINE WHICH IS TOO LONG (CF.
KEYS(1)), BREAK AND APPEND PROCEDURES ARE APPLIED. THIS MAY
NOT ALWAYS HAPPEN AND DEPENDS ON THE KEYS PARAMETER VALUES.

Z = 3.0
THIS BLOCK ALSO HAS A COMMENT LINE WHICH IS TOO LONG, HOWEVER BREAK
AND APPEND PROCEDURES ARE NOT APPLIED IN THIS CASE BECAUSE THIS
COMMENT BLOCK CONSISTS OF MORE THAN THREE LINES. NOTE THAT THE
DEFAULT VALUE FOR KEYS(10) IS 3.

Z = 1.0

WRITE (6,99999)

WRITE (6,99998)

WRITE (6,99997) X, Y, %

STOP

99999 FORMAT (36HNOTE REPOSITIONING OF THIS STATEMENT)
99998 FORMAT (33HNOTE STRING DELIMITER REPLACEMENT)
99997 FORMAT (3H X=, E20.10, 3H Y=, E20.10, 3H 2Z=,

* E20.10/37HOBSERVE THE SPLIT WHICH IS DONE HERE)
END

Figure 2.b: Program after processing by POLISH.

MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN

W OO ~J O U N



C EXAMPLE 3.

C THIS EXAMPLE ILLUSTRATES ALPHABETIZATION OF SUBPROGRAMS.

10

X=2.0

READ(5,10)X
FORMAT(F10.0)
CALL ASUB(X)

STOP

END

SUBROUTINE BSUB(U,V)
v=U+1.

X=Y

RETURN

END

SUBROUTINE ASUB(Y)
Y=4.0

CALL BSUB(Y,R)
RETURN

END

Figure 3.a: Program before processing by POLISH.

C EXAMPLE 3.

C THIS EXAMPLE ILLUSTRATES ALPHABETIZATION OF SUBPROGRAMS.

99999

X = 2.0

READ (5,99999) X

" CALL ASUB(X)

STOP

FORMAT (F10.0)

END

SUBROUTINE ASUB(Y)
Y = 4.0

CALL BSUB(Y, R)
RETURN

END

SUBROUTINE BSUB(U, V)
VvV =0U+ 1.

X =Y

RETURN

END

Figure 3.b: Program after processing by POLISH.

MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
ASU
ASU
ASU
ASU
ASU
BSU
BSU
BSU
BSU
BSU

10
20
30
40
50
60
70
80
10
20
30
40
50
10
20
30
40

50



COMMENT blocks that have already been formatted in a special way. The
editing will be suspended by the appearance of a card with an asterisk
in column 1 and will resume with the second appearance of such a card.
Also, parameter specifications and delimiters can be used to suspend
all editing of COMMENT statements or limit it to indicated areas.

POLISH is a descendant of a program called STYLE written by
Dorothy Lang Wedel [4]. While POLISH contains many of the design goals
of STYLE, it is an entirely new program. POLISH uées Sale's algorithm
to identify Fortran statement types [5]. Most of the production work
on POLISH was done by a group of twelve undergraduate students at the
University of Colorado as a class project, supervised by one of the
authors [LDF]. The coauthors of this report were the principal contribu-
tors in this project.

The general operating requirements and run time data for POLISH on

a CDC 6400 operating under Kronos 2.1 without subprogram alphabetization

are*:
(1) Field length to run- - = - = - - 57000 (octal)
(2) Files on secondary storage - - - 8 |
(3) Processing time- - - = = = - - - 30.3 statements/CPU sec
(4) Job costs= = = = = = = = = - - - $1.50 (100 statements)

$2.50 (200 statements)
$3.20 (300 statements)

* This data depends on the environment. It is correct for the systems
environment at the Computing Center of the University of Colorado,
September 14, 1976.



2. EDITING FEATURES

Fixed editing features. There are three editing features, not

subject to user control:

(1)
(2)

(3)

Spacing conventions between tokens;

Renumbering of statement labels and removal of unrefer-
enced labels;

Insertion of CONTINUE statements to force termination of

every DO-block on a unique CONTINUE statement.

The goal of the spacing conventions is to produce a text pattern

which is easy for the reader of FORTRAN text to follow, and at the same

time is economical in its use of blanks. An important principal in this

connection is that the token sequence <identifier> <operator> <identifier>

is grouped closer together for operations executed first (in the execu-

tion hierarchy) than for others, except inside parentheses. A list of

spacing conventions used in POLISH appears below:

(1)

(2)

No sbace before or after operators within parentheses
except before and after logical operators .AND. and .OR.;
No space before or after the operators *, k* 0/, LT.,
.LE., .EQ., .NE., .GE., .GT.;

Single space before and after the operators +, -, =,
.AND., .OR. except in DO statement and within parentheses
(cf.1);

No space after the unary operators +, -, .NOT.;

One space to the right of the comma, except in complex
constants, subscripts, within solidus delimiters of a DATA
statement, -and within parenthesis delimiters of an EQUIVA-

LENCE statements



10

(6) No space to the right of a left parenthesis or a solidus
as a left delimiter;

(7) No space to the left of a right parenthesis or a solidus
as a right delimiter;

(8) No space between nested parenﬁheses;

(9) No space within any subscript;

(10) Normal English spacing is used elsewhere, except no space to
the right of .a solidus used as a field separator in a FORMAT
Statement.

