On Structure of Derivations
in Deterministic ETOL Systems®
by

%%k
A. Ehrenfeucht
and

oo

G. Rozenberg#¥¥*

Report #CU-CS-046~74 July 1974

* This work supported by NSF Grant #GJ-660

*% Department of Computer Science
University of Colorado
Boulder, Colorado 80302 U.S.A.

*%% Institute of Mathematics Department of Mathematics
Utrecht University and University of Antwerp, U.I.A.
Utrecht-De Uithof HOLLAND Wilrijk BELGIUM

All correspondence to: G. Rozenberg
Institute of Mathematics
Utrecht-De Uithof
HOLLAND

ABSTRACT

This paper investigates the structure of derivations in deterministic
ETOL systems. The main theorem says that in a deterministic ETOL system
each derivation of a long enough word of a special kind (the so-called
f-random word) has a very strong combinatorial structure. In fact the main
result of this paper is very essential for proving useful properties of
deterministic ETOL languages, which is demonstrated already in a number of

papers.

INTRODUCTION

The theory of L systems became recently one of the most vigorously
investigated areas of formal language theory. (The reader is referred
to Herman and Rozenberg [6] and to Rozenberg and Salomaa [9] which are
the most extensive sources of readings on the theory of L systems as of
today.)

One of the central families of L languages (languages generated by
L systems) is the family of ETOL languages (see, e.g., Christensen [1],
Downey [2], Rozenberg [8] and Salomaa [10]). In turn the deterministic
subfamily of the family of ETOL languages appears to be a very important
one (see, e.g., Ehrenfeucht and Rozenberg [4]).

This paper investigates deterministic ETOL systems from the point
of view of the structure of derivations in these systems. The main idea
behind our approach can be described as follows.
The absolutely parallel way of rewriting in L systems (all occurrences of
all letters in a string are being rewritten in a single derivation step)
causes essential difficulties in investigating the structure of L languages
via the structure of derivations in L systems. Take for example the
famous Bar Hillel pumping lemma for context free languages. It holds
because if a derivation in a context free grammar is long enough then one
can always find a self-embedding letter (one which derives itself and
something else) and then iterate the piece of the derivation concerned with

rewriting of this particular letter with the rest of the string remaining

the same. This does not work in L systems because the whole string must be
rewritten in a single derivation step, and thus while, e.g., rewriting a

self-embedding letter the rest of the string will (in general) be also

changed.

One way of overcoming this particular obstacle is to consider derivations
of the subset of the language generated by the system and then to introduce
a much finer classification of symbols than self-embedding and non-self-
embedding ones.

We have done this in this paper for the use of deterministic ETOL systems.

Thus this paper is intended as a contribution to the very important
area of L systems theory: understanding the structure of a single L system
and henceforth the structure of a single L language. Unless we understand
the structure of a single L system (language) the theory of L systems will
be missing a very important point.

In the second section we introduce basic definitions concerning ETOL
systems and languages, and then in the third section we introduce various
notions concérning derivations in deterministic ETOL systems. Section IV
presents two technical results which are then used in Section V to prove
the main result of this paper. Roughly speaking it says that each deri-
vation of the so-called f-random word in an EDTOL system has a very definite
"backbone structure' which goes through relatively many words of the

derivation. This result is then discussed in Sectiom VI.

II. BASIC DEFINITIONS

In this section we introduce the notions of an ETOL system and an
ETOL language and illustrate them by examples.

Definition 1. An extended table L system without interactions,

abbreviated as an ETOL system, is defined as a construct G =‘<§3 P, w, §:>
such that
1) V is a finite set (called the alphabet of G).

2) P in a finite set (called the set of tables of G), each element of which

is a finite subset of V X V*, P satisfies the following (completeness)
condition:

s . %

(P)p(Va) (o) *(<a, a>cP).
3) w€V+ (called the axiom of G).

4) IV (called the target alphabet of G).

We assume that V, & and each P in P are nonempty sets.

Definition 2. An ETOL system G = <V, P, w, > is called

1) deterministic if for each P in P and each a in V there exists exactly one

o in V* such that <a, o> is in P,

2) propagating if for each P in P we have P« V X V+.

