Evaluation Net Simulation System
Reference Manual#*

Gary J. Nutt

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

TR#CU~-CS=-042-74 April 1974

ABSTRACT

This report is a reference manual describing the capabilities,
limitations, and usage of the University of Colorado Evaluation Net
Simulation System. This software package implements a simulation pro-
. gramming language which is composed of a control flow graph model inte-
grated with the text of the program. The implementation is composed of
four subsystems: a graphic net editor, a compiler, a link editor, and
an interpreter.

*This work was supported
by NSF Grant GJ-660.

ii

Table of Contents

Abstract i

Table of Contents ii

I. Introduction 1

II. The Display and Edit Subsystem 4

A. Capabilities and Limitations 4

B. TUsing the Display Subsystem 7

Transition-Location Creation Commands 8

Editing Commands 9

Display Directives 12
Miscellaneous

III. The Compiler Subsystem 19

A. Capabilities and Limitations 19

B. Using the E-net Compiler 20

IV. The Link Editor 28

A. Capabilities and Limitations 28

B. Usage 28

V. The Interpreter Subsystem 34

A. Capabilities and Limitations 34

B. Usage 36

Appendix A: Implementation versus Design 43

Appendix B: Evaluation Net Syntax 44

Appendix C: ENSS Abstract Machine 48

iii

List of Tables
IT.1: The Result of the HELP Command
IT.2: Entering a Transition-location Set
IT.3: The Addition of Transition A2
IT.4: The Result of the CHANGE Command
IT.5: Text File Produced by SAVE
ITT.1: Error Diagnostics
ITI.2: A Double Server Queue
IV.1: Sample Link Editor Output
V.1: 1Initial Specification Errors

V.2: Sample Interpreter Output

C.1: ENSS Load Module

List of Figures

I.1: The Simulation System

III.1: A Double Server Queue

C.1: The ENSS Abstract Machine

14
15
16
17
18
25
26
31
39

40

52

27

55

I. INTRODUCTION

The class of evaluation nets has been previously formulated to aid in an
orderly approach to simulation model building.l’2 In this document, it is
assumed that the reader has already familiarized himself with the nets and
is interested in the corresponding implementation of an evaluation net inter-
preter.

Briefly, the graph structure of the net and the various procedures define
a machine interpretable model. The use of a graph structure as a partial
definition is a visual aid to the model designer, and should be an integral
part of the implementation. The model designer can then carry on an interactive
session with a graphics package to derive the control structure of the model.
Subsequent sessions are used to refine the graph model and to define the various
procedures for the net. Once an approximation to the design is complete, the
user can submit the entire net to an interpreter. The interpreter should then
execute the model, given an appropriate set of data. Monitoring the inter-
pretive execution could be done on~line with a suitable graphics console, or
it could be an interpreter function with no user intervention to the interpreter
once it begins to exercise the net.

The implementation described in this report is for the University of Colorado
CDC 6400 system running under the KRONOS operating system. The only special
peripheral device required is an interactive graphics console, and in this case,
the device we used is a Tektronix 4010 remote display station. This unit is a
cathode ray tube device with images stored on the surface of the screen, and

thus it is reasonable to employ the device as a remote graphics console with

low speed (300 band) communication lines. A refresh scope could provide a wider

1. Nutt, G. J., "The Formulation and Application of Evaluation Nets', University
of Washington Computer Science Group, Ph.D. dissertation, Technical Report
No. 72-07-02, (1972).

2. Nutt, G. J., "Evaluation Nets for Computer System Analysis", AFIPS Proceedings
of the FJCC, Vol. 41, (1972), pp 279-285.

variety of displays if it included suitable local storage and computing power

(e.g. a DEC GT-40 with disk auxilliary storage).

The software is primarily composed of FORTRAN IV routines, with the re-
maining portions of code being written in the CDC 6000 assembly language, COMPASS.
An attempt has been made to keep the FORTRAN code reésonably machine independent,
those areas relying on word size, etc. being commented as such in the listing.
The ANSI standard was also used in writing the FORTRAN programs. One goal of
this implementation was to make the programs portable, with a minimum of effort,
to either another medium-to-large scale system or a minicomputer system. (It
was initially admitted that a minicomputer implementation might be very slow.)
The portability constraint was the primary reason for choosing FORTRAN over
various other languages available at this installation;

The CDC 6400 - KRONOS implementation of the Evaluation Net Simulation
System (ENSS) relies heavily on the permanent file system of KRONOS.3 All
intermediate files between ENSS subsystem steps are saved on KRONOS files. The
KRONOS text editor may be used on some of the E-net files.

ENSS 1s composed of four distinct subsystems (See Figure I.1): ENETDIS,
the graphics subsystem for interactive net construction and editing; COMPLR,
the text compiler which produces interpretive code to simulate the net; LINK,

a link editor which combines two or more nets that have been previously com~-
piled; and INTERP, an interpreter to execute the net. In the following four
sections each of the individual subsystems will be discussed with respect to
their capabilities, limitations, and usage. Detailed subsystem documentation is
not included in this manual.

The following graduate students have participated in various parts of the

ENSS-Version 1 implementation: WM. Bailey, wW. Ellis, and J. Read.

3. CDC, "KRONOS 2.0 Reference Manual", publication No. 59150600.

['I ®4nbLy

dd3INI

SIQL3NT

SNIT 4 TdWOD
N 7
\ /
A < o N
\
loy 14 /
, m_%gsou \Q
) /
/ ; Vi
/ / WO0L1a3
| IX3L
I
/oy
\ /)

"dddILINT Qdv0
1L SONOYX

A SSN3
\ SONOYXA
/ f/, Jeudod
//4\\\ AdeulLq

IT, THE DISPLAY AND EDIT SUBSYSTEM
A, Capabilities and Limitations

The display and edit subsystem, ENEIDIS, is gn interactive subsystem
designed for use with the Tektronix 4010 display station, (or similar storage
scope graphics devices). The purpose of ENETDIS is to allow a user to inter-
actively create and edit the graph structure of an E-net, using the display
screen for graphic output and the keyboard for net schema descriptions. The
basic design of this system assumes that the user will provide the identifi-
cation of a set of associated locations with each introduction of a transition;
furthermore, the user ordinarily provides the cartesian coordinates of the
geometric center of the transition when addressing a transition-location set.
ENETDIS does have the capability of constructing a graph structure in the
absence of the aforementioned cartesian coordinates, although the transitions
are placed on the screen by algorithmically determined cartesian coordinates
(rather than user-provided placement).

The subsystem essentially operates in two modes, approximately correspond-
ing to interactive and batch mode. In the interactive mode, ENETIDIS input is
a set of commands and data which direct the generation of net components, or
cause the subsystem to alter currently defined components of the E-net being
operated upon. To generate components for the net, the interactive user provides
a schema type, transition and location labels, and a cartesian coordinate for
the center of the transition. Thé transition—-location set is entered into the
description of the current net. Interactive editing of the current net allows
the user to change the coordinates (screen position) of any transition-location

set as well as the ability to change or rename the tramsitions or locations.

The '"batch mode'" of ENETDIS is executed from the graphics console, but
causes the subsystem to display an entire E-net from a permanent file con-
taining a text description suitable as input to the compiler subsystem. This
format of input does not include screen position coordinates, hence an algorithm
is used to compute transition-location set coordinates; the result is that
the display often needs to be interactively edited in order to produce a more
attractive display.

ENETDIS interprets commands that allow the user to fetch and save KRONOS

permanent files in one of two formats called binary format or text format.

The text format is the usual (CDC 6000 display code) character string repre-
sentation described above and is appropriate when the user either wishes to
display compiler—input text in the batch mode, or to save an E-net in a format
in which the compiler can use. The overhead involved with this file format is
caused by the necessity for ENETDIS to convert its internal graph represen-—
tation either to or from the external textual representation. In a series of
console sessions to design the graph structure of a model, it is necessary
that intermediate net descriptions be saved; rather than employing the represen-—
tation transformations to convert between internal and external representa-
tions, the user can save an E-net in binary format, (which can be used as
subsequent input to ENETDIS).

The level of sophistication incorporated in a graphics display can grow
rapidly with a few added constraints. ENETDIS is not a highly sophisticated
software tool, but is intended to be flexible enough to aid in E-net graph
structure design. The primary limitations imposed by this simplistic approach

are machine and installation dependencies in the form of display driver routines.