Certain commonly used, but non-standard, FORTRAN constructions are
accepted by POLISH. These are:
(a) Hollerith strings in FORMAT statements delimited by a
special symbol (e.g. *SAMPLE* instead of 6HSAMPLE);
(b) FORTRAN II READ, PRINT, and PUNCH statements (e.g. READ 99, X
instead of READ (5,99) X);

(c) DATA statement for array elements without explicit naming

of the elements (e.g. DATA A/5.0, 3.0, 1.0/ instead of
DATA A(1), A(2), A(3) / 5.0, 3.0, 1.0 /)

POLISH will replace the Hollerith string with delimiters in a FORMAT
statement by the standard form; thus *SAMPLE* would be replaced by
6HSAMPLE.

Labels are renumbered so that they increase by a fixed amount in‘_
order of their appearance on statements. The fixed increment can be set
by the user (cf. KEYS(11) description). While unreferenced labels do not
violate the ANSI standard, they are a source of confusion and may not be

accepted by a compiler. POLISH removes unreferenced labels.



11

User controlled editing features. There are a number of editing

features under control of the user. Each of these features is designated
by a parameter value passed to POLISH in a thirteen element array in
labelled COMMON; viz.

COMMON/PARMS/KEYS(13)
A description of each element of the KEYS array follows. Within POLISH
each element of KEYS is initialized by a DATA statement; these initial
values thus serve as default values. It should be noted that once these
values are changed by a user in the course of execution of the program,

the "default" value is permanently overwritten for that execution run.



KEYS

10.

11,

12.

13.

DESCRIPTION DEFAULT

RANGE™

Rightmost card column in which FORTRAN 64
code can appear; subsequent code is put

on continuation cards with an * in card

column 6.

Left margin for comment statements. 3
Card column for right justification of 5
statement labels.

Increment for statement labels. 10
Numberkof columns indented on continua- 1

tion cards.

Increment for sequencing in card columns 10
73-80. If 0 then no sequencing. Sequenc-

ing consists of the first three letters of

the name of the subprogram and a sequence
number. POLISH assigns the name MANPRG to

a main program and BLKDAT to all BLOCK DATA
subprograms.

Number of columns indented in DO loops. 2
POLISH indents all code within DO loops
according to this specification. Note:
Indentation of DO loops or continuation

cards cannot exceed 20 spaces to the left

of the right margin. If this occurs, then
indentation is set to KEYS(1)-20.

Blank comment cards removed. 0--- they are 0
removed, anything else they are not.

Authorization to break and append comments. 0
If 0--- as permitted by KEYS(10) and + de-
Timiters, anything else --- break and append
comments to conform to KEYS(1) and KEYS(2).

Maximum size of non-delimited comment block 3
in which break and append procedures may be
used when KEYS(9)=0.

Optional Hollerith delimiting character *
Effect is to replace say, *SAMPLE* by
6HSAMPLE in FORMAT statements only.

Edit comments. 0--- yes, anything else---no. 0
If no then KEYS(2), KEYS(8), KEYS(9) and
KEYS(10) are ignored, except to check if

- KEYS(2) is in range. If it is not in range

an error message is printed and execution is
terminated.

Alphabetize subprograms. 0--- yes, anything 0
e1$e-—— no.

[32,72]

[3,KEYS(1)-29]
[1,5]

>0
20

%0

20

N/A

N/A

N/A

N/A

N/A

+[a,b] means all integers in this interval including a and b.



3.

13

INPUT AND OUTPUT

Seven files are used by POLISH for input, output, and inter-

mediate storage. Unit numbers for these files may be passed to POLISH

through labeled COMMON, otherwise default values are used. The speci-

fication of the unit numbers in labeled COMMON, the file function, and

the default value is given below.

File

K1

K2

K3

K4

K5
Ké

K7

K8

COMMON/INOUT/K1, K2, K3, K4, K5, K6, K7, K8

Function

Input file. Contains program to be edited.
End of file flag is card with $ in column 1.
This file must be positioned before POLISH is
called, POLISH does not rewind this file.
File read in 80A1 format.

Scratch file for COMMENT statements. File
read and written in 80A1 format.

Scratch file. File read and written in
unformatted binary.

Scratch file for FORMAT statements. File read
and written in unformatted binary.

Not used in present implementation.

Scratch file for subprogram alphabetization.
File read and written in 80A1 format.

Qutput file. The edited program is written on
this file. POLISH does not rewind this file.

No carriage control characters are written on

this file. File is written in 80A1 format.

Error message file. Error messages generated by
POLISH are written on this file. POLISH does not

rewind this file. Carriage control characters

are written on this file. File is written in Al

format.

* Default values are set by BLOCK DATA

Default Value*

1



14

FORMAT statements in the program text may be moved to the end
of the subprogram block, immediately before the END statement, or left
in place. Movement to the end of the subprogram block is achieved by
assigning different numbers to files K3 and K4; explanation of file
specification appears in the next section. FORMAT statements are left
in place if the same number is assigned‘to files K3 and K4.

FORMAT statements are renumbered‘starting at 10**KEYS(3)-1, and
decreasing by 1. Thus for KEYS(3)=5 the FORMAT statements are numbered
99999, 99998, 99997, ... Unreferenced FORMAT statements are given a
bTank Tabel and an error message is printed.

