Computer System Resource Requirements
of Novice Programming Students *

by
Gary J. Nutt
Department of Computer Science

University of Colorado
Boulder, Colorado 80302

Report #CU-CS-039-74 February, 1974

* This work was funded by National Science Foundation Grant #GJ-660

ABSTRACT

The characteristics of jobs that constitute the mix for lower division
FORTRAN classes in a university are investigated. Samples of these programs
are also benchmarked on a large central site computer and two minicomputer
systems. The conclusion of this study is that a carefully chosen minicomputer
system could offer service at least the equivalent of the service provided
by the central site system, and that certain aspects of this‘service could be
distinctly better.

Keywords: Novice programmers, minicomputers, job load characterization.

CR Categories: 1.5, 2.4, 6.2

In a time of constant (or decreasing) enrollment in many universities,
one might not expect enrollment for a given set of courses to increase sig-
nificantly. The University of Colorado has been operating at an imposed
enrollment of 20,000 students since the Fall Semester of 1972; nevertheless,
all of the lower division computer classes have been subject to higher enroll-
ments in corresponding academic terms from year-to-year. In particular, the
lower division FORTRAN class enrollment for the 1971-1972 academic year was
765 students; for the 1972-1973 academic year, 874 students; and the 1973-1974
academic year enrollment figure is 950 students.* Each of these students write
and test an average of twelve programs per year, with each program requiring
about 5 debugging runs. This large (and growing) novice student job load
requires a significant amount of computer center resource in terms of operator
time, line printer and card reader use, keypunch, etc. It is our contention,
however, that an insignificant amount of processor time is required to support
this mix.,

A few critical characteristics of lower division FORTRAN programs will

be explored in some depth later in this paper; we now only briefly define the

* The Department of Computer Science lower division FORTRAN courses are:

Computer Science 162 - Digital Computer Programming

Computer Science 201 ~ Introduction to Computer Science for Scientists and
Engineers

Computer Science 203 - Introduction to Computer Science for Liberal Arts
Majors

From Fall, 1971 through Fall, 1972, Computer Science for Business Majors

was also a FORTRAN course.

character of a typical program from this mix. The average job includes a
call to the compiler, possibly followed by loading and execution. The total

amount of central processor time, on the average, is less than one second;

a portion of this processing requirement is absorbed in compilation and loading.
The programming assignments become more complex late in the academic term,
requiring more run time, (the average central processor time is still less than
two seconds). The reasons for this light processor requirement are concerned
with the assignments; iterative calculations are generally contrived and
converge rapidly, or the error bound is very generous. (We should also point
out that error bounds are never seriously considered in the lower division
programming classes.) On the other hand, the average program from this mix is
composed of about 30 cards, and produces about 140 lines of output. It is

easy to recognize the imbalance between the time required for printing and

the time required for processing.

At the University of Colorado, as in many universities, lower division
programming courses use the central site computer, in this case a pair of .
Control Data 6400 systems. This particular installation supports both batch
and interactive processing, although the introductory students use only the
batch processing facility. In addition to the educational load, the system
is subjected to a variety of other tasks; it must support research projects
involving large numerical computations; it is likely that administrative data
processing may be done on the machine, etc. This wide range of responsibility
can only be covered at the expense of individual subsets of the set of all
users. As the work load subjected to the system increases, turnaround time

for individual jobs may be expected to increase. Features of the system that

might be oriented toward the novice programmer may be sacrificed for the good
of the community. For example, optimizing compilers may replace those that
produce object code more rapidly; run time error messages may be terse and
uninterpretable; the job control language may be so complex as to make a simple
compile~and-execute sequence a formidable task; the job accounting algorithms
may be unrealistic.

One alternative to central site computing is the use of a dedicated mini~
computer system for lower division programming students. This situation can
improve the cost-effectiveness of computation by using relatively inexpensive
processing power to achieve a closer match between job input/output time and
the processor utilization. However the use of minicomputer systems may
actually create a situation in which the bottleneck for throughput is the
processor, i.e., compilation, loading, and execution of a job may actually
require more time than reading the deck of cards or printing the resulting
’listing.

Nevertheless, we contend that this alternative can be superior to the use
of a central site system if the minicomputer system is carefully chosen. In
the remainder of this paper we shall support this contention by discussing a
job mix analysis done on lower division FORTRAN programs executed on the Control
Data 6400 batch system. We shall also discuss a more cost-effective method of

offering the same service with the added benefit of minimal hands-on experience.