The line positioning algorithm could stand some improvement, as it allows

lines to pass through transitions and locations. Occasionally, lines also
coincide. Another significant liability of ENETDIS is its inability to display
large E-nets; a windowing process needs to be incorporated to allow for

arbitrarily large (in space) displays.

B. Using the Display Subsystem
In the following discussion, at least a superficial understanding of the
CDC 6400 - KRONOS system is assumed. Prerequisite knowledge can easily be
obtained from the KRONOS Time-Sharing Reference Manual.
ENETDIS is executed under the batch subsystem of KRONOS, but must be called

under the TELEX subsystem with the INPUT file corresponding to the display

terminal used to initiate the conversation. The following memory requirements

(specified as octal numbers) are required:

33100 words to compile

37600 words to load

23200 words to execute.
This execute field length provides for about 100 locations and about 25 transi-
tions, which is likely to be sufficient with the display space limitation dis-
cussed earlier.

After logging into the TELEX time sharing system, the following dialogue

should ensue, (system output is underlined, and(E)is a carriage return):

SYSTEM: GET,ENET/UN=X652 (R)

READY

UNFMT (R)

READY

CALL,ENET (R)

The last control command shown is a call to a KRONOS procedure file composed of

the following set of control cards (executed in the batch subsystem) :

GET, TNET /UN=X652.

ATTACH, T4CUG,T4010/UN=LIBRARY,

RFL(40000)

LOAD,TNET , T4CUG,T4010.

ENETDIS.
TNET is a permanent file containing the object code of ENETDIS, and T4CUG and
T4010 are library files containing (machine and installation dependent)
Tektronix 4010 display routines.

Upon executing the "ENETDIS." command in the INET procedure file, control
is passed to the display and edit subsystem, ENETDIS. The subsystem responds
by erasing the screen and writing the request

COMMAND
The user must now respond with any of one of the following commands, followed
by a carriage return, (illustrated in Tables II.1 - II.5):

Transition-Location Creation Commands

Each of these commands cause a new transition-location set to be introduced
into the display data base. Each command causes ENEIDIS to request an x-y pair
(0 < x <1000, 0 <y < 700) to determine the screen position for the geometric
center of the transition by printing the message

Pos.
The user must respond with an x-coordinate value, blank, y-coordinate value, and
carriage return. ENETDIS then requests a list of labels for the transition-
location set by printing the message

LABELS.

The labels must then be entered in the following order: transition label,
input locations from top-to-bottom and output locations from top-to-bottom.
Labels should consist of 1 to 3 alphanumeric character. Elements of the list
are delimited by blanks, and the list is terminated by a carriage return. A
run-time FORTRAN diagnostic results if an inappropriate number of labels are
entered by the user.

o (:) Construct the display structure for an o—~transition

and associated locationgio is ¥, J, T, X, or Y.

Editing Commands

This set of commands provides the capability for changing transition labels,
positions, and connections and for changing the name of a location. (Location
positions on the screen are algorithmically determined by the screen positions
of associated transitions.) The current screen image is not altered by the
following commands, although the display data base does reflect the editing.

CHANGE Allows the user to change any of the attributes (other
than schema type) of a transition. System response
to the command is
TRANS NAME
The user must then enter zero (0) to escape the CHANGE
command or a transition name. If the name is not found

in the data bank, "NOT FOUND,RETRY" will be printed and

the system will wait for another transition name. When a
declared transition name is entered, ENETDIS next requests
new position and label values by the message

POS,LABELS

LPCHANGE @

10

The user must respond with a list of x~y coordinates

and appropriate labels (see creation commands), de-

limited with blanks and terminated with a carriage return.

If an attribute should not be altered, enter "NC" in the

appropriate position in the list. The display structure

is modified, although the screen image of the net is not

altered unless the DISPLAY command is invoked.

Allows the user to remove a transition from the active

display data bank. The response to this command is
TRANS NAME

The user must then respond with zero (0) to escape the

DELETE command or a transition name. If the name is

not found in the data bank,

NOT F@UND , RETRY

will be printed and the system will wait for another
transition name. When a declared transition name is
entered, the corresponding transition is . removed from the
active display data bank.
This command causes a location name to be changed. System
response to the command is

OLD NAME
The user must then enter zero (0) to escape the LPCHANGE
command or a location name. If the name is not found in
the declared location list,

NOT FOUND,RETRY

11

is printed and the system requests another location name.
Otherwise, system response is

NEW NAME
to which the user should enter the new name and a carriage
return.

REPLACE (E) A transition can be replaced with a transition of another
type at the same screen position using this command.
System response is

TRANS NAME
The user may escape the REPLACE command by entering zero
(0), or he may enter a transition name. If the name
is not found in the declared transition list,

NOT FOUND,RETRY

will be printed and the system will wait for another
transition name. When a previously declared transition
name is entered, the corresponding transition is DELETEd
from the transition list. ENETDIS then requests

NEW TYPE
expecting one of "F", "J", "T", "X", or "Y" to be entered
by the user. The old transition screen positions is used
but the system requests new labels by

LABELS
The user should then enter a new label list (i.e. tramsition
name, input location names, output location names) de-

limited by blanks and terminated by a carriage return.

12

Display Directives

This class of ENETDIS commands controls the amount of information
displayed on the screen with respect to the current E-net defined in the
display data base. The system incorporates a display switch which allows
the user to enable/disable the drawing process. The default value of the
switch is "off", i.e. transition-location set creation does not cause an
image to appear on the screen unless the DISPLAY command is involved.

DISPLAY <§3 The current screen image (including commands)

is erased, and redrawn from the current display
data base. The value of the display switch is

not affected.

DRAWOFF (E) Sets the value of the display switch to "off".
DRAWON \g} Sets the value of the display switch to "on".

Editing commands remain display-disabled regard-

less of the value of the display switch.

FLUSH (E} Clears the display data base, thus enabling
a new E-net to be created or edited.
GRID <§} Displays the cartesian coordinates for the screen.

The coordinate labels are divided by 100.

Permanent File Commands

The permanent file commands are included to enable the user to
get and save E-nets on files in either binary or text formats. The
system responds to these requests by

PF NAME, FORMAT

to which the user should respond with a legitmate KRONOS permanent file name

13

and "B" for binary format or "T" for text format. An incorrect format

response will result in a program abortion. A zero (0) file name is

used to escape the file command. TAPEl is used as the local file for

the GET and SAVE operations. Since the files are saved as private files,

all GETS on a file must be done under the same user number as the SAVE.

GET (E}

SAVE (E}

PURGE (R)

Miscellaneous Commands

END (R)

HELP (R)

Set the display data base to contain the E-net

on the given permanent file. This command destroys
the current display data base.

Save the current display data base on a permanent
file. (The command actually replaces the named
file).

Purge the named permanent file from the system. This

command is equivalent to the KRONOS purge command.

Terminates ENETDIS and returns control to the
KRONOS operating systems. The display program
can be immediately reloaded and executed by
entering "ENETDIS."

Erases the screen and provides a synopsis of

all commands and execution directions.

The following set of plates illustrates the use of some of the above commands.