A card with an asterisk in column 1 will suspend all editing of
the cards which follow except for the generation of sequence numbers;
thus columns [1, 72] will appear in the output identically as input.
The card with the asterisk in column 1 is not reproduced on the output.
Editing is thus suspended until the next appearance of a card with an
asterisk in co]umn.i. Suspension of editing can be repeated. This
feature is useful for preserving the layout of COMMENT statements.

If editing is suspended as just described on a segment of code
containing statement labels, unreferenced labels or duplicate labels

may result since labels are ignored while editing is suspended.



4. COMMENT STATEMENT EDITING

15

COMMENT statements are edited in blocks of 1 to 120 statements.

A COMMENT block begins with the first COMMENT after a non-comment

statement and is terminated by a non-comment statement or by one of the

editing delimiter cards. The 120th COMMENT will terminate a block and

the 121st COMMENT start another block.

A delimited COMMENT table 1is

proéessed as a block regardless of length.

COMMENT statement editing is controlled by six KEYS parameters

(cf. Section 2, KEYS description) and three sets of delimiters.

In de-

creasing order of precedence the editing controls are:

Editing
Control

* in card
column one

KEYS(12)

KEYS(1)

KEYS(8)

++ in card
columns one
and two

KEYS(2)

Use

Do not edit
delimiter

Indicates COMMENT
editing is permit=
ted/not permitted

Indicates right
margin for edited
COMMENT statements

Indicates blank
COMMENTS are to be
retained/deleted

Table delimiter

Indicates left mar-
gin for edited
COMMENT statements

Result of Editing Control Use

Columns (1,72) of COMMENTS and other
statements appearing between * delimiter
cards are copied directly with no edit-
ing. Sequence numbers are generated and
added in columns (73,80) in accordance
with KEYS(6).

For a non-zero value, each COMMENT block
is treated as if it were delimited by do
not edit delimiters. For a zero value
COMMENT blocks are edited as specified
by other COMMENT editing controls.

Point at which COMMENT is to be broken
if required and permitted. Error mes-
sage is issued if edited COMMENT ex-
ceeds KEYS(1) value.

For a zero value, blank COMMENTS are
deleted. For a non-zero value blank
COMMENTS are retained.

COMMENTS appearing between ++ delimiter
cards are processed as a table in ac-
cordance with the data card immediately
following the initial ++ delimiter card
(cf. Appendix C, COMMENT Table Proces-
sing).

Indented COMMENTS are indented from
this value.




16

KEYS(9) Indicates specially For a non-zero value specially for-
formatted COMMENT matted COMMENTS are not present, COM-
statements may be/  MENTS may be broken and appended to
are not present conform to KEYS(T1) and KEYS(2). For

’ a zero value, specially formatted
COMMENTS may be present. COMMENT
blocks may be broken and appended
only if permitted by + delimiters
or KEYS(10).

+ 1in card COMMENT edit COMMENTS appearing between + delimiter

column one delimiter ’ cards may be broken and appended to
conform to KEYS(1) and KEYS(2). FORTRAN
code, delimited COMMENT tables and do
not edit delimited statements may be
nested, in the sense of DO loop nesting,
between the + delimiter cards.

KEYS(10) Indicates maximum COMMENT blocks of Tength < KEYS(10) may
size of non- be broken and appended to conform to
delimited COMMENT KEYS(1) and KEYS(2). Primary purpose
block in which of this is to permit editing of small

break and append COMMENT blocks, which presumably do

procedures may be not have a tabular structure which

used when needs to be preserved.

KEYS(9)=0

For non-delimited and + delimited COMMENT blocks, editing is

divided into minimum, advanced and blank COMMENT editing phases. Minimum
editing consists of shifting COMMENT blocks en bloc to conform to KEYS(2).
If the COMMENT block does not then conform to KEYS(1), an attempt is made
to achieve conformance by reducing relative indentations. If the attempt
is successful, indentations are changed and there is no need for advanced
editing. If the attempt is not successful the COMMENT lines are left in
the shifted position as required by KEYS(2), indentations are not changed,
and if advanced editing is not permitted an error message is issued; in
the Tatter instance, the right end of COMMENT statements may be lost. Ad-
vanced editing consists of breaking and appending COMMENT statements so

that the block will conform to KEYS(1) (cf. Appendix B). Blank COMMENTS

are edited in accordance with KEYS(8).



17

5. CALLING PROCEDURE
If default values for KEYS and file numbers are used, then the
main program is simply
CALL POLISH
STOP
END
If FORMAT statements are to be Teft in place but otherwise default
options are used; then the main program is
COMMON/INOUT/K1, K2, K3, K4, K5, K6, K7, K8
K3=K4
CALL POLISH
STOP
END
If no editing of COMMENT statements is desired, FORMAT statements
are to be left in place and subprograms are not to be alphabetized but
otherwise default options are used, then the main program is"
COMMON/PARMS/KEYS(13)
COMMON/INOUT/K1, K2, K3, K4, K5, K6, K7, K8
K3=K4
KEYS(12)=1
KEYS(13)=1
CALL POLISH
STOP
END



18

POLISH can be used to edit more than one program, with different
editing features selected. For example:
COMMON/PARMS/KEYS(13)
COMMON/INOUT/K1, K2, K3, K4, K5, K6, K7, K8
CALL POLISH
K3=K4
CALL POLISH
KEYS(12)=1
CALL POLISH
STOP
END
This main program will cause the editing of three programs on the input
file: The first program will be edited with all default options; the
second program will have FORMAT statements Teft in place; the third
program will have FORMAT statements Tleft in place and COMMENT statements
will not be edited.
Input file. The input file must contain a card with a $ in column
1 at the end of the program to be edited by a call to POLISH. In the
third example above three programs are processed by POLISH and each

would have to be followed by a card with a $ in column 1.