JOB LOAD ANALYSIS

A characterization of the lower division FORTRAN job load, for the
purpose of this study, is primarily concerned with indicators of I/0 time
and processor utilization. It is desirable to obtain a quantification of the
expected number of input cards for a program, the number of lines to be printed,
and the amount of processor time spent in satisfying computational needs of
the average program, as well as corresponding maximum loads. It
might appear that we should also be interested in the mix of machine instructions
used during program execution, so that comparisons between large system exe-
cution and minicomputer executions of the same programs could be made. Some
simple benchmark programs illustrate that this is not necessary.

An interesting characteristic of a job run on the central site computer
would be the expected actual turnaround time, although we have not been able
to obtain accurate quantification of this measure of performance. We would
also like to obtain true job costs, although this, too, is difficult to obtain,
due to the somewhat artificial educational computer time rates that usually
exist in this type of environment.

To achieve the goals for load characterization, we used two standard
monitoring tools [2]. The system accounting log is exploited to obtain a
reasonably conclusive set of data concerning I/0 characterization, central
processor times, accounting charges, and throughput requirements. Next home-
work assignments that constitute the mix were written and benchmarked on the
Control Data 6400 system. The programs were then tested on two available mini-

computer systems to compare execution times.

Accounting Log Analysis

All student jobs that are executed on the Control Data 6400 system at
the University of Colorado must supply accounting information designating a
"user number" and a "subaccount number'". Each course is assigned a user
number, and each student is assigned his own subaccount number. Thus the
accounting system allows job charges to be made directly to the individual
student subaccount. This accounting procedure proves to be useful in associa-
ting monitoring information with an individual, as will be discussed below.

Each job executed on the system produces a trace of messages for accounting
purposes, as well as operator information and a iist of control cards. This
extended accounting log, or dayfile, has been shown to be quite useful for
analyzing machine performance [1, 4]. However, the volume of information
written to the dayfile precludes the possibility of saving any significant

number of past records. The University of Colorado Computing Center has

"
a9
=}
}-l.
N
D
al
-+
-
ke
N
J
"
o
o
&
8
W
)
5
[a
[=n
o
n
i
o
=
0
=1
g
o
©
n
a
=
o
n
t
e}
rg
"
D
n
™
H
<
m
[p]
D
=
i
o
i—J.
=
e
rt
o}
g
[02]
o}
I

Sl Liiis

information from the system dayfile for long periods of time [3]. The process
is to perform an analysis of the system dayfile, gathering a set of character-
istics for a job, condensing these characteristics to a 136 character string,
and saving the resulting strings on a magnetic tape file called the Job Master
File. Table 1 summarizes the pertinent information contained in a record

on the Job Master File. The practice of producing this condensed file was
initiated in January, 1972, and thus all information (shown in Table 1) for
each job executed on the system since that time is available for analysis. It
is this Job Master File that we have used to obtain information about the job

load caused by FORIRAN programs.

The analysis program utilizes the user number field to recognize
applicable records from the Job Master File. The subaccount field is used to
distinguish between jobs submitted by the various students enrolled in any
given class. The following illustrations of data correspond to the set of
student programs for Computer Science 201, "Introduction to Computer Science
for Scientists and Engineers" for the Spring Semester (approximately January
15 through May 15) of 1973. Data gathered for other courses and time periods
is typefied by this particular sample.

In the following presentatioms, the histograms are for the job mix over
the entire semester and we also present some histograms for the month of May,
which represents the maximum demand placed on the system by the C.S. 201
students. The maximum demand month is analyzed since it is this load that
will place the highest demand on the dedicated minicomputer (i.e., it is the
"worst case" load).

During the Spring Semester of 1973 there were 18164 jobs submitted under
the C.S5. 201 user number. There were 287 students enrolled in the course
approximately two weeks after the term began, hence each student submitted
an average of 63.3 jobs for the semester. In the Job Master File analysis
program, we compute the mean number of times that a subaccount number (i.e.,
an individual student account number) appeared in any given day. This measure
was deemed worth obtaining, since our experience (and Teaching Assistants) told
us that students often did their entire assignment in one day. The mean varied
from 2.6 jobs/day for each student in January to 5.0 jobs/day for each student

in May, with a mean over the entire semester of 3.6 jobs/day; thus, the student

does tend to complete his assignment in one day.