We use letters D and P to denote the deterministic and the propagating
restrictions respectively. Thus, for example, "an EDTOL system" means
"a deterministic ETOL system" and "an EPDTOL system" means "a deterministic
propagating ETOL system,"

Definition 3. Let G =<V, P, w, £ be an ETOL system. Let xeVT
b Ed ?

%
X =a;" ‘ak, where each aj, 1 <3j sk, is an element of V and let yeV .

We say that x directly derives y in G (denoted as x=»y) if and only if there
G
exist P in P and Pis =t *y Py in P such that Py = <815 04> ¢ ¢ e, Py =

*
<ak, ak> and y = OUpe s 0. We say that x derives y in G (denoted as x=%y)
G

if and only if either (i) there exists a sequence of words Xys Xqs * 0t X

in V¥ (n > 1) such that x, = x x = and x, =& xlwﬁ’xﬁw? * o t=Px or

2

s
1 G G G G

0 0

(ii) x = vy.

Definition 4. Let G = <V, P, w, £ » be an ETOL system. The language
Vs s H] s g g

4 %
of G, denoted as L(G), is defined as L(G) = {xel*:w==2x}.
G

Definition 5. A language K is called an ETOL (EDTOL, EPDTOL) language

if there exists an ETOL (EDTOL, EPDTOL) system G such that L(G) = K,

Notation. Let G = éiV, P, w, E}’be an ETOL system. If <a, o> is an
element of some P in P then we call it a production and write a -~ o is in P

or a - o or P(a) = a.
P

We end this section with some examples of ETOL systems and languages.

Example 1. Let G, = {y, P, w, I where V= {A, B, a}, & = {a}, w = AB
and P = {Pl, Pz} where
Pl={A+A2,B—>B3,a—>a}, P2='{A+a,13->a,a->a}.
. 23t
Gl is an EPDTOL system where L(Gl) = {a :tn > 0},
Example 2. Let G2 = mi{a, b, A, B, ¢, D, F}, P, CD, {a, b};}, where

P = {Pl, P, P3} and

P,={a>F, b~+F, A>A, BB, C+ACB, D~ DA},

P2='{a~>F,b+F,A—>A,B+B, C~+ CB, D~ D},

CPy= {a»-F b>F, A+a, B>b, C>A, D> A},

G2 is an EDTOL system which is not propagating, and L(Gz) = {a""a™n >0, m >n}l.

III. DERIVATIONS AND SUBDERIVATIONS IN EDTOL SYSTEMS

To each word in the language of an ETOL system there corresponds a
"derivation in G" which is a precise description how the word may be
generated in G. In this paper we investigate the structure of derivations
in EDTOL systems and this section introduces all necessary notions concerning
this topic.

Definition 6. Let G =<V, P, w, % 7 be an EDTOL system. A derivation

(of y from x) in G is a construct D = ((XO, e ey, Xk)’ (TO’ . e, Tk—l)’é%ﬁ
where k 2 2 and

1) Xgs * * %, ¥ are in V¥,

2) Tgs * * s T, _1 are in [

3) #is an unambiguous description which tells us, for each j in‘{O, e o o, k=11,
how each occurrence in Xj is rewritten using Tj to obtain Xj+l’
4) Xy = X and X =Y.

If x = w then we simply say that D is a derivation (of y) in G.

Definition 7. Let G =<V, P, w, % /7be an EDTOL system and let D =

((XO, * 'Xk), (TO, o v o, Tk_l),f%3 be a derivation in G. For each

occurrence a in Xj’ 1 < j gk, by a contribution of a in D, denoted as

ContrD(a), we mean the whole subword of x, which is derived from a.