14

Result of the HELP Command

Table II.1

COMMAND 7 HELP
COMMAHD—
CHAMGE — CHAMGE ALL BUT TYPE OF TRAMSISTION (NC FOR MO CHANGE
DELETE - DELETE TRAHSISTIOW FROM HET
DISPLAY -~ ERASE THE SCREEN AMD REDRAW THE CURRENT HET
DRAWOFF — TURM OFF THE DR&k SWITCH $4DEFAULT UALUEX*
DRAWOM — TURM OM THE DRAW SWITCH
EHD ~ TERMINATE EMETDIS
FLUSH - CLEAR PRESEMT HET AMD RESTART INPUT
GET - RETRIEVE A PREVIOUSLY SAVED MET
GRID ~ MARK THE GRID COORDIMATES OM THE SCREEN
HELF ~ PRIMNT THIS LIST
LOCHANGE - CHANGE THE NAME OF @& NODE IN NET
PURGE - PURGE A PREVIOUSLY SAUVED NET
FEPLACE — REPLACE A TRANSISTION WITH A NEW ONE AT SAME PLACE
SAUE - SAVE A MNET AS @ PERMANENT FILE

TO RUH EMETDIS~

SYSTEM-GET, ENET/UN=X652
UNFMT
CALLENET

TO RERUNM THE PROGRAM. EMTER EMETDIS AND CR

15

Entering a Transition - Location Set

Table II.2

COMMAHD 7 DRAWOH
COMMAMD 7 4

POS 7 Z60 300

LABELSY Al B1 BL B2 B3
coMManD 7o

The Addition of Transition A2
Table II.3

(Note that the change command
does not affect the display)

COMMerD 7 COMMAHD 7
POS 7 458 30

LRBELSY Az B2 B2 Bi

COMMEHD 7 CHAMGE

TEAMS HAME?T A2

FOS, LABELST 425 285 MC MC HC HC

1/

The Result of the CHANGE Command

Table II.4
COoMMaMD 7 GRID
COMMAND 7 SHUE
PF HAME. FORMST? METL T
COMMAMD 7
& i 2 3 4 5 5
5
4

il

P

Text File Produced By SAVEing the Previous Graph

Table II.5

OLDLMNETL
READY |
LHH

TYFE TRaHS
Al ‘A(F‘:I;Si;BZ:BE},
EMO

READY

19

III. THE COMPILER SUBSYSTEM
A. Capabilities and Limitations

The compiler subsystem, COMPLR, translates an E-net formal description
into an abstract machine language which is ultimately executed by the
interpreter abstract machine. The abstract machine program includes data
structures to represent the set of locations, the set of transitions, the
set of enviromment variables, and a body of two-address abstract machine
instructions representing transition procedures, time expressions, and
resolution procedures. When the compiler completes the translation
process, the abstract machine program is written to a KRONOS file, where
the ENSS user may dispose of the file (TAPE7) as he sees fit, (e.g. the
file may be immediately executed by the interpreter, or it may be saved
as a permanent file for later use). The compiler output is a complete
data structure for interpretation purposes, but may also be treated as
subnet and be linked to another subnet to form a composite abstract machine
language program. The details of the linking process are discussed in
Section 1IV.

The compiler translates an input string <evaluation net> as defined by
the BNF syntax given in Appendix B. The compiler design has been
influenced by classic table-driven compiler design. The major modules
are a lexical analyzer, syntax analyzer, code generator, and output routine.

The line printer output from COMPLR includes a listing of the input
stream along with error indicators for constructs that violate the syntax
of the source language (see Table III.1). The existence of syntax
errors can confuse the syntax analyzer to the point that subsequently
compiled expressions will be interpreted as errors, even though they may
be correct. This is not a serious liability, since the faulty compilation

takes place only after a true syntax error has been encountered.

20

The current version of the compiler will handle a maximum of 160
locations, constants, and environment variables, or about 130 transition,
(each transition description requires a variable number of entries,
depending on the transition type; the transition description array elements
are dynamically allocated by transition type). The maximum number of
abstract machine instructions that can be generated per compilation is 256,
(see Appendix C for a description of the abstract machine and language) .

The "macro net capability" discussed elsewhere is currently not
implemented in ENSS.4 Subnets must be used to invoke repeated net patterns.
It is also required that enviromment variables be limited to non-array values,
i.e. an environment variable may not be declared as an array. The formal
syntax accepted by the compiler is given in Appendix B. A summary of the
differences between the ENSS implementation and the E-net formulation is
given in Appendix A.

B. Using the E-net Compiler

The compiler subsystem resides on a KRONOS permanent file named
COMPLR, and must be executed in the batch subsystem, either from a
terminal or via the usual batch stream. The following octal memory
requirements apply:

34700 words to compile
34400 words to load
24600 words to execute
This run-time field length allows for approximately 130 transitions,

using expressions and procedures that compile to less than or equal 256

4. Noe, J. D. and Nutt, G. J., "Macro E-Nets for Representation of
Parallel Systems,'" IEEE Transactions on Computers, Vol. C-22, No. 8
(Aug, 1973), pp. 718-727.

21

abstract machine instructions, (see Appendix C). The text file containing
the net description must be on TAPE5 (which is not equivalent to the INPUT
file). The load module is written to TAPE7 and a listing of the net is

printed on the OUTPUT file device. Thus, the following control cards would
compile the net found on KRONOS permanent file TXTNET (in text format), and

the load module would be saved on the permanent file named LDMOD:

GET, COMPLR/UN=X652.
GET , TAPE5=TXTINET.
COMPLR.
SAVE , TAPE7=LDM@D.
The order in which various components of the net are described is
rigid; any order of TYPE declarations other than that given here will

result in compiler errors. A simple example (described later) is given

in Table III.Z2. All input data are free field, with delimiters.

1. TYPE,,6 LOC: <d.list>;
Mandatory location declaration list. The <d.list> is composed
of individual location declarations for each location that appears
in the net. Each declaration is delimited by commas, and the
declaration list is terminated by a semicolon. A token with one

or more attributes (i.e., an attribute token)

is declared by stating the name followed by the number of attributes
enciosed by parentheses. Simple tokens (with no attributes) are
declared with no parenthesis notation.

2. TYPE,, PERIPH: | INPUT=<list> _, OUTPUT=<list> _ RES@L=<]ist>;
Mandatory declaration of input, output, and resolution peripheral
locations. Input and output locations must have been previously
declared in the TYPE _, L@C: section. A <list> is composed of location

labels separated by commas and terminated with a blank. Any field

22

in the declaration may be omitted by deleting the key phrase and

list. Each location declared to be an INPUT peripheral location will
have a '"generator net" concatenated to the input edge of the location
This generator produces a constant saturation load of simple tokens to
the corresponding INPUT location. Each OUTPUT peripheral location has an
"absorber net" appended to its output location which removes a token from

the corresponding location immediately after the token takes up residence.

The absorber net contains attribute locations that maintain a running sum of

corresponding attribute values on the output location and an additional
attribute to count the number of tokens that consitute the attribute
sums. Additional transitions and locations introduced to the net by the
absorber/generator nets appear in interpreter output under the labels of
zzZzi, for 10<i<99.

TYPE | , ENVIR@: <list>;

An optional declaration of a <list> of simple environment variables (no
arrays of environment variables are permitted). These variables may be
referenced in any procedure.

In the following declarations, resolution procedures, time
expressions, and transition procedures will use six "built-in" functions:
EMPTY (loc), FULL (loc), RANDOM (seed), LOG (x), EXP (x), and EXTF (i,x).
EMPTY and FULL evaluate to true or false, depending upon whether the
argument location is empty or full, (e.g. EMPTY (B) = true if location
B is empty, otherwise it evaluates to the value false). RANDOM (seed)
samples a pseudo random number sequence with the given seed. LOG (x)
evaluates to the natural logarithm of the argument X and EXP(x) evaluates

to e*. EXTF (i, x) is a function call to a user-provided FORTRAN function

23

to be loaded with the interpreter. Normally, i would be used to
denote any one of a number of external functions to be evaluated, and x
is the actual argument.
TYPE ,, RES@L: R1: <rproc>; R2: <rproc>; ... Rn <rproc>;
Resolution procedures must be defined for each peripheral resolution
location Ri declared in the TYPE .+ PERIPH: declaration. Each <rproc> is a
resolution procedure (formally defined in Appendix B) which provides
conditions under which the resolution location can become set, reset, or
undefined.
TYPE |, TRANS: Al: <schema>, <time expr>, <tr proc>;

A2: <schema>, <time expr>, <tr proc>;

Am: <schema>, <time expr>, <tr proc>;

END
Mandatory transition declaration section. The formal syntax for this
implementation differs somewhat from the original syntax; differences are
noted in Appendix A, and the syntax is given in Appendix B. The <time
expr> or <tr proc> may be null, implying zero firing time and default
transition procedures respectively. Otherwise, <time expr> is an arithemtic
expression, evaluated before the transition fines, which defines the firing
time. The <tr proc> defines a procedure to be executed at transition
firing termination. The procedure should be written with the understanding
that the tokens have already been moved. The <schema> defines the
transition type and locationms.

A summary of errors that the compiler can detect is given in Table III.1.