The batch system spools card images onto the disk for subsequent memory
and processor assignment. Disk space is allocated to each job in 64 word
(640 character) units. The Job Master File records this sector allocation
rather than the actual number of cards read for each job, and it is that
measure that is given here. Observations indicate that batch jobs require
at least three sectors, i.e., there is a two sector overhead figure added
into each job allocation.* Thus, for 80 column card input, the number of
cards in i sectors is 8(i-3) + 4, where 4 is the expected number of cards in
the last sector.

Figure 1 is a histogram of the number of input sectors allocated per job,
e.g., about 137 of the 18164 jobs (2326) were allocated more than three sectors
and less than or equal to 4 sectors. The arithmetic mean number of disk
sectors allocated for card images was 184.8; the histogram indicates a median
value of about 6 sectors/job. The explanation for this difference is that
a small number of jobs, 65, were allocated more than 26 sectors, and have
biased the mean value substantially. In our characterization of the typical
job we shall use the median value; a sector count of 6 is equivalent to about
30 cards per job. This number of cards includes control cards, program, and
data.

Figure 2 shows the statistics for disk sectors used to hold the input
stream for jobs submitted during the month of May. Again we note an inflated
mean value and a median value of about 6 sectors.

The output spooling process again uses 640 character disk sectors to hold
line printer images, although a packed format is used for the representation

of a line. Our investigation into the average number of characters per line

*#19 jobs in the sample period were allocated less than or equal to 1 sector;
this inconsistency is caused by interactive jobs on the student account

number, probably entered by the instructor,

indicates that a line is about 50 characters long. This observation agrees
with an independent study carried out by the Computing Center.* With this
in mind, the expected number of lines for j sectors is

640 character/sector
50 character/line

j sectors = 12.8 j lines.

Figure 3 indicates our finding over the entire semester, and Figure 4
gives the corresponding results for the month of May. The mean value for
output sector allocation of 13.9, again, is biased by a few jobs with an
inordinately high allocation of output sectors (33 jobs were allocated more
than 150 sectors for output). However, the median value is close to the
calculated arithmetic mean, compared to an expected number of lines per job
of 178. The corresponding mean for May was 19 sectors, (243 lines) prompting
Figure 5 which shows the mean number of output sectors allocated to each job
for each month in the sample periocd. The conclusion is that the amount of
output produced by a typical job is sensitive to the point in the semester;
a similar analysis indicates that the number of cards is relatively constant

over the same period of time.

A measure of the amount of time that the job competes for the processor
is the amount of central processor time charged to the job, This measure
ignores the amount of I/0, particularly in the Control Data 6400 with its
peripheral processors. In Figure 6, the histogram for central processor time
is given. WNote that 88.5% of all jobs submitted during the semester required
less than or equal to one second of central processor time. This processor

charge includes compilation, loading, and execution. Almost 95% of the jobs

* This work was done by C. J. Brauch, Assistant Director, University of
Colorado Computing Center.

require less than two seconds and almost all of the remaining jobs ran to

time limit expiration, as might be expected in an introductory programming
course. The mean central processor time for the entire semester was 1.0
seconds, while the mean central processor times for the individual months were
0.25 seconds, 0.60 seconds, 0.67 seconds, 0.93 seconds, and 1.7 seconds for
the respective months of January through May. The histogram for processor
time during the month of May does not differ substantially from Figure 6,
although the mean has increased.

Data was gathered and analyzed to represent the amount of time that a
job was resident either in an input/output queue, or in competition for central
processor and disk. From practical observation of computer center operation,
these results were rejected as meaningless for this study. The average amount
of "queue-to-queue" time for our class of jobs was only 14 seconds; due to
the process by which job decks are submitted, run, and output returned to
the user, the "actual turnaround time" is closer to 15 minutes to a half
hour. Thus we could not justify using these figures to reflect a turnaround
figure that represented true service to the user.

The accounting algorithm used to compute dollar charges for a job uses
the parameters: average amount of memory allocated, central processor time,
mass storage transfers, card sectors allocated, and output sectors allocated.
The exact coefficients for these parameters have varied with the three
academic years we have mentioned, and with certain other factors such as remote
job entry site. Nevertheless, we did monitor the job dollar charges to get
an indicator of the way in which our educational computer time budget is spent.