19

6. ERROR MESSAGES

Two types of error messages are generated by POLISH.

TYPE 1 FORMAT

ERROR NN WAS DETECTED IN XXX.
ERRSUB WAS CALLED BY YYY.
Where:
NN is the error number.
XXX is user Routine name ’
YYY is name of POLISH routine that detected the error.

TYPE 2 FORMAT

*x%k%%  ERROR TYPE NN HAS BEEN DETECTED IN THE ABOVE STATEMENT.
THIS STATEMENT IS IN ROUTINE XXX STATEMENT NUMBER III.
Where:
NN is the error number.
XXX is the name of the users routine.

IIT is the sequence number of the bad statement.



20

ERROR NUMBERS FOR TYPE 1 ERRORS.

Routine in Error
which detected number
LABEL -1
-2
-3
-4
ENDLOP -1
-2
BCKSCH +]
DEFPRO -1
2
DSORT -1
-2
KSETA -1
KSETB -1
KDECNA 0,-1
KADVBA -1
KADVBB -1
KDECBA -1
KADVNA -1

Meaning

too many statement
labels in one

"subroutine

too many reference
labels in one
subroutine

DO statements nested
too deep

too many DO state-
ments in one sub-
program

Same as LABEL -2
Same as LABEL -1
Program error

Same as LABEL -1

renumbering of FOR-
MAT statements over-
laps with renumber-
ing of other state-
ment. Non-fatal.

Program error.
Same as LABEL -2.
Program error.
Program error.
Program error.
Program error.

Program error,
or B array
overflow.

Program error.

Program error.

Comments

length of DEF array must
be increased with MAXDEF
changed to reflect this
change. Length is now 100.

length of REF array must be
increased with MAXREF
changed to reflect this
change. Length is now 200.

lTength of DOSTCK array must
be increased with MAXSTK
changes to reflect this in-
crease. Length is now 10.

length of DOARRY array must
be increased with MAXRRY
changed to reflect this in-
crease. Length is now 50.

Should never occur.

Adjust KEYS(3) and KEYS(4)
and rerun.

Should never occur.

Should never occur.
Should never occur.
Should never occur.
Should never occur.

Should never occur.
See note below.

Should never occur.

Should never occur.

Some of the program errors which normally should never occur, may occur

if the input to POLISH is not recognizable by POLISH.



21

NOTE: POLISH can input up to 19 continuation cards with no errors. This
is equivalent to 1326 charaéters (72 characters from the first card and

66 from each continuation card). During processing POLISH inserts and
deletes blanks and renumbers statement Tabels. If the number of characters
ever increases over 1326 then the B array overflows. To correct this the
statements should be broken up into two or more statements, or the A and

B arrays must be increased with MAX (located in Tabeled common DEMMAX)

also changed to reflect this increase.

A11 above errors are fatal except as noted.

ERROR NUMBERS FOR TYPE 2 ERRORS.
A1l errors non-fatal except 25.

Error
Number Meaning
1 - non-ANS use of a Tetter.
2 non-ANS use of a number.
3 This is a program error and should never occur.
4 non-ANS use of a left parenthesis.
5 non-ANS use of a right parenthesis.
6 non-ANS use of a comma.
7 non-ANS use of an equals sign.
8 non-ANS use of a plus or minus sign or non-ANS use of a
character not included in errors 1-7.
-9 non-ANS use of an asterisk or solidus.
10 non-ANS use of a period.
11 This is a program error and should never occur.
12 non-ANS use of a character not included in errors 1-11.
13 This is a program error and should never occur.
14-16 Not used.
17 non-ANS useage may have induced error into statement
containing Hollerith string.
18-19 Program error. Possible non-ANS statement.
20 non-ANS statement, or second portion of LOGICAL IF

statement is non-ANS, or program error.
21 ~ Second delimiter missing in FORMAT Hollerith string.



22-23
24
25
26
27
28
29

30
31

32

33
34
35
36
37
38-39
40
41
42

43

44
45
46

47

22

Program error. Possible non-ANS statement.

Too many continuation cards on output. Adjust KEYS(1).
Error in values of KEYS. FATAL.

Non-digit entry in statement label position.

Program error. Possible non-ANS. statement.

More than 19 continuation cards on input.

Hollerith string too long to fit on one card image. Adjust
KEYS(1) to make card image bigger.

Possible improper nesting of DO statements.

Missing statement label. Slashes are inserted wherever
this label is referenced.

Statement label exceeds 5 characters after renumbering, or
statement label exceeds number permitted by KEYS(3).
Asterisks are inserted.

A FORMAT statement is unreferenced.

Same as 31 but applies only to FORMAT statements.

Same as 32 but applies only to FORMAT statements.
Statement is unrecognizable by POLISH.

Not used.

Program error. Possible non-ANS statement.

Sequence number greater than 9999. Restart at KEYS(6).
Zero-length Hollerith string.

This comment block contains at 1easf one COMMENT with length
exceeding KEYS(1).

Unable to break COMMENT within maximum authorized text
length.

Unable to break last column of COMMENT table where indicated.
Length of table line exceeds KEYS(1).