Definition 8. Let G = {V, P, w, £ be an EDTOL system and let D =

((xo, e e e Xk)’ (TO, o e e, Tk—l)’ () be a derivation in G. A subderivation

of D is a construct D = ((Xi sttty Xy), (Pi AR #),5§§ where
0 q 0 g-1
1) 0« R S lq <k -1,
2) for each j in‘{O, e « o, q-1}, P, =T, T, e o o T. R
- lj lj lj+l lj+l 1

%

3) @& is an unambiguous description which tells us, for each j in’{O, v e .,

q-1}, how each occurrence in X is rewritten by Pi to obtain X, .
] J j+l

Remark

Although a subderivation of a derivation in G does not have to be a
derivation in G we shall use for subderivations the same terminology as for
derivations and this should not lead to confusion. (For example we talk
about tables used in a subderivation). It is clear that to determine a
subderivation D of a given derivation D it suffices to indicate which
words of D form the sequence of words of D. We will also talk about a
subderivation:ﬁ of a subderivation D of D meaning a subderivation of D the
words of which are chosen from the words of D. (In this sense we have that
a subderivation of a subderivation of a derivation D is a subderivation of
the derivation D. Given a subderivation D of D and an occurrence a in a

word of D we talk about ContrD(a) in an obvious sense.

In this paper we shall first investigate the structure of derivations
in EPDTOL systems and then we shall discuss how the relaxing of the

propagating restriction influences the structure of derivations.

Definition 9. Let G = '{V, P, w, Z:? be an EPDTOL system and let f

be a function fromé? into/;{iJ . Let D be a derivation in G and let D =
pos os

((xo, o e ey xk), (TO’ e ey Tk~l)’ &) be a subderivation of D. Let a be

an occurrence (of A from V) in x_ for some t in {0, « « -, k}.

1) a is called (f,D)-big (in x), if |cOntrD(a){ > £(n),

2) a is called (£,D)=-small (in Xt), if lContrD(a)lg.f(n),

3) a is called unique (in Xt) if a is the only occurrence of A in X,

4) a is called multiple (in xt) if a is not unique (in xt),

5) a is called D~recursive (in xt) if Tt(a) contains an occurrence of A,

6) a is called D-nonrecursive (in Xt) if a is not D-recursive (in xt).

Remark

1) Note that in an EDTOL system each occurrence of the same letter in

word is rewritten in the same way during a derivation process. Hence we
can talk about (£,D)-big (in xt), (£,D)-small (in xt), unique (in xt),
multiple (in xt), D-recursive (in Xt) and D-nonrecursive (in xt) letters.
2) Whenever f or D or D is fixed in considerations we will simplify
the terminology in the obvious way (for example we can talk about big

letters (in Xt) or about recursive letters (in xt)).

Definition 10. Let G = £V, P, w, 7 be an EPDTOL system and let £

be a function fromjg;os intoﬂ%%os' Let D be a derivation in G and let

D= ((xo, o e o, Xk)’ (TO, o« o ., Tk-l)’ é%) be a subderivation of D. We
say that D is neat (with respect to D and f) if the following holds:

1) Min(xo) = Min(xl) = e e o = Min(Xk).

2) If j is in {0, « « «, k} and A is a letter from Min(xj), then A is big
(small, unique, multiple, recursive, nonrecursive) in xj if and only if A
is big (small, unique, multiple, recursive or nonrecursive respectively) in
X, for every t in {0, « . ., kl}.

3) For every j in {0, « -« -,~k}, Min(xj) contains a big recursive letter.
4) For every j in {0, » « +, k} and every A in Min(xj), if A is big then

A is unique.

5) For every j in {0, * * °, k-1}

5.1) Tj contains a production of the form A + o where A is a big letter and
o contains small letters, and

5;55 If A~» o is in Tj, then

if A is small recursive, then o = A, and

if A is nonrecursive then o consists of small recursive letters only.

6) For every i, j in {0, « + +, k} and every A in V, if a is a small
occurrence of A in x, and b is a small occurrence of A in Xy then !ContrD(a)f =

2
[ContrD(b)[.

7) For every big recursive letter A and for every i, j in 0, - « «, k-1,

if 7 ~—> o and Z ——> B then o and B8 have the same set of big letters (and

T, T.
in fact none of them éxcept for Z is recursive).

IV, TWO USEFUL RESULTS

In this section we present two results which are used later on in
the proof of our main result,

Throughout this paper we shall often use phrases like "(sufficiently)
long word x with a property P" or a "(sufficiently) long (sub)derivation
with a property P". This will have the following meaning.