24

Suppose that it is desirable to create an E-net model of the following
(trivial) system: there exists a finite queue with only three queue locations.
The queue has a poisson arrival pattern with an aritrary mean interarrival
time, i.e., the mean value is a simulation parameter. The queue is served by
two identical processors, with the service time being uniformly distributed,
again with an arbitrary mean value. Figure III.1 is a graph of the E-net
(produced by ENETDIS), where locations B3, B4, and B5 represent the (first-
come-first-served) queue. Location B6 represents the condition that server
number 1 is busy, and a token on B7 represents the condition that server

number two is busy. The text of the net might be given as shown in Table IIT.2.

10.
11.
12.
13.
14,
15.
16.
17.
18.
19.
21.
22.
23.

24.

Table TIII.1
Error Diagnostics

Left part of an expression must be a location or environment variable.
Store operator missing.
Left paren missing.
Location subscripts must be constants.
Right paren missing.
Colon missing.
Comma missing.
Relational operator missing.
Location name not a legal identifier.
Undeclared location or environment variable.
Expression evaluation stack overflow.
Incomplete conditional statement (THEN missing).
Semicolon or IF missing.
Semicolon or ELSE missing.
Semicolon missing.
Transition type violation.
Undeclared resolution location.
Unused.
I1l1-formed Resolution location or environment variable.
Unused.
Resolution procedure missing.
Attribute reference to simple location.

I11-formed vector—copy command.

A Double Server Queue

Table III.Z2

TYPE LOC: BI1(2),B2(2),B3(2),B4(2),B5(2),B86(2),B7(2),B8(2),39(¢(2); .
 TYPE PERIPH: OUTPUT=BS,B39 RESOL=R]: -
TYPE ENVIRO: MVAR;
TYPE RESOL: :
Rl: IF EMPTY(B7) THEN Rl:=l IF EMPTY(BG) THEN Rl:=
TYPE TRANS:
al: T(BE;B!),,BK(1)'=—MNAR*LOG(RANDO%(@)); ,
A2: F(B1,B3,B2),B1(1),B83(2):=R2(2)*RANDOMCE)
A3: T(B3,B4): ,
Ad4s T(B4,BS);
AS5: X(R1,B5,B6,B7);:
A6: T(B6,B8),B6(2);
AT: Tc37&59> BT(2); .
END s o

27

A Double Server Queue

Figure III.1

28
IV. THE LINK EDITOR

A, Capabilities and Limitations

The compiler subsystem produces a file (called the load module) containing
all data structures in a format suitable for input to the interpreter. This
set of data structures is relatively complex, and contains many cross-references
between different parts of the data structure. (These cross-references can be
thought of as being absolute addresses.) The link editor has been provided to
combine a set of up to five distinct load modules, producing a single load
module in the format suitable for input to the interpreter. Thus, the link
editor must combine the various data structures, resolving new absolute addresses,
and deleting absorber/generator nets from peripheral locations as defined by the
net composition.

The load modules to be linked together are passed to the link editor on
TAPE1,TAPE2,...TAPE5, and the combined-net load module is on TAPE98 when the
link editor terminates. Directives for the linking process are entered via
the usual INPUT file. The OUTPUT file will contain a listing of the directives,
and a load map if requested by the MAP directive discussed in the usage section.
Regardless of the output option chosen, edit warnings indicating location
dimension specification conflicts will be written to the OUTPUT file.

The link editor is implemented to handle a resulting net with a maximum
size as determined by the current version of the interpreter program. The size
limitation arises due to the lack of a "paged memory" for the net description.

B. Usage

The link editor subsystem is saved on a permanent file named LINK. This
file may be executed from a terminal or the card reader in the KRONOS batch
subsystem. The following octal memory requirements apply:

34500 words to compile
51400 words to load

43100 words to execute

29

The link editor maintains a central memory image of the resulting combined load
module; the load module is thus constrained to 320 locations, constants, and
environment variables. The abstract machine code for all procedures must not
exceed 1536 instructions (see Appendix C). The load module for the first
subnet must appear on TAPEl, the load module for the second net must appear on
TAPE2, etc. No more than five subnets may be combined on any one run of LINK.
TAPE98 contains the combined load module when LINK terminates. Suppose that
one wished to combine two subnet load modules on files named NETBI1 and

NETBI3; the resulting net is to be saved on a file named BIGNET. The following

sequence of KRONOS control cards will accomplish this task:

GET(TAPE1=NETBI3,TAPE2=NETBI1)
GET(LINK/UN=X652)
LINK.

SAVE (TAPE98=BIGNET)

.
-

.

The following link editor directives are passed to the program on the
TAPE99=INPUT file. The order of directives given below is rigid, and must not be
violated:

1. LINK (output net name)

Mandatory directive which specifies the name of the net in load
module format on TAPE98 when the program terminates.

2. MAP (=)

Optional load map content indicator. If the MAP directive is omitted,

no load map will be produced.

«=P Partial load map. A summary of the nets to be combined is given,

i.e., names, number of involved peripheral locations, the appended
character for unique transition/location names, and table sizes. A
similar summary is provided for the resulting net composition.

«=F Full load map. The net summaries discussed in the partial load map
option are included with additional detail, e.g., additional
subfield lengths in the location table are provided. A table
of subnet interconnections summarizes location name, status, dimension,
and orientation. This option also dumps the transition table and
location table to the OUTPUT file. Details of these tables are
discussed in the Appendix C.

3. SUBNETS (netl=Bl, net2=B2,...,netn=Bn)

Mandatory subnet declaration list, where 1l<n<5. The net whose name

is given by net, is expected to be passed to the program on TAPEi.

i
Bi is an appendage character that prefixes each location name in the
load module on TAPE{. For example, if B3 is produced on TAPE4 by
the compiler, and NETNM=X is the fourth net name in the declaration
list, any other directive must refer to the location as XB3.

4. Bloc, T¢ Blocj
Mandatory directive to the link editor requesting that the output
peripheral location Bloci is to become the same location as the
input peripheral location Blocj.

5. END
Mandatory directive to terminate the input string.

Table IV.1 is a composition of the example net in section III and a

simple absorber net. The output option is full.

b3
N

oy

[

48]

LINRAGE EDITOR
FULL MaP:

LINK (COMBINI

MAR (F)

SUBNETS (NETHI=AsABSHI=R)
ABB TO BBl

END

e S B B S S

EATENT OF LINKED QUTPUT E=NgT:

DIMENSION

#i NEW SUB=NET FILE COMBIN
REFERENCED SUB=NETS:
NETBI ARSRET
LINKED FERLIFHERALS PER
1 , 1

APPENDED CHARACTER PER
A B
EATENT UF EaCr SUR=NET

TRANS MID
SUB=NET TARLE LOC
NETHT 109 14
ARSE] T3 10

LINKAGE STRUCTURE:

SUBNETS PERIPH STaTUS
NETBIL AEH OUTRPUT

weur

TRANS TARLE SIZE Yan v
LOCATION TABLE:
{LUCATIUNY SI/€ 18
(EV/CONST) S12F 13 -
(OVERALL) SIZE 31
CODE TRIPLES NUMRER 159
USAGE LISTS SIZE N
INVCLVES PERIPHERALS 2
‘EDIT WARNING:
DIMENSION CONFLICT RETWEEN
QUTRUT PERLPHERAL ARS (2)
CINFUT rEHIPﬁ:HAL RRY (0 13)

3 RETAINED rFOR 81

4% 3k

SUR=NET:

SUn=NET !