Figure 7 is a histogram of dollar charge per job, for the 18164 jobs. The

-10-

mean cost was about 34¢, for a total allocation of $6257.92 for the
semester (this figure was obtained from billing invoices, and agrees with our
monitored data). The resulting dollar cost per student for the term was
$21.80 for computer time. Considering the combination of all lower division
FORTRAN classes, the allocation amounted to $7190.45 or about $18.80 per student.
Corresponding charges for the fall semester (under the same charging algorithm)
were $6578.28 total, or $17.40 per student. Both the previous year (1971-72
academic year) and the following year saw higher charging rates. The total
amount of money spent on the lower division FORTRAN computer time amounted to
$13768.73 for the 1972-1973 academic year (9 months).

A final conclusion about the data gathered from the Job Master File is
concerned with input-process-output overlap times. Using the mean values
for processor time and output lines and the median value for cards read, we
can calculate card reader and line printer rates required to achieve a
maximum overlap of utilization time. Assuming one second of processor time
(utilized in about 2 seconds of real time) the card reader must read 30 cards
and the line printer must print 180 lines in the corresponding real time
period. Thus the card reader must operate at a constant 9000 cards per minute
and the line printer (ignoring page eject time) must operate at a constant

5400 line per minute to keep up with the processor.

-11-

The Benchmark Tests

This portion of the study was necessary in order to obtain an understanding
of processor requirements of the FORTRAN programs on some typical minicomputer
systems. Four programming assignments were chosen from the lower division
FORTRAN course work; the assignments varied from the initial assigmment to
the final assignment for the academic semester. These assignments were then
programmed and tested on the Control Data 6400 batch system in order to
compare these properties with the data obtained from the Job Master File
analysis. The accounting log provides the amount of central processor time
charged to the job for compilation and for the load and execute phase of the
job. The time of day in seconds is also available from this log, thus we
have a clumsy estimate of real time requirements. The amount of real time
required for processing never exceeded two seconds for any single phase of
job execution, even though the job was serviced in a multiprogramming

environment.

The four programs were then tested on a XDS Sigma 3 miﬁicomputer
system. This system printed the listing on a line printer statement-by-
statement.immediately after the line had been compiled. The amount of real
time required for compilation with listing, loading, and execution was re-
corded in tenths of minutes.,

Finally, three of the four programs were tested on a Data General Nova
1200 system. This particular system stored the compiled statement listings
on a head-per-track disk during compilation, thus the compile times do not

reflect line printer listing time.

-12-

The four test programs are described below, and the benchmark findings
are recorded in Table 2,

The first test program is essentially a keypunching assignment; it consists
of eight cards containing FORTRAN statements and four job control cards. This
program produced about 80 lines of output spread over four pages, including
twenty lines on a banner page, two pages of listing, and an additional page
with 20 lines of accounting information and control card information.

The second test program would typically have been assigned in the second
month of the course. The student is given a crude definition of a prime number,
and he is asked to generate the primes that are less than or equal to twenty.
This program was consciously written to look like code produced by a novice
programmer, and contains three levels of nested loops. Our test version was
composed of 18 FORTRAN cards and 4 control cards, and produced 95 lines of
output on the central site machine.

Program number 3 would be assigned near the middle of the course, and
is an output formatting exercise. The deck contains 30 FORTRAN statements,

4 control cards, and one data card; the output consists of about 160 lines
including the 40 lines of banner and accounting information.

The last program is a simulation of a random walk on a 30 x 40 grid, with
the marker initially placed in the center of the grid. The program was to
execute until the marker exited successfully "through a door" or unsuccessfully
"through a wall". The program that executed on the Control Data 6400 had 59
FORTRAN cards, 4 control cards, and one data card. There were about 170
lines of output. The code used a fandom number generator which was not
immediately available on either of the minicomputers, thus there is no execution