Length of table line exceeds KEYS(1). Line not broken
because corrected column number for continuation exceeds
column 72.

Table processing terminated by a non-comment statement not
located between do not process delimiters. If terminating
table delimiter now encountered errors including loss of
next card image will be introduced possibly without warning.

Lol it prferin cd — blonko

é
f'}/ ,t./ - /’("//ZQA@"K{/& k&)( f



23

WARNING:

When an error is detected in one statement, the user is cautioned
that POLISH has a tendency to spread this error to other statements
without giving error messages. Therefore, when an error is detected,
the user should fix the offending statement and re-run the whole sub-
program through POLISH. An example:

FUNCTION WRONG(A)
C THE FOLLOWING SHOULD BE GO TO

GTO 10

RETURN
10 WRONG = 2.0*A

RETURN

END

POLISH will detect an error in the GO TO statement and hence not
process it. Therefore, statement label 10 appears to be unreferenced,

and POLISH will delete it.

A NOTE ABOUT HOLLERITH STRINGS:

A Hollerith string will not be detected unless the string follows
a, (/ * A1 ANS FORTRAN input will have this condition satisfied.
Generally if an error is detected in a statement containing a Hollerith
string, the output will not be correct in that the string length is

missing and the letter H is shifted to the left.



24

7. MACHINE INDEPENDENCE

SUBROUTINE TYPE is written to be completely machine independent
and is therefore very inefficient requiring an average of thirteen com-
parisons to classify a character as a letter, thirty-one comparisons to
classify as a digit, and forty-one to classify as é blank or special
character. A Tisting of SUBROUTINE TYPE is provided in Appendix A to
assist users in preparing an efficient machine dependent version of this
intensively used routine whicﬁ classifies each character in a non-comment
statement.

Alphanumeric character storage is one character per word for data
and program constants with the following exceptions:

a. End of statement mark, 3HEQS |

b. Statement label flag, 2HFG

c. Hollerith string flag, 2HH*

d. Error messages contained in DATA statements in the

various routines and printed by SUBROUTINE ERRSUB have

4Hxxxx HoTllerith specifications.

The entire program is input/output bound with four mass storage
accesses per statement and two additional mass storage accesses for
each COMMENT or FORMAT statemént if they are edited in any way. Mass
storage accesses are nearly continuous during subprogram alphabetization.
Installations where mass storage access are relatively expensive may

desire to use machine dependent input/output buffering routines.



25

REFERENCES:

(1]

(2]

[3]
[4]

(5]

TIDY, University of Colorado Computer Center program Q-TIDY-237.
(Adapted from program by Harry M. Murphy, Air Force Weapons
Laboratory, Kirtland Air Force Base, New Mexico 1966).

FORDOC, and FORTREDIT are propietary software products. See
ICP Quarterly, Vol. I, October, 1973, pp. 201 and 174.

Algorithm 476, Comm. ACM 17 (April 1974), 220-223.

Lang, Dorothy E. STYLE editor: Users Guide, Report 7 (1972),
Department of Computer Science, University of Colorado, Boulder,
Colorado 80309.

Sale, A. H. J. The Classification of Fortran Statements. Comp. J
14 (1971), 10-12.



SEoNoNoRo NN NoNoNeNoNoNoNoNoNoRoRoNoNo o NoRe o Nelo oo Xe e Ne o ReNeloXo e ko RoRoXo e Ro o ReNe T RoNeNoNoNoRo N e

A-1

Appendix A
SUBROUTINE TYPE (IAl, MM, JTYP)
IDENTIFICATION
PROGRAM NAME TYPE
SOURCE LANGUAGE ANSI FORTRAN
DATE 12/01/73
PROGRAMMER M. BOLKE
READER J.S. DORRENBACHER
UPDATE 1 OF JULY 1974
ABSTRACT

THIS PROGRAM CLASSIFIES A CHARACTER OR CHARACTER
STRING AND ASSIGNS A TYPE CODE TO IT.
METHOD OF USE
THIS SUBROUTINE IS CALLED BY

CALL TYPE (IAl, MM, JTYPE)

WHERE

IAl -- VARIABLE CONTAINING THE CHARACTER OR CHARACTERS TO BE
CLASSIFIED. (INPUT)

MM -- FLAG INDICATING HOW IAl SHOULD BE CLASSIFIED.

MM=0 OR -1. (INPUT)
JTYPE-- INTEGER REPRESENTING THE TYPE CODE. (OUTPUT)
JTYP IS ASSIGNED ACCORDING TO THE FOLLOWING RULE
JTYP CHARACTER(S) IN IAl

1 LETTER

2 DIGIT

3 END OF STATEMENT MARK (3HEQS)
4 LEFT PARENTHESIS

5 RIGHT PARENTHESIS

6 COMMA

7 EQUAL SIGN

8

IF MM=0, THEN JTYP=8 IF IAl IS NOT ONE OF THE ABROVE,
IF MM=-1, THEN JTYP=8 IF IAl IS A PLUS OR MINUS SIGN,
S ASTERISK OR SOLIDUS

10 PERIOD

11 BLANK

12 OTHER ;
13 HOLLERITH FLAG (2HH*)

THE CHARACTER TO BE CLASSIFIED IS REPRESENTED IN IAl IN Al
FORMAT EXCEPT FOR THE END OF STATEMENT MARK AND THE HOLLERITH
FLAG.