1) By a "(sufficiently) long word x with a property P" we mean a word x
with property P which is longer than some constant C the computation of
which does not depend on x itself.

2) By a "(sufficiently) long (sub)derivation with a property P" we mean a
(sub)derivation D satisfying P of a word x which is longer than IXIC where

C is a constant independent of either x or D.

The following result will be used quite often to get long subderivations

from other long subderivations. Before we formulate it we need another

definition.

Definition 11. Let f be a function frmn%? intojg; . We say that
pos os
f is slow if
(Va)p (Zn) (V') [if x > n_ then f(x) < x*].
Koos 9 Rpos Roos @

log log x

Thus a constant function, (log x)k and (log x) are examples

1 .
08 X, xz, Vx are examples of functions

of slow functions, whereas (log x)
which are not slow.
Let G be an EDTOL system and let g be a slow function. Let D be a long

subderivation of a derivation D of x in G. Let us divide the words in D

into classes in such a way that a number of classes is not larger than

g(|x|).

10

Lemma 1. There exists a long subderivation of D consisting of all
the words which belong to one class of the above division into classes.
Proof.
As D is a long subderivation, it is longer than [X{C for some constant C
(independent of D and x). Thus in our division there must be a class (say F)

IX C IXIC JXIC_OL' leoc
consisting of at leastngiTy elements. Butg< X|) = g(!Xl) for every a.

o
However for sufficiently long words x we haveg%%iT) > 1 and consequently

C
i%+~Ty >, lxlc ®. Thus if we choose a subderivation in such a way that it
g(|x]|) »

consists of all words in F, then it is a long subderivation. Hence
Lemma 1 is proved.

Now we shall present another result of a graph-theoretical nature which
turns out to be very useful for our investigationms.

First we need some definitions.

Definition 12. A (n %X k) matrix of trees (abbreviated as (n X k) t-matrix)

is a directed graph whose nodes form a (n X k) matrix which satisfies two
conditions: (i) each node in the graph has at most one ancestor, (ii) if there
is an edge leading from node (i, j) to node (i, j), for some 1 < i, 1gn

and 1< j, j<k, theni =1+ 1.

Definition 13. Let Gl be a (n X k) t-matrix and let G2 be a (m X k)

t-matrix for some m € n. We say that G2 is a sub—-t-matrix of Gl if the

(m X k) matrix of nodes of G2 is obtained by skipping some (may be none)

rows from the matrix of nodes of Gl and there is an edge between two nodes

in G2 if and only if this edge is in the transitive closure of Gl'

Definition 1l4. A (n X k) t-matrix G is said to be well formed if it

satisfies the following two conditions:

11

1) If a node (i, j) has descendants then (i + 1, j) 1is one of them.
2) If there is an edge leading from (i, j) to (L + 1, %), then, for every

pin {1, « ¢« «, n ~ 1}, there is an edge leading from (p, j) to (p + 1, 2).

The following result is proved in Ehrenfeucht and Rozenberg [3].
Theorem 1. For every positive integer k there exist positive reals
T and Sy such that for every positive integer n and for every (n x k)
t-matrix G there exists a well formed (m X k) t-matrix H which is a
K

sub~t-matrix of G and for which m asrkn .

12

V. ON THE EXISTENCE OF "LONG" NEAT SUBDERIVATIONS

In this section we prove the main result of this section.

First we need a definition.

Definition 15, Let I be a finite alphabet and let f be a function

from & into,ﬁ; . Let w be in %, We say that w is a f-random word
pos os
(over r) if
(\{wl, Ups Wys Uy, W3)Z* [if w = WU WU, Wy and [ull > £(|w|) and |u2[> £(|w]),

then uy # uZ]

Thus, informally speaking, we call a word w f-random if every two

disjoint subwords of W which are longer than f([w[) are different.

13

Theorem 2. TFor every EPDTOL system G and every slow function f there
exist ¢ iné&;os and s in N such that, for every w in L(G), if |w| > s and
w is f-random, then every derivation of w in G contains a neat subderivation
longer than [wlr. |

Proof.

Let G = <fV, P, w, 277 be an EPDTOL system and let f be a slow function.