time on the XDS Sigma 3, and no test of the program on the NOVA,

-13~

The data in Table 2 indicates the compiler on the Sigma 3 is sub-
stantially faster than the compiler for the NOVA. It is also apparent
that FORTRAN programs that are larger than, say, 100 cards should not be
compiled repeatedly on these systems due to the excessive compile time.
The load times are relatively constant for each minicomputer, i.e.the Sigma 3
loads in about 12-13 seconds and the NOVA loads in about 35 seconds. It is likely
that disk transfer rates and library sizes determine these times. With the
exception of the execution of TEST3 on the Sigma 3, all of the execution
times are insignificant when compared with compile and load times. We are
unable to explain the inordinately large execution time for TEST3 on the Sigma 3.
A similar benchmark test was done on a Hewlett-Packard HP2100 System with
a different set of programs.* The first program tested evaluated a 10 x 10’
determinant with floating point numbers. Gary reports that the program
consisted of 113 cards, required 7 seconds to compile (without listing), 15
seconds to lcad, and less than one second to execute. He also benchmarked a
program to compute.the greatest common denominator of two integers. This
program required 25 cards, compiled without a listing in 5 seconds, and again

executed in less than one second.

* John M. Gary, Department of Computer Science, University of Colorado.

~1l=

A Dedicated Minicomputer System
We are now ready to consider the plausibility of supporting the lower

division FORTRAN programming students on a minicomputer system. The primary
consideration involved here are those of cost and efficiency. The proposed
system should use an average budget of less than $15000/year if it is to be
cost competetive with the existing central site computer system. (It is
~assumed that the system is used to support no other computer science course;
the current educationél computer time budget is about $65000/year.) The system
must provide good service to a minimum of 500 students per week, with growth
possibilities to 750 students per week. Each student is expected to submit about
5 jobs per week (i.e. 63.3 jobs/semester), thus the minimum number of jobs per week
is 2500, and the maximum is 3750 jobs per week. If these goals are met, the
system can offer approximately the same service as the central site system.

In addition, it is desirable that the dedicated system handle this load in

a forty hour week, offering actual turnaround time approaching one minute.

It is also desirable that each student be given the opportunity to enter

his deck of cards into the card reader and burst his listing from the line
printer. Operating in this mode, a dedicated system offers nearly instant
batch turnaround to small groups of students using the machine in a given time
period. Each student is also provided with a minimum degree of hands-on
experience. It is this set of factors that weighs heavily toward a dedicated
minicomputer system.

The Job Master File analysis indicates that a typical user program
(during the course of the semester) is composed of about 30 cards and produces

about 180 lines of output (including 40 lines of the banner page and accounting

-15-

information). The execution time of the program is insignificant. During
peak demand periods near the end of the semester, the typical job may consist
of about 36 cards and produce about 240 lines of output.

Taking the job load as a requirement on the system, we can estimate
the required card reader rate, line printer rate, and processor throughput:
Assuming that the system is in operation 40 hours per week, and that each
student requires an average of 5 jobs per week, we obtain

Number of jobs/week = Nweek = (Number of students/week) x 5

N

Number of jobs/minute = Nminute - Zzggk

Card reader rate for semester = CR = 30 N _.
ave minute

Card reader rate for peak period = CR =36 N_,
max minute

Line printer rate for the semester = LP = 140 N _,
ave minute

Line printer rate for peak period = LPmax = 200 Nminute
Here we ignore page eject times and the time required to remove an individual
listing from the line printer. We also assume that a banner page and ex-
tensive accounting information is not printed.

To maximize resource overlap between the card reader, processor, and
line printer operation, each job must be completely serviced by the processor
(i.e. spooled in, scheduled, computed, loaded, executed, and spooled out)
in

60

seconds.
N,
minute

Table 3 summarizes these required service rates for various student loads
considering average loads for the entire semester and peak loads for the end

of the semester. The assumptions used here are:

-16—

—— The character of individual programs from semester~to-semester is

static

—— No banner page nor extensive accounting log is to be printed

—— The card reader input rate is greater than or equal to the service

rate of the system

~- Page eject time is negligible

During the fall semester of 1973, 513 students were enrolled in the lower
division FORTIRAN classes. From Table 3, it can be seen that a modest mini-
computer system could handle the peak load, allowing about one minute of
processor time for compilation, loading, etc. Furthermore, a very slow card
reader is adequate, (it must read cards at a rate of about 40 cards/minute),
and any faster card reader would create the need for substantial (infinite)
disk space for job spooling. If the system were equipped with a single line
printer which operated at a rate in the excess of 210 lines/minute, the printer
could adequately handle the job load.