LOC CODE
TABLE TRIPLES
19 97
18 64
TO SUB=NET PERIPH
ARSHI BR1

NETBI

ABB

USAGE
LISTS

1
1

DIMENSION

¢
19

{

(o

i _>
{

i
(o
«

X
(25
¢ g
a0,
(32
{
.
s
{ :
{
¢
:

LINKED NET:

THRANSITION

INDEA

1¢
21
30
39
51
60
69

80

TagLe:
TYPE MamE T
A
1 Ay
3 AAR
L AA3
1 AL
&4 AAB
1 AAg
1 AAT
2 BAl
4 BAz
1 BA3
2 ALZ718

RPH

=10

3A
41
55

60

1 AZZZ17 195

n

oy

LOCATION TARLE:

INDEA

O~ U P Wiy

')—i-*s—af-—ae-—-&-—
[RE NP

STOR PTR

BLZZ17 124

NAM

AR
AB?
AR3
AR
AR
ABAH
ART7
ARR
ARQ
381
Re2
RR3
RR4
BES

v s -
BZLZZ15 110

1a

17

E

Labire LvV.1l(D)

tooopo02 -

01450002
00Cc00003
ggogoooz
46000003
00000003
61710003

LAZZ712 . 600G0N03

UCC/EN

FTIME
A=TR C=L0C (=TR
0600000012 000000
10 e N
0000000024 000000
1 321
0000000035 606a000
10 4 30
0000000042 000000
21 5 39 .
0n0C470047 000000
30 6 Bl
0000000065 006000
39 10 69
0000000072 00000
39 9 101
N0U0B0N1I02 000000
, g2, 12, 80
nn17520110 000000
69 13 92
00060000126 000000
80 11 69
0900000133 000000
60 154 112
DOGAU0NO14T Q0ADODO
101" 16 101
0000000154 000000
80 17 132
0000000172 000000
121~ 18 121
DIM/USE
00000007
0gau0002
00000002
00000002
00000002
00QGooN2
00060002

B=L0C

2

10

18

B=-TR

s s

RESOL

14

112

ad
g

16
17
18
19
20
21
22
23
24

25
26
27
26
29

30

31

USAGE LIST

INDERX

1n9

VECTOR:

NLZZ13
RZZIY 2
RZ22713
LS

AMNAR

PACRED WORD

000000C0U0QULOGO0ON

e R &S

000Gn003
00000004
60000004
¢acoo00l
6oooecon
77777776
TT777774
TTT77776
060000007
00660000
00000000
77777776
T7T77T7774
TTT717776
TT7T77778
77777776

bt AR . S

34

V. The Interpreter Subsystem

A. Capabilities and Limitations

The E-net interpreter program, INTERP, implements the abstract machine
discussed in Appendix C. The first level of the abstract machine handles token
flow through the network which has been previously compiled, (and possibly
link edited with other subnets), by COMPLR. The tokens represent the
data structures which may have their values referenced and altered through
transition procedures, resolution procedures, and integer-valued time
expressions. Resolution procedures and time expressions can only reference
the data structures when determining the token flow through a net. The
second level of the abstract machine implements data structure access and
modification.

INTERP reads a net in the internal format from the file named TAPEL;
the usual situation would be that TAPEl is the same file as TAPE7 produced by
the compiler. The user must provide interpreter specifications on the INPUT
file. INTERP then simulates E-net activity using discrete simulation techniques
to handle transition firing, and interpreting data structure manipulation
procedures. Each transition specification dictates an expression of the
amount of time that a particular firing should remain in the active phase.
The token flow through the net determines the time at which the transition
should become active, i.e., the enabling time is determined by the token
flow. The active phase is completed by the termination procedure for the
transition, in which tokens are moved and the transition procedure is evaluated.
Thus, transition simulation is natural using an event approach; the first
event of a firing corresponds to the enabling of the transition firing sequence

in the net.

35

The user has the capability of obtaining a full trace of the transition
firing sequence, or he may suppress the trace and only receive statistics
at simulation termination. The net can be exercised repeatedly using
different initial markings; environment variable initial values are also
controlled by the input specifications. The initial simulation clock time is
an input parameter, as well as the simulation termination time. All arithmetic
(except for clock manipulation) is floating point.

The current version of the interpreter provides summary information
indicating total and average dwell time for each location, including the system-—
provided absorber/generator locations (labeled ZZZ's). The location throughput
count is also provided. The absorber locations contain tokens with attributes
that automatically sum the values of the corresponding output peripheral
location and the respective attribute average values. Finally, the list of
transitions that are active at simulation termination is printed on the
OUTPUT file.

Improvements to the output of INTERP might include a set of histograms
specified by the USER. It might also be possible to include a turnaround time
and throughput rate specification for user—prévided paths through an E-net.

A user-provided FORTRAN function subprogram may be loaded with INTERP
to provide for extended capability in each particular simulation. The details
for using the subprogram in E-net procedures was given in Section III.B.

A useful programming improvement to the current version of INTERP would
be to incorporate overlays into the code; the initialization of the program

requires a significant amount of space.

36

B. TUsage
The interpreter subsystem resides on the KRONOS permanent file named
INTERP, and must be executed in the batch subsystem, either from a terminal or
via the usual batch stream. The following octal memory requirements apply:
34500 words to compile
47600 words to load
30200 words to execute
Note that these figures use a small (dummy) version of EXTF. Version 1 of
INTERP provides sufficient memory to handle a maximum of 320 locations,
constants, and environment variables; depending on the number of each type of
transition allowed; this is equivalent to approximately 250 transitions. The
procedures must compile to less than or equal to 1536 instructions. The net
in compiled format is read from TAPEl; no listing (nor load map) is provided.
Any output will be written to the TAPE6=@UTPUT file. The following example
is a set of control cards to load an E-net on KRONOS permanent file TAPE7 and
to interpret the net with EXTF source code on the KRONOS permanent file

named EXTC@DE.

RFL (40000)

GET (EXTC@DE)

RUN (I=EXTC@DE)

GET (INTERP/UN=X652)
COPY (LG@, INTERP)
GET (TAPE1=TAPE7)
RFL (46000)

INTERP.

37

The following description of interpreter specifications is passed to the
program via the TAPE5=INPUT file. The numerical order of specifiers is
important, and must not be violated; the INTERPRET and STOP specifiers are
mandatory, and all others are optional, (with default values as shown) .

1. JINTERPRET (net name)

Required. Specifies the name of the evaluation net load module found

on TAPEL,

2. QUTPUT (=)

Optional, the default causes INTERP to print only the list of currently

active transitions at simulation termination.

«=P The output includes the default option plus summary statistics
for each location. Total location dwell time, token throughput for
each location, and the average residency time of each token on the
location are provided. If the location is non-empty at termination time,
the attributes of the resident token are also given. If the resident
token is on an absorber location, average attribute values are also
printed. The termination value of each environment variable is also
printed.

«=F All «=P output is given along with a full trace of the transition
firing sequence, (i.e. the simulation time for each enabled phase and
termination phase is given).

3. MARK
Optional. Specifies the marking of the net.

Location Bi(j) is marked with the following text entered after the

MARK card.

Bi:l=<value>,2=<value>,...,j=<value>;

Location marking is terminated with a new card with END.

38
4, ENVIR@

Optional. Used to specify initial values for enviromment variables.
To mark a variable named VAR, include the following after the ENVIR@
entry: |
VAR=<value>;

This list is terminated by END.

5. START=<integer time>
Optional. Default value is zero. Specifies the initial time assigned
to the simulation clock.

6. ST@P=<integer time>

Required. Specifies the time at which the simulation terminates.

Table V.1 is a list of initial specification errors that INTERP can
detect. Run time errors are self descriptive, and indicate errors such as
token storage array overflow, empty event list (i.e. no tramsition can fire),
etc.

Table V.2 is a sample listing for simulation of the net given in
section III. The start time is 100, and the stop time is 400, and the output

option is F (full).

10.
11.
1z.
13.
14,
15.
16.

17.