We shall present our proof in the form of a construction that takes
several steps.

Before we start it, it is instructive to notice that if we consider an
arbitrary derivation D of a f-random word then in each word of D each big

letter has a unique occurrence.

STEP 1

Let x be a sufficiently large f-random word in L(G) and let D be a
derivation of x in G. (It is clear that for sufficiently large x, @ must
contain at least one big letter.) Now we choose a subderivation

Dl = ((xél), S Xéi))’ (Tél), o e ey, T(l)), Cgi) in the following

kl—l
fashion:
1) Let xél) = w, and
2) for a given xil) we choose xéii to be the nearest word in the derivation

D such that it contains a big letter and it contains some small letters

contributed from a big letter in Xil),
(1)

3) we continue to choose next elements (Xi+1) as long as possible.

Observation:

Let us note that Dl is sufficiently long.

This is shown as follows:

Let #V = m, and let m, be the maximal length of the right hand side

of any production in any table from P. Let for i in {1, + « -, kl}, A; denote

14

the total number of occurrences contributed in D from all these small

. . . 1
occurrences in xil) which are contributed from big occurrences in xi_i.

Let Aw denote the total number of occurrences contributed in D from all

small occurrences in w. Let Afin denote the total number of occurrences
(1)
contributed in D from all big occurrences in X
1
It is clear that:

Begn S My My e £(|x]),

AL < lw] « £(]x]), and

for every i in {1, « . ., kl}, LV My« Ty £(|x]).

kl
But lxl = Afin + Aw + :zgw-— Ai, hence
i=1
x| < £(|x]) (mo - my lw] + My * Wy e kl) and so

X
. f(’x')' - (e omp+ o))

1

As f is slow, for every e in Rpos we can choose {x| large enough so that

f(lxl) < Ix]e. Consequently (because m, q and lwl are constants) for every

1-a

o in Rpos we can adjust x in such a way that k., >]xl

1

STEP 2

Let us consider the derivation Dl obtained in STEP 1,

Let us divide words in Dl into classes in such a way that two words

belong to the same class if and only if they contain the same set of big
letters. As the number of such classes is clearly bounded by a constant,

we can apply Lemma 1 and obtain a sufficiently long subderivation Dll of D.

Then let us divide words in D, into classes in such a way that two

11

words belong to the same class if and only if they contain the same set of

big letters. Again applying Lemma 1 we obtain a sufficiently long

15

subderivation D12 of D.

Then let us divide words in D12 into classes in such a way that two

words belong to the same class if and only if they contain the same set
of unique letters. Applying Lemma 1 we get in this way a sufficiently long

D13 of D,

Then let us divide words in D13 into classes in such a way that two

words belong to the same class if and only if they contain the same set

of multiple letters. Applying Lemma 1 we get a subderivation D14 of D

which is sufficiently large.

Finally let us divide words in D,, into classes in such a way that

14

two words belong to the same class if and only if they contain the same
set of letters. Again, applying Lemma 1 we get a sufficiently large

subderivation of D. Let us call it DZ'

STEP 3

(2) «(2) (2)
= ((x 1 s ° ° °» sz)

Let us consider the derivation D

(2)

(T e e, (2)) 6;5) obtained in STEP 2.
2

Let MD be a t-matrix constructed as follows:
2
1) Every column in MD corresponds to exactly one big letter in D2 (their
order is fixed, but arbitrary).

2) For every word in D, we have exactly one row in MD (where for consecutive

2
words in D2 we have consecutive rows in Mb)
2
3) There is an edge leading from (i, j) to (i + 1, t) if and only if the
tth occurrence in X(+i is derived from the jth occurrence in X§2).

As each occurrence in a derivation has only one ancestor and as each

big occurrence in D, is unique is indeed a t-matrix. But then applyin
g que, ppiying

2

Theorem 1 we obtain a sufficiently long subderivation D3 of D which

corresponds to a well-formed sub-t-matrix of MD .
2

16

Observation:

Note that directly from the fact that D, corresponds to a well-

3

formed sub-t-matrix we have that:

1) In each word of D, there is a big recursive letter.