EXAMPLE

IF IA=1H5 AND MM=-1 THEN CALL TYPE (IA,MM,JTYP) WOULD RETURN
JTYP=2,

IF IA=1HS AND MM=0 THEN JTYP=8 UPON RETURN,

PROGRAM CHARACTERISTICS

IA -— IAl REPRESENTED AS A LOCAL VARIABLE

KLTTR -~ ARRAY CONTAINING ALPHABET IN NORMAL ORDER. EACH
ELEMENT CONTAINS ONE LETTER IN 1H FORMAT

KDIG -~ ARRAY CONTAINING DIGITS FROM 0 TO 9. EACH ELEMENT
CONTAINS ONE DIGIT IN 1H FORMAT.

KSPEC -- ARRAY CONTAINING SPECIAL CHARACTERS OR SYMBOLS

IN H FORMAT. ORDER OF CHARACTERS IS +, -, *, /, (,
), $, =, BLANK, COMMA, PERIOD, END OF STATEMENT
- MARK,
IHOLFG -- HOLLERITH FLAG \
THERE ARE NO MACHINE DEPENDENT VARIABLES AND NO MACHINE

TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP

‘TYP
- TYP

TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP

TYP

TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP

10¢
11
120
1 3¢
14¢
15
161
17¢
18(
19¢
20¢
21
220
23(
241
25(
26(
27¢(
28(
29¢
30¢
31(
32¢(
33(
34(
35¢(
36(
370
38(
39¢
40(
41(
42(
43¢
44¢(
45(
46(
47(
48(
49(
50(
51(
52(
53(
54(
55(



S NONON®

A-2

DEPENDENT CODE IN THIS SUBROUTINE.

MORE EFFICIENT MACHINE DEPENDENT CODE SHOULD BE AVAILABLE AT
MOST INSTALLATIONS FOR DETERMINING IF A GIVEN CHARACTER IS A

LETTER OR A NUMBER.
COMMON /CHRS/ KLTTR(26), KDIG(10), KSPEC(12)
DATA IHOLFG /2HH*/
IA = IAl
CHECK FOR LETTER
DO 10 I=1,26
IF (IA.EQ.KLTTR(I)) GO TO 30
10 CONTINUE
CHECK FOR NUMBER
DO 20 I1=1,10
" IF (IA.EQ.KDIG(I)) GO TO 40
20 CONTINUE
CHECK FOR END-OF-STATEMENT MARK
IF (IA.NE.KSPEC(12)) GO TO 50
JTYP = 3
RETURN
CHARACTER IS A LETTER
30 JTYP = 1
RETURN
CHARACTER IS A NUMBER
40 JTYP = 2
~ RETURN
CHECK FOR LEFT PARENTHESIS
50 IF (IA.NE.KSPEC(5)) GO TO 60
JTYP = 4
RETURN
CHECK FOR RIGHT PARENTHESIS
60 IF (IA.NE.KSPEC(6)) GO TO 70
JTYP = 5
RETURN
CHECK FOR COMMA
70 IF (IA.NE.KSPEC(10)) GO TO 80
JTYP = 6
RETURN
CHECK FOR EQUAL SIGN

.80 IF (IA.NE.KSPEC(8)) GO TO 90

JTYP = 7
RETURN

CHECK FOR ABRIDGED TABLE

90 IF (MM.NE.O) GO TO 100

JTYP = 8
RETURN

CHECK FOR + OR - SIGN

100 IF (IA.NE.KSPEC(l) .AND. IA.NE.KSPEC(2)) GO TO 110
JTYP = 8
RETURN

CHECK FOR * OR / SIGN

110 IF (IA.NE.KSPEC(3) .AND. IA.NE.KSPEC(4)) GO TO 120
JTYP = 9 :
RETURN

CHECK FOR PERIOD

120 IF (IA.NE.KSPEC(11l)) GO TO 130

TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP

560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100



JTYP =
RETURN -

C CHECK FOR BLANK
130 IF (IA.NE.KSPEC(9)) GO TO 140

JTYP =
RETURN

10

11

C CHECK FOR HOLLERITH FLAG.

140 IF (IA.NE.IHOLFG)

JTYP =
RETURN

13

GO TO 150

C CHARACTER IS OF TYPE OTHER

150 JTYP =
RETURN
END

12

A-3

TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP
TYP

111¢
112(
113(
114
115¢(
116(
117¢
118(
119¢
120¢
121(
122(
123
1241



B-1

Appendix B
BREAK AND APPEND PROCEDURES

When the text of a COMMENT statement extends past KEYS(1) it i§
broken at the first blank space located at or to the left of KEYS(1) + 1.
Decisions concerning the continuation indentation and whether or not to
append the next COMMENT line are made by examining as many as necessary, or
possible, of the two preceding and two following COMMENT lines. Appendéhi
ing of additional COMMENT Tines is terminated when any of the fo]]owing
occur: 1) end of COMMENT block, 2) occurence of blank COMMENT, 3) next
COMMENT has greater indentation than current COMMENT, or 4) less than
eight characters of the next COMMENT line could be appended to the current
COMMENT Tine. Terminal condition 3) precludes appending the second line
of a subparagraph to the first when that form of indentation is used

with subparagraphs.

Hints to users:

1. Liberal use of blank COMMENTS is recommended to improve readability
and processing of COMMENTS. The blank COMMENTS are removed by the
KEYS(8) default value.

2. Generally it is best to separate consecutive subparagraphs with a
blank COMMENT. This precludes incorrectly appending subparagraphs
together.