39

Table V.1

Initial Specification Errors

INVALID DATA CARD--CALLED FROM DATCARD

<Name> LOCATION IS NOT IN THE SUB-NET (DATCARD)

<msg> IS IN AN INVALID NUMBERIC FIELD ON A DATA CARD (DATCARD)
INTERPRET INVALID INTERPRET (1fn) CARD (INTCARD)

INVALID MARK CARD (MARCARD)

<name> LOCATION IS NOT IN THE SUB-NET (MARCARD)

EXCESSIVE NUMBER OF INITIAL MARKINGS (MARCARD)

<name> mark specification is bad (MARCARD)

<msg> IS PART OF AN INVALID NUMBERIC FIELD ON MARK CARD (MARCARD)
<name> LOCATION HAS AN ATTRIBUTE THAT EXCEEDS THE DIMENSION (MARCARD)

ATTEMPT TO READ PAST END-OF-FILE FATAL ERROR (MEXT)

INVALID OUTPUT CARD (@UTCARD)

INVALID START CARD (SSCARDS)

BAD NUMERIC FIELD IN START CARD (SSCARDS)

STOP TIME OMITTED (SSCARDS)

INVALID OUTPUT CARD (SSCARDS)

BAD NUMERIC FIELD IN START CARD (SSCARDS)

IINTERPRETER SPECIFICATIONS:

? INTERPRET(2SERVER)
INTERPRET(25ERVER)
“? QUTPUT(F)
QUTPUTC(F)Y
? MARK =~
MARK .
?7 B2: 1=3; 2=203%
B2: 1=@, 2=200;:
? END .
END
? ENVR~IRO
ENVIRO
? MNAR=75
MNAR=75
? END
END
? START=138
- START=1Q&
? STOP=422

Table V.2(a)

40

@@&&@@&é&&@&&&rs:@x@@&&&&&&@&&&@&&@&&&&&@@&&&@&&&@@&@&&&@&@&maaaa@&&

SCHEDULE Al

ACTIVATE Al FC=1"

SCHEDULE A2

ACTIVATE A2 FC=5

SCHEDULE A3
SCHEDULE Al
ACTIVATE al FC=1
ACTIVATE A3 FC=!
" SCHEDULE A2
SCHEDULE A4

ACTIVATE a4 FC=1

SCHEDULE AS.

ACTIVATE AS FC=1.

SCHEDULE a6
ACTIVATE A2 FC=5
SCHEDULE A3
- SCHEDULE Al :
ACTIVATE Al : FC=1l
ACTIVATE A3 FC=1l
- SCHEDULE AZ
SCHEDULE A4

CACTIVATE a4 FC=1

SCHEDULE AS
ACTIVATE A5 FC=2
; SCHEDULE A7

~ACTIVATE A2 - = FC=5

SCHEDULE A3
SCHEDULE Al

ACTIVATE Al FC=1
ACTIVATE A3 FC=1
_FC=5
" FC=1

SCHEDULE a2
SCHEDULE A4
ACTIVATE A4 FC=1}

ACTIVATE A7 FC=1

SCHEDULE A5

SCHEDULE ZZZZ16
ACTIVATE ZZZZ16 FC=4
‘ SCHEDULE ZZZZ17
ACTIVATE ZZZZ17 FC=1

CACTIVATE A5 ~ FC=2

SCHEDULE A7

~ ACTIVATE a2 FC=5

SCHEDULE A3
- SCHEDULE Al

ACTIVATE Al "FC=1 -

ACTIVATE A3 - FC=1
- SCHEDULE AZ
SCHEDULE A4 - ‘

ACTIVATE a4 FC=1

ACTIVATE a2 FC=5
SCHEDULE A3
SCHEDULE Al

ACTIVATE Al FC=1
ACTIVATE A3 FC=1
SCHEDULE A2
ACTIVATE A& FC=1

SCHEDULE A5
SCHEDULE ZzZZ14
ACTIVATE ZZZZ14 FC=4
~ SCHEDULE ZZZZI15
ACTIVATE ZZZZ15 FC=1
ACTIVATE A5 FC=1
SCHEDULE A4
SCHEDULE A6
ACTIVATE a4 FC=1

FC=1
AT.
FC=5
AT
FC=1

- FC=1]

AT
AT

FC=5
FC=1

AT
FC=1
AT
FC=1
AT

FC=1

FC=1
AT

AT
- FC=5
FC=1

AT
FC=2
AT
FC=1
AT
FC=1
FC=1
AT

AT

AT
AT
FC=2

FC=4

"FC=1

AT

aT
FC=1

AT

© FC=1

FC=1

AT -

AT
FC=5

FC=1

AT
- AT
FC=1
FC=1

AT

AT
FC=5

AT

FC=1"~

FC=4
AT
FC=1
AT
AT
FC=1l
FC=1
AT

AT

AT

ar
AT

AT

AT

AT

CAT

AT
AT

AT
AT

AT

AT

AT

AT

AT
AT

C AT
AT

AT

AT

AT

AT

AT

AT
AT
AT

AT
AT

AT

AT

AT

128

381

321
3a1

301
301

308

398
328

398
328
323

323

323

323
343

343

‘343

343

351

351

351

351

352

352

352

388

382
380 .

388

382

192
371
301
391
398
301
301
332
328

328 -

323

388

328
343
323
323

351
323

343
343

343

518 .

351
351
352
351
352
352
413

380
382

3883

382
467

IE-NET SIMULATION
START= . 13

T

Q .

" LOCATION SUMMARY

B

Bl

B2
B3
B4
BS

B6

NAME TSA PTR

B7

Bg
B9
ZZ
ZZ

ZZ
ZZ

Rl
MN

ZZ13
ZZ1t

zzle
ZZ13

AR

31

Nna e

23282

2381
2392
2323
2394

EVENT SCHEDULE:

STOP

TIME TRaA
413 a2
467 A6

518 AT

NS

Table V.2(c)

CONCLUSION AT

~ UP TIME= 300
NO. VALUE
1 6l.4146
z - 200.0030
N 3.0000
2 193.3858
1 2.0392
2 87.7532
1 3.0007
2 175.2827
1 B2.0009
¢ 8.9888)
2 . 79.7349
¢ 79.7349)
3 1.0220
¢ 1.0029)
1o 3.0922
S 2.0028)
2 . 35.6316
IR 35.6016)
3 1.9222
¢ . 1.08283)
' 2.0009
 75.0009
2.0220
1.0002
2.0298
FIRE
A'TO C.D
ATO C
A TO C

4030

TIME

1206
]
28
49

~ 79

35

243

504,

[SESECESE

THRUPUT
' 6

(GG N6

P pomt h s

AVG VALUE

84.00080

20.0000
D.00802
5.6000

- 9.8200

39.592992
17.5008

. B.0229
?.0008% -
2.00%3

283.0203

G.0028
243.029903

43
Appendix A

Implementation versus Design

The most significant deviation of the implementation of evaluation
nets from their design is in the syntax specification of the net. The implementa-—
tion syntax is fully defined in Appendix B. This modification was necessary
to make the use of ENSS easier, not the implementation. The original
procedure declarations were similar to LISP conditional expressions, while the
implementation employs conditional expressions similar to those found in
ALGOL-60 programs. The spirit of the procedure declaration is preserved.

A serious deviation from the design is that resolution procedures are
evaluated from right-to-left in the implementation, whereas the design of
resolution procedure evaluation used a left-to-right process. For example,
suppose

W(ri)=ri: IF true THEN ri:=O IF true THEN ri:=l;
evaluates T, to 1 in the implementation and r, to 0 in the design.

The design of evaluation nets indicated that during transition firing
termination, the net programmer could assume that a copy of the token on the
input location also existed simultaneously on the output location; the input
location actually destroyed its token copy at the end of the transition procedure
call. 1In the ENSS implementation, two copies do not simultaneously exist;
the token is moved to the output location before the transition procedure is
executed. The significance of this deviation is better understood by considering
a transition procedure for a T transition, T(Bi,Bj):

Bj(3) :=£(Bi(k))
will always set Bj(3) to zero in the implementation, whereas the design
implies that the above expression is equivalent to:
Bj(3):=£(Bj(k)).
Environment variables must be simple variables in the ENSS implementation;

arrays of enviromment variables cannot be employed by the net programmer.