3
2) A letter is big recursive (big nonrecursive) in a word of D3 if and only
if it is big recursive in every word of D3.
STEP 4
Let us consider the subderivation D3 obtained in STEP 3.
Let us divide words in D, into classes in such a way that two words

3
belong to the same class if and only if each small occurrence of the same
letter in these words contributes the same number of occurrences in D.
Clearly the total number of different classes obtained in this way does not
exceed f([xl)mo (recall that my = #V). As f(n) is a slow function then
m

so is (f(n)) 0. Hence we can apply Lemma 1 to obtain a sufficiently long

subderivation D4 of D.

STEP 5
Let us consider the subderivation D4 = ((Xéé): o e e, xé4)),
4

(TéA), o o e, Téz)), 69;) obtained in STEP 4,

Let us divide all small letters into classes in such a way that two
small letters belong to the same class if they contribute the same number
of occurrences.in D. Each such class:can be identified by the number of
occurrences contributed to D by an element of this class. Starting with
the class corresponding to the highest such number and then going through
all "smaller" classes perform (one by one) the following.

For the highest number hmaX construct a t-matrix M in the

4, max
following way:

17

1) Each column in M corresponds to exactly one small letter from the

D, h

4, max .
class h in D4 (their order is fixed, but arbitrary).
2) For every word in D4 we have exactly one row in (where for
4, max
consecutive words in D4 we have consecutive rows in MD h).
4, max
3) There is an edge leading from (i + 1, j) to (i, t) if and only if the

(4)

, . th .
is derived from the t occurrence in x5 .

(4)
i+l

jth occurrence in x
4) Turn the resulting graph upside down to obtain a "normal" t-matrix.

It is easy to check that we have really got a t-matrix and so we can
apply Theorem 1 to obtain a sufficiently long subderivation of D.

Then from this subderivation we obtain a sufficiently long subderivation
by exactly the same method but using the next to the highest (hmax) class.
And so on until we exhaust all classes. Let us denote the resulting
(sufficiently long) subderivation as DS'

Observation:

It should be clear that if A is a small letter in A and it belongs to
class h then in a direct derivation step in D4 it either derives only itself
(production A + A) or it derives a string consisting of small letters from
classes lower than h (production A->B, « « & Bq with q > 2 and each Bi’

1

1§ 1i<4q, in a class lower than this of A).
STEP 6

From the subderivation D, = ((xéS), IR xés)), (TSS)’ N Tés)), é?%)
5 5

5
let us construct a subderivation D6 by taking (starting from the top) all
(5) - (5)
words Xj where j = my *u for u 3z 0 (so we get the sequence of words Xy s

5G) _(5)
XmO ? XZmO’ st)

Observation:

Clearly, D6 is sufficiently long.

18

Now it must be that in D, in a direct derivation step a nonrecursive

6

letter is rewritten as a string of small recursive letters, and a small

recursive letter (already in DS) must be rewritten as itself only.

This ends the construction.

To conclude the proof it is enough to observe that D6 is indeed a neat

t

subderivation., In fact we can note that:

(i) The condition 1 of Definition 10 was satisfied already in D
(ii) The condition 2 of Definition 10 was satisfied already in D
(iii) The condition 3 of Definition 10 was satisfied already in D
(iv) The condition 4 of Definition 10 was satisfied already in D.

(v.1l) The condition 5.1 of Definition 10 was satisfied already in Dl.

(v.2) The condition 5.2 of Definition 10 was satisfied only (in general)

in D6.
(vi) The condition 6 of Definition 10 was satisfied already in Dq‘

(vii) The condition 7 of Definition 10 was satisfied already in D3.

19

VI. DISCUSSION

First of all let us point out that restricting ourselves in Theorem 2
to f-random words only still leaves us (in general) with a considerable

number of words providing that f is not "too slow'. This is shown as follows.

Theorem 3., Let % be a finite alphabet such that #I = m > 2. Let £
be a function fronw%%os 1nt04%;08 such that, for every x 1n”%§os’ f(x) > 4 logzx.

Then, for every positive integer n,

Hwes*:|w| = n and w is f-random} .1 -k
n T n’
m
Proof.