3. A single, one line subparagraph should be followed by a blank
COMMENT.

4. Use a long text line for COMMENT text, i.e., keep KEYS(2) small.

5. B]ank COMMENT statements or an empty COMMENT block delimited by *

or + delimiters may be used to separate COMMENT statements. The



B-2

former keeps all the COMMENTS in the same block while the later
separates the COMMENTS into two blocks.
6. Break and append procedures are not recommended for a COMMENT

block that contains an outline format.

The f011owing example contains most of the problem cases and shows

the use and misuse of delimiters, blank COMMENTS, and text Tine length.

Comment b]bck ready to edit.

EXAMPLE COMMENT BLOCK

THE BLANK COMMENT KEEPS A LONG TITLE LINE FROM BEING
CONSIDERED AS THE INDENTED FIRST LINE OF THE FOLLOWING

PARAGRAPH. THE BLANK COMMENT FOLLOWING THE SUBPARAGRAPH
SERVES A SIMILAR PURPOSE.

A. AN ERROR COULD RESULT IF THIS SUBPARAGRAPH BROKEN.

A DIFFERENT PROBLEM IS ILLUSTRATED BY THESE SUBPARAGRAPHS.
A. AN ERROR COULD RESULT IF THIS SUBPARAGRAPH BROKEN.

B. THE BLANK COMMENT SAVES THE SUBPARAGRAPH FORMAT
WHERE THE DELIMITED EMPTY COMMENT BLOCK DOES NOT AS
SHOWN HERE,

C. THE SUBPARAGRAPH FORMAT WILL BE LOST.

HERE THE USE OF A * OR + EMPTY COMMENT BLOCK
WOULD HAVE THE SAME RESULT IF KEYS(9) .NE.O BUT
WOULD DEPEND ON KEYS(10) IF KEYS(9).EQ.O..

2 N OEONSIE NI YoNoNeo Yo RoRe o Ro R Xo XoRe o Ne)

~ Let KEYS(1)=50, KEYS(2)=10, and KEYS(9)=1. Assume other KEYS are

at their default values.



B-3

Results of editing are:

EXAMPLE COMMENT BLOCK
THE BLANK COMMENT KEEPS A LONG TITLE LINE
FROM BEING CONSIDERED AS THE INDENTED
FIRST LINE OF THE FOLLOWING PARAGRAPH.
THE BLANK COMMENT FOLLOWING THE
SUBPARAGRAPH SERVES A SIMILAR PURPOSE.
A. AN ERROR COULD RESULT IF THIS
SUBPARAGRAPH BROKEN,
A DIFFERENT PROBLEM IS ILLUSTRATED BY
THESE SUBPARAGRAPHS.
A. AN ERROR COULD RESULT IF THIS
SUBPARAGRAPH BROKEN.
B. THE BLANK COMMENT SAVES THE
SUBPARAGRAPH FORMAT WHERE THE
DELIMITED EMPTY COMMENT BLOCK DOES
NOT AS SHOWN HERE.
C. THE SUBPARAGRAPH FORMAT WILL BE LOST.
HERE THE USE OF A * OR + EMPTY COMMENT
BLOCK WOULD HAVE THE SAME RESULT IF

KEYS (9) .NE.O BUT WOULD DEPEND ON KEYS (10)
IF KEYS(9).EQ.O.

MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN

MAN
MAN

MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN
MAN

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210



Appendix C
COMMENT TABLE EDITING

COMMENT table editing includes the deletion of indicated card
columns, the insertion of a space following an indicated card column,
and the breaking and continuation with possible appending of the Tast
table column of the respaced COMMENT table if it exceeds KEYS(1). The
broken Tast column is continued at the indicafed cérd'co1umh corrected
for revised table spacing. If the following COMMENT table 11né starts
at the indicated continuation indentation it is available to be
appended to the broken Tast column. KEYS(8) is used to edit blank
COMMENTS .

COMMENT tables are delimited by the ++ delimiter cards. Immedi-
ately following the initial ++ delimiter card must be a data card con-
taining processing information for the COMMENT table. The data card
has the following format: columns 1-72 contain +, -, or blank;
columns 73-78 are blank; columns 79-80 are blank or contain a right
justified card column number corresponding to the card column, uncorrected
for added spaces or deleted characters, in which the continuation of the
last table column is to be started. When columns 79-80 are blank the
last table column is not broken. The last table column is broken at the
first blank space located at or to the left of KEYS(1) + 1. The meaning
of the characters in columns 1-72 are: -

- delete card column from table,

+ insert space after card column is copied,

blank copy card column as is.
Tables of COMMENTS may contain blocks of code and/or COMMENTS be-

tween do not edit delimiters. A non-comment statement not located



c-2

‘between do not edit delimiters will terminate table editing with an
error message. If a terminal ++ delimiter card is then encountered,
the next card is lost and other errors may be introduced without warn-
ing or érror messages. The other errors should be restricted to
COMMENT statements and COMMENT tables. An error message is provided
if a table Tine exceeds KEYS(1) after editing. KEYS(2) is not used in
COMMENT table editing.

Exampie using table processing to insert and delete blanks.

Input table:

++
+++++ +++ -
C TIME SPEED DISTANCE
C 10.3 54,7 107.1
C 15.2 52.3 153.9
++
$
Edited table:
C I'IME SPEED DISTANCE MAN
C 10.3 54.7 107.1 MAN
C 15.2 52.3 153.9 MAN



OO0 00c

C-3

Example using multiple table editing within one table to delete non-
blank character, to align table sections, and to break, continue and

append the last column of the table. KEYS(1)=45.