44

Appendix B

Evaluation Net Syntax

Assume the net is given by ((L,P,R,A),MO,(g,W)
<evaluation net>::=<location declaration section><Environment variable
declaration section><Resolution procedure declaration section>
<transition declaration section%
<location declaration section>::=TYPE L1L¢C:<declaration list>;
<peripheral location declaration section>
<declaration list>::=<location variable>,<declaration list>|<location variable>
<peripheral location declaration section>::= TYPE «s PERIPH:<input location list>
<output location list><resolution location
list>;

<input location list>::=INPUT=<simple location variable listﬁulnull
<output location list>::=@UTPUT=<simple location variable list> LJnull
<resolution location list>::= RES@L=<simple rloc variable list>|null
<simple location variable list>::=

<location name>,<simple location variable list>

I<location name>
<simple rloc variable list>::=<resolution location name>,
<simple rloc variable list>
|<resolution location name>

<environment variable declaration section>::=

TYPE , , ENVIR@:<environment variable list>;|null
<environmment variable list>::=<environment variable name>,

<epmvironment variable list>

<enviromment variable name>

45
<resolution procedure declaration section>::=

TYPE , , RES@L:<resolution procedure declaration l:'Lstk>
<resolution procedure declaration list>::=<resolution procedure declaration>
<resolution procedure declaration list>
l<resolution procedure declaration>
<resolution procedure declaration>::=
<resolution location name>:<conditional list>;
]<resolution location name>:<expression list>;
<transition declaration section>::=TYPE , , TRANS:
<transition declaration 1list>END
<transition declaration list>::=<transition declaration>
<transition declaration list>
]<transition declaration>
<transition declaration>::=<transition name>:<transition body>;

<transition body>::=<transition head><transition tail>I<transition head>

<transition tail>::=,<transition procedure>|null
<transition procedure>::=<expression list><conditional list»<else clause>

l<conditional list><else c1ause>]<expression list>lnull

<transition head>::=<T transition>]<and transition>[<or transitiony

<T transition>::= T(<location name>,<location name>)<simple time expression>

<and transition>::= F<and schema>]J<and schema>

<and schema>::=(<location list>)<simple time expression>

<location list>::=<location names>,<location name>,<location name>

<or transition>::= X<or schema>[Y<or schema>

<or schemas>::=(<resolution location name>,<location list>)<complex time expression>
<complex time expression>::=, (<right part>,<right part>)[null

<simple time expressions>::=,<right parts|null

46
<conditional list>::=<conditional expression><conditional list>

]<conditional expression>
<conditional expression>::= IF<predicate>THEN<expression list>
<conditional tail>::=<expression list>ELSE<expression list>
I<expression list>
l<expression list><conditional expression>
<predicate>::=<boolean factor>|<predicate>v<boolean factor>
<boolean factor>::=<relation>l<boolean factor>asrelation>
<relation>::=<right part><relational operator><right part>
|<simple predicate>
<relational operator>::=>|>|=|<|<|#
<simple predicates = EMPTY (<locatidn name>)|FULL(§location name>)
<expression list>::=<expression>,<expfession list>[<expression>
<expression ::=<left part><right part>!<vector copy>
<vector copy>::=<location name>:=<location name>
<left part>::=<simple variable>:=
<right part>::=<term>]<add operator><term>]
<right part><add operator><right part>
<term>::=<factor>l<term><mult operator><factor>
<factor>::=<primary>|<factor>+<primary>
<primary>::=<unsigned number>f<simple variable>!<function call>
<mult operator>::=*l/
<add operator>::= +|e
<location variable>::=<location name>(<unsigned integer>)

<location name> :=<identifer>cL

47

<resolution location name>::=<identifier>eR

<environment variable name>::=<identifer>cf

<transition name>::=<identifer>eA

<gimple variable>::=<location variable>l<environment variable name>

<identifer>::=<alphafirst><alpha><alpha><alpha><alpha>

<alphafirst>:: AﬂBICl...lXIY}Z

<alpha>::=<alpha first>|null

<function call>::=RANDOM(<right part>)lLOG(<right part>)
[EXP(<right part>)]EXTF(<right part>,<right part>)

<number>: :=<unsigned number>]~<unsigned number>

<unsigned number>::=<unsigned integer>[<decimal fraction>
I<unsigned integer><decimal fraction>

<decimal fraction>::= .<unsigned integer>

<unsigned integer>::=<digit>!<unsigned integer><digit>

<digit>::= 0|1]2]...]9

48

Appendix C
ENSS Abstract Machine

ENSS employs an abstract machine to simulate the operation of an
evaluation net. The abstract machine can be thought of as containing two
levels, one to handle token movement through an evaluation net, and the
other to evaluate time expressions and resolution and transition procedures.

The token machine directly simulates the net as defined by the transition
schema and the initial marking. The compiler produces a location table and
a transition table which totally describe the physical structure of the net
and the identification of tokens with their values. The tables are not
fully initialized until a marking for the net is declared; the interpreter
handles this task and then immediately begins simulating token activity.

The expression evaluation abstract machine again uses the transition
and location tables, as well as a token storage array. Figure C.1 shows
the logical relationship among the various abstract machine components.
Instruction words are composed of an operation code and a maximum of two
operands. The "control unit" and the "arithmetic-logic unit'" are combined
into a single set of subroutines which fetch an instruction word from the
JTRIP array, masks out the three fields, and executes the instruction on
data obtained from the token storage array via the LOC array. The indirect
addressing through the L0C array is useful for handling token movement and
dynamic dimensioning. The token storage array is a linked list of five-word
elements; whenever a token moves to a new location with a larger or smaller
dimension, token array storage blocks are allocated or deallocated, respectively.
JTRAN contains all information about the particular transition being simulated;
thus it is used in resolution procedure evaluation for X or Y transitions and

in time expression evaluation and transition procedure evaluation for all transi-

tions. The machine evaluates expressions using“a stack (called the REG array). The

49

result of an evaluation leaves the final result in REG(1l), also called the

accumulator, ACC.

operations.

Operand types are assumed to be floating point in all

Table C.1 is a dump of the load module produced by the compiler, given

the net declaration of Table III.2.

The following list of instructions can be executed by the abstract

machine:

(1) Return

(2) Set Logic

(3) Branch on Zero, <addresss

(4)
(5)

(6)
(7)
(8)
(9

(10)

(11)

*The
the

Unary Minus, <i>

Store, <i>,<j>

Add, <i>,<j>
Subtract, <i>,<j>
Multiply, <i>,<j>

Divide, <i>,<j>

Exponentiate, <i>,<j>

Logical AND, <i>,<j>

No operands. Indicates the completion

of a procedure.

No operands. Sets the Logic Register to
zero (false).

Branch to the <addresss in the JTRIP

array if the ACC is zero (false); else set
the Logic Register non-zero (true) and
continue executing instructions sequentially.
ACC+~C(LOC<i>)*

LOC<i><C(LOC<i>)

(If i<0 then LOC<i>= REG(-1))
ACC+C(LOC<1>)+C(LOC<{>)

ACC+C (LOC<i>) ~C (LOC<>)
ACC+C(LOC<1i>)*C(LOC<5>)

ACC+C(LOC<i>) /C(LOC<i>)

(floating point quotient)
ACC+C(LOC<i>)+C(LOC<3>)

ACC+C(LOC<i>)AC(LOC<y>)

expression "C(LOC i)" is a shorthand notation meaning the contents of
token attribute pointed to by LOC(i,l), where i is a location index.

(16)

(17)

(18)

(19)

(20)
(21)

(22)
(23)

(24)

(25)

Logical OR,<i>,<j>

Less, <i>,<j>

Less Equal, <i>,<j>

Equal,<i>,<j>

Greater Equal,<i>,<j>

Greater, <i>,<j>

Not Equal, <i>,<j>

Logic Check, <address>

Load, <i>

Create, <i>,<j,n>

Allocate, <m>,<i>

Deallocate, <m>,<i>

Destroy, <i>,<m>

Y-transition, <rloc>

50

ACC«C(LOC<i>)vC(LOC<j>)

ACC+if C(LOC<i>)<C(LOC<]>)
then TRUE else FALSE

ACC*if_C(LOC<1>)5p(LOC<j>)
then TRUE else FALSE

ACC<if C(LOC<i>)=C(LOC<j>)
then TRUE else FALSE

ACC+if C(LOC<i>)>C(LOC<j>)
then TRUE else FALSE

ACC+if C(LOC<i>)>C(LOC<j>)
then TRUE else FALSE

ACC+if C(LOC<i>) # C(LOC<j>)
then TRUE else FALSE

if Logic Register # 0

then goto <address>
ACC+C(LOC<i>)
Create a new token for LOC<i>;
Copy n attributes from LOC<j> into LOC<i>.
Assign m blocks of token storage to LOC<i>.
Deallocate m blocks of token storage from
LOC<i>.
Destroy (i.e. release token storage)
the token on LOC<i>which contains m blocks.
LOC<rloc>, a resolution location, and
ACC are set to zero if the the token is to
be moved from the O-input to the output loca-
tion, and one if the token is to be moved

from the T1-input to the output Tocation.