Let I and f satisfy the statement of the theorem.
First let us find an upper bound on the number of words in I* of length n
which are not f-random.,

1) If a word w is not f-random, then it can be written in the form

8y o .anlu an1+ia|+l' . .anz o an2+lul+l' coeay for some
. R
aps = v e anl, anl+|u]+l’ + e+, a in Z and o in I where]ul > f(n).
. . la! n—Z!ul _
2) With the fixed values of n;, n, and |o| we may have at most m . =
mn—lal words which are not f-random. But |a| > f£(n) and so mn-|al < mn—f(n).
3) The number of choices for ny, 1, and o is not larger than n3.
4) Thus the number of words of length n which are not f-random is smaller than
n3 . mp—f(n).
Consequently,
#{wer*:|w| = n and w is not f-random} . 53 mn—f(n) _ n?
n S n f(n) °
m m m
But f(n) > 4 logzn and so
3 3 _ 3 _ 3 3 1
n b n = n = n = n +
mf(n) = m4 logzn logzmo4log2n logzn-élogzm élogzm =~

n

20

Thus
#{wez*:(wl = n and 'w is f-~random} 1
n 2? 1--=
m - n

which proves the theorem.

Hence, in general, it would be rather a problem to comstruct (EDTOL)
languages which would not consist "mostly" of f-random words providing that

f is not too slow (£(x) > 4 log x).

Now let us notice that our notion of a neat subderivation and hence
Theorem 2 were formulated for propagating EDTOL systems. It should be obvious
to the readér that the notion of a neat subderivation can be reformulated for
the case of a general EDTOL system (one would just allow "nonproductive
letters" and then ignore them in a sense that all conditions from Definition 10
would be reformulated in such a way that nonproductive letters could appear
"anywhere" in words of a subderivation and in productions of its tables).
Then, the accordingly modified Theorem 2 obviously holds. In this sense the
structure of a derivation in EPDTOL systems as presented so far, forms a
"backbone' of the structure of a derivation in an arbitrary EDTOL system.

Also, the structural theorems of the type of Theorem 2 are mostly useful
for inferring properties of (EDTOL) languages. Examples of such an approach
are presented in Ehrenfeucht and Rozenberg [4] and in Ehrenfeucht and
Rozenberg [5]. From this point of view it suffices to consider EPDTOL
systems only because we have the following result,

Theorem 4. A language K is an EDTOL language if and only if K‘— {A}

is an EPDTOL language.

We leave the proof of this result to the reader because it can be proved
by a direct construction following the idea from the proof of Theorem 5 in

Rozenberg [7].

21

VII. REFERENCES

10.

P.A. Christensen, Hyper AFL's and ETOL systems, in [9], 1974.

P. Downey, Developmental systems and recursion schemes, Proceedings of
the Conference on Biologically Motivated Automata Theory, McLean,
Virginia, 1974.

A. Ehrenfeucht and G. Rozenberg, On matrices of trees, Department of
Computer Science, University of Colorado, Boulder, Technical Report
Number CU-CS-044-74, 1974,

A. Ehrenfeucht and G. Rozenberg, On some context-free languages that
are not deterministic ETOL languages, Department of Computer Science,
University of Colorado, Boulder, Technical Report Number CU-CS-048-74,
1974,

A. Ehrenfeucht and G. Rozenberg, A pumping theorem for deterministic
ETOL languages, Department of Computer Science, University of Colorado,
Boulder, Technical Report Number CU-CS-047-74, 1974,

G.T. Herman and G. Rozenberg, Developmental systems and languages,
North Holland Publishing Company, 1974.

"G. Rozenberg, TOL systems and languages, Information and Control,

v. 23, 357-381.

G. Rozenberg, Extension of tabled OL:systems and languages, Inter-
national Journal of Computer and Information Sciences, v. 2, 311-334.

G. Rozenberg and A. Salomaa, L systems, Lecture Notes in Computer Science,

v. 15, Springer-Verlag, 1974,

A. Salomaa, Recent results on L systems, Proceedings of the Conference

on Biologically Motivated Automata Theory, McLean, Virginia, 1974.