Input table:

IPTR--POINTER TO A-ARRAY.
JPTR--POINTER TO B-ARRAY.

++

A -ARRAY CONTAINING INPUT DATA TO BE PROCESSED.
ARRAY IS IN Al FORMAT.

B -ARRAY CONTAINING PROCESSED DATA TO BE OUTPUT.
ARRAY IS IN Al FORMAT.

Edited table:

IPTR-POINTER TO A-ARRAY.
JPTR-POINTER TO B-ARRAY, :
A - ARRAY CONTAINING INPUT DATA TO BE

PROCESSED. :
ARRAY IS IN Al FORMAT.
B - ARRAY CONTAINING PROCESSED DATA TO
BE OUTPUT.

ARRAY IS IN 21 FORFAT.

MAN

 MAN

MAN
MAN
MAN
MAN
MAN
MAN

0 ~J N N D WD N



D-1

Appendix D
SECOND LEVEL DEFINITION

The second level definition restrﬁctions on array subscripts of
ANSI FORTRAN Standard X3.9-1966, Sectiohs 10.2.8 and B8.1 have not been
observed in subprograms COPY, DRICON, DRIVER, LABEL, and LBOCSC. To
date, no user has reported any problems in this area. The following
changes, line replacements except as noted, will cause second level

definition restrictions to be observed:

SUBROUTINE COPY

OUTBUF(I) = A(IP) COP 230
SUBROUTINE DRICON

IF (KSETB(JP,6).NE.O) GO TO 330 DRI 1300

IF (A(IP).NE.KLTTR(6)) GO TO 190 DRI 2200

190 IF (A(IP).NE.KLTTR(18)) GO TO 200 DRI 2240
200 IF (A(IP).NE.KLTTR(4)) GO TO 210 DRI 2280
B(JP) = A(IP) DRI 2350

IF (KADVBB(JP).NE.O) GO TO 330 DRI 2370
B(JP) = IBLANK , DRI 2400

IF (KADVBB(JP).NE.O) GO TO 330 DRI 2410

IF (KSETB(JP,5).NE.-1) GO TO 330 DRI 2510
B(JP) = LDSTCK DRI 2520

F (K.EQ.10) B(JP) = B(JP) - 1 DRI 2530

SUBROUTINE DRIVER

B(J) = A(IP) ‘ DRI 1020
B(JP) = IBLANK DRI 1050

60 CALL TYPE(A(IP), MM, JTYP) DRI 1170
A(IP) = INST DRI 1300

90 B(JP) = IBLANK : DRI 1420
100 B(JP) = A(IP) DRI 1450
120 B(JP) = A(IP) DRI 1600
B(JP) = IBLANK DRI 1620



170 B(JP) = A(IP) DRI 1850
IF (KSETB(JP,1).NE.-1) GO TO 470 DRI 1870
B(JP) = JJ DRI 1880

200 B(JP) = IBLANK DRI 2060
B(JP) = A(IP) | DRI 2080

240 NPOINT = A(IP) DRI 2260
CALL TYPE(A(IP), MM, JTYP) DRI 2280
IF (A(IP).EQ.KLTTR(1) .OR. A(IP).EQ.KLTTR(15))

* GO TO 260 DRI 2300

250 B(JP) = NPOINT DRI 2320
B(JP) = IBLANK DRI 2360
B(JP) = NPOINT DRI 2380
B(JP) = A(IP) DRI 2480
B(JP) = IBLANK DRI 2500

320 B(JP) = IBLANK DRI 2790
B(JP) = A(IP) DRI 2910

MES(LL) A(IP) DRI 2920
F (A(IP).EQ.KSPEC(5)) GO TO 60 DRI 2950

380 IF (A(IP).NE.KSPEC(4)) GO TO 100 DRI 3120
NCHAR = A(IP) | DRI 3200

410 B(JP) = A(IP) , DRI 3300
B(JP) = A(IP) DRI 3330
B(JP) = KSPEC(9) DRI 3370
B(JP) = A(IP) DRI 3430
IF (A(IP).NE.IBLANK) GO TO 60 DRI 3470

Replace DRI 1030, 1430, 1460, 1610, 1630, 2070, 2090, 2330, 2370, 2390,
2490, 2510, 2800, 2930, 3320, 3350, 3380, and 3440 by
F (KADVBB(JP).NE.O) GO TO 470



D-3

SUBROUTINE LABEL

* 1P, JP

IF (KADVBA(IPNTRA).GT.0) GO TO 210
IF (KADVBB(IPNTRB).GT.0) GO TO 210
IF (KADVNA(IPNTRA).LT.0) GO TO 210
IF (KDECBA(IPNTRA).NE.O) GO TO 210
(KSETB(IPNTRB,3).GT.0) GO TO 210

20

60
IF

Insert after LAB 1060
IPNTRA = IP
IPNTRB = JP

FUNCTION LBOCSC
* Ip, JP
IF (KSETA(IPNTRA,ISTART).NE.O) GO TO 50
IF (KDECBA(IPNTRA).NE.O) GO TO 50

LAB 890
LAB 1210
LAB 1250
LAB 1310
LAB 1360
LAB 1410

LBO 130
LBO 190
LBO 330