(26)
(27)
(28)
(29)
(30)
(31)

(32)

(33)

(34)
(35)

(36)

No Operation
Move,<i>,<j>

Jump, <address>
Load Clock

Vector Copy,<i>,<j>
Full Predicate,<i>

Empty Predicate, <i>

Random, @,<j>

Natural Log, g.<J>
Exponential Function,
g,<j>

External Function,<i>,<j>

51

Null.

Move the token from LOC<i> to LOC<j>.
Unconditionally branch to JTRIP(address)
for the next instruction.

Loads ACC with the current value of the
ENSS clock.

Copies all attributes of the token on
LOC<i> to LOC<j>.

If LOC<i>contains a token, loads ACC with

a non-zero value, otherwise ACC<0.

If LOC<i>does not contain a token, Toads
ACC with a non-zero value, otherwise ACC<0.
The second operand is a constant Tocated at
LOC<j> which is used as the seed for a call
to a pseudo random number generator. The
result is Teft in ACC.

ACC+LOGn(C(LOC<j>))

ACC+eC(LOC<j>)

Calls a user-provided FORTRAN function
subprogram named EXTF with the following
sequence:

ACC<EXTF(FIX(C(LOC<i>)), C(LOC<j>))

ISU3-NET FILE TAPE |1

T(NTRAN, MID, NLOC,NTRIP, NUSE, JF

1g¢ ta-
ZLOCATION TABLZ:

INDEX

QUO28003888028332221 1
DBOBADLDVLBEISBLBDLT
DLIDDLDDTE2D0BADET22
2U0DBIB3V2008802833
007298933003 43333345
322420032089 3288338057
BABVADBBEBCIBBEBB5]

19

N

00892823083 0328038273

U2L32233805000888154
220300223 20328822125
OO0 DBD0209228082129
D2928033233032382131
GRU329080003302082 1 44
CO302032200083800882223
D30000020300238803233
Ua73300002083936802022
Q30308728 008006822891
D203 B3333322099339
ATRANS TABLE:

INDEX TYPE

L oAl
19 3 oaz
21 1 a3
33 1 54‘
39 4 aS
51 1 Aé
63 1 A7
59 > zzz714
53 1 zzzZ1S
89 2 777716
142 ! ZZZ717

NAME TRPR .

A-1,

41
55

69

15‘

A A e e L&)

JFLC

TR,
97 1 69 190
AME (TR PTR)/DIM
21 BEIBBBIDE2
B2 BIOIDBDDA2
B3 BUTBIBBBD2
B4 BOBEDEDLAL
85 POBTOBIEH2
B PPBIB2B2D2
B7 BEII2DB3D2
BS BOB19533282
B9 GE51319952
7772718 0389543593
ZZZZ11 B8987338933
727712 9099400593
Z27213 0922033903
RI EOBIBEIDD
MMAR 3302709890
2 L TT7TTTTTTS
1 7777771776
2 7777777776
FTIME 0CC/EN
0C A-TR C-LOC C-TR
P830039012 395903
2 131 12
0350000324 CITOID -
| 3 21
BO0PBABEIS 0I003D
3 19 4 39
POBIIOBBL2 DT2DDBD
4 21 5 39
2028470047 BBDDBD
5 33 65 . 51
0303030065 D000
6 39 g 69
0333328372 030933
7 39 9 89
03008239377 823029
8 51 13 5
2232392113 032002
12 59 1i 69
©2333589129 239297
9 5% 12 163
POBOPG7134 B22000
12 89 13 89

JFTP)

63

¥

Cm

%

2INSTRUCTION TABLE:

OPEZRANDI OPERAND2

-t
z
v

1
>
o

o

i poll

UEWD =000V D WA -

t
!
1
i
1
i

292383216
BUs282533
2282083227
BB0322D36
Q20208216
DI033888906

924232811

2523316
OU332201
0229220822
292382812
00032032
022302251
A0B252229
2B3283216
200332017
777777776
834312931
2R0033814
284210081
2002332839
989623231
BoB2323393
Bo03233327T
234002823
ge4a0209032

204320233

Bo2B0B026
ELLEVEEE
830895035
 PU00890%3
BIBIBBOD
PGOBBBI3T
- BPATO0B22
PODBIB4L2
BEGBBIDB4
23838323 1,
PIBBBITLL
P00832222
PBZOBHTAT
0930908916

998839956

d39030935
BE2BBBHG 1
2002932363
g80898228835
820802254
222302016
202003864
002993202

262093929
TTTTTTTT S
D292C2329
177777776
292983321
Po2082883
TTTTT7776
2oBB0AB22
220299200
TT7T7T77775
TTT7TITTTT6
2099283291
7771777775
V22339922
TI7TT7T1776
777777176
223003C329
1717777776 .
48090808892
777777776
777777776
29220088932

2850108091

777777778
2agpB3822
TTTTT17T75
777777776

DBR58231

717177776
TTTTTT77%
396209004
777717776
BOB029223
77TTTTTTTS

FTTT7T7776

0O286GI005
TTTTTTIT6
290009854

777777776
ATTTTT776

777777776
777777776

029808397

777777776
777777776
B229233826
777777776
TTTTTTTT6
T7T7777776
777777776

e,

.

51
.52 1
53 2%
54 1
55 27
55 26
57 1
58 29
59 1
68 27
61 28
62 1
63 29
64 1
65 27
66 26
67 &
68 5
69 6
79 5
71 6
72 5
73 .24
B S |
75 28
,..,‘-‘,76 -1
7T 27
78 7 26
79 1
89 29
g1 1
g2 27
83 26
.84 6
85 . 8§
86 . 6
87 .. 5
88 6
- 89 5
93 . 24
91 - 1
92 " 29
93 - 1
94 27
g5 25
95 1
LISTS=*®

dUSAGE

i

Co2088s2

POV BB56

B042287235
DOB528830
BeBBIB26

T 929232091

BOBER3357
PILB2T037
2B3CC290
BARBBBBDT
PRIB2B90 1
9203228074
2903533322
239229977
222099213

2282238221

bBa4214313
34212212
4228213
24223212
1 R5RG RGN0 RS REN)

04032912
PEGBBIDL 0

202082318
232200822
202088113
poBseaa12
BrB2998981
go22082115

D920 23322
9206828120

gUea322313
gopa0883]
PO4BLI2D15
P24913314
234320815
024020314
922288321
BoLB30814
A8332231 1

. 9232239311

0298933222

233202134

PB23233314
b6O320233 1
230322136

1abie L..L(C)

Q08082235
DO203D325
TTTTTTTT6
TT77T7T7776
492922919

TITTTT7756

BEBBBEBDE
TT7TTTTTTS
777777776
BOBBIDD1 1
777177776
PBBBBFIDT
717717776
777777776

Q022328812

TIT7T7T717T776
BY4018813
77777776
2AL4020813
TTT7T7777T76
234330213
TTTTTITTITS
P23030891
Uo82692513
TTTTTTTTS
7777717776
Pe3229313
TTITT7776
003289812

TI7TT7TT776

717777775
PA23523314

T77T7TTT776

224018511
777717776

B4 23311
T771777776

824833015
TITTTTTTS

. B32328321

2295308215
777777776

TI77T7T775

200809315
777777778
D80290814

B23980830882022003392

Transition Table

JTRAN(1)

JTRAN(2)

w

»

JTRAN(JTR)

@
o

(Instruction Counter

Token Storage
Array

TOKE (1)
TOKE(2)
‘TOKE(S)
TOKE(4)
TOKE(5)
block pointer

3

TOKE (1)

TOKE (i+1)

TOKE (i+2) e
TOKE (i+3)

TOKE (1i+4)

block pointer

©
@ =
I

Location Table

T.S.A} LOC

bointer Name | Dim

LOC |LOC (LOC

(1,1) {(1,2) {(1,3)

LOC |[LOC {LOC

(2,1) {(2,2) |(2,3)

v ?
5
1Y

¥

Loc |Loc {LOC
(1,1) {(1,2) |(1,3)

Figure C.

1

Instruction Table

JIRIP (1)
JTRIP(2)

Logic Register { IX
REG(1)=ACC
REG(2 | . A
(2) v siArithmetic Unit Control Unit
‘ ‘ JIR 1
by 4
v \
REG(10)
B |

JTRIP(IX)