Note that the portion of the machine that must be drastically upgraded
for increasing job load is the processor itself, provided that a reasonable
card reader (say 75-100 cards per minute) and line printer (say 300 lines
per minute) are initially configured into the machine. Recall that the
major portion of processor time for the benchmark programs was employed in
the loader; it is conceivable that as the current job load grows upward,
advanced (graduate) students could be involved in improving both the compiler
and loader efficiency in order to meet the processor requirement. Of course
a better solution is to initially obtain a minicomputer with adequate soft-

ware.

-17-

SUMMARY

In this paper we have discussed the job load imposed on a central
site computer system by the lower division FORTRAN programming students.
In particular, the number of jobs submitted for computer service was ob-
tained, and the expected number of jobs per student was calculated. A
typical job profile was derived, with respect to the number of cards in
the job, the number of lines of output produced by the job, and an indicator
of the processor requirement for three systems. Using this data, we have
speculated a configuration of a minicomputer system that would handle the
current job load as well as allowing for growth to a load that is 1.5 times
the size of the current load. The main conclusion, then, is that a dedicated
minicomputer can handle the growing load caused by lower division FORTRAN
programming students, and that a careful choice of the system can provide

an excess of processor resource which could be used for other purposes.

~18-

REFERENCES

l.

Nutt, G. J., "The Boeing Dayfile Analysis Modified for the University
of Washington CDC 6400", University of Washington Computer Center
Technical Report No. 4, (Oct., 1970).

Nutt, G. J., "Computer System Monitoring Techniques', University of
Colorado Department of Computer Science Technical Report No. CU-CS-013-73
(Feb. 1973).

Smith, H.E., "JOBLIST: Monthly Job Listing", DIGIT, University of Colorado
Computing Center, Volume 8, No. 10, (June, 1973), page 7.

Watson, R. "Computer Performance Analysis: Application of Accounting
Data'", Rand Report No. R-573-NASA/PR (May, 1971).

Job Master File Format

(Some items of information that actually appear on a job description record
are omitted here for brevity.)

1. Subaccount number

2, User number

3. Number of tapes assigned to the job
4, Priority of the job

5. Job name and identification

6. Batch or interactive job indicator

7. Day of the month

8. Number of card sectors read

9. Number of line sectors printed
10. Number of microfilm sectors printed
11. Number of card sectors punched
12. Central processor time (in tenths of seconds)
13. Mass storage sector reads/writes
14, Mag tape sector reads/writes
15. Time the job spent in the input/output queues and competing for a

control point ("Internal turnaround time'")

16. Average amount of memory allocated.

17. Accounting dollar charge.

Table 1

z °19el,

s3Tnsoy Butwrl wealoig 3s9]

- - - - 7°¢T 0°%¢ T 4 9¢Z°0 SL%°0 7 LSHL

K4 LE 8T (A4 9°CT 7€l T 4 6T€°0 | L€Z°0 CILSHL

[4 0¢ [4) 0°¢ 0°¢T 8°L T T LT 0 9IT* 0 ¢LSHL

4 G¢ 6 81 AN 0°9 T T 96T "0 LL0°0 TIS4dL
(Te"21) (TE®1) (Te™1) (1B91) (1e31) (Te?21) (1E?1) (1e°1) (ad) (dD) wex8oig
23no0axy peOT 8uT1SIT O/M | 93ND9XY prol 8uT1ST] 93noexy | 9TTdmo). | 93ndaxXy | o7 Tdwo)

a1 1dwo) /1 ST Tdwo) § peOT Ry peoTl
00T VAON TeIDUS) BIB(¢ euw8Ts SaX 00%9 OUO

€ °TqElL

sojey ooTAI9g paartnbey

G 8¢ 0°¢T¢ %°81¢ 7°9¢ 8°9% 9 T 06L¢ 0sL
1% 0°76¢ 7°%0¢ 9°T¢ 8°¢Yy 9% T 00S¢ oox
7'y 0°0L¢ 0°68T 9°8¥% G oY ge T 062¢ 059
0°8% 0°0s¢ 0°GLT 0°qy G'LE AN 000¢ 009
[Ar4 0°0¢¢ 0°T9T 7Ty G ve ST°T 06.L¢ 06¢
L°LS 0°80¢ 9°6yT VAVAS [ANR2 %0°1 0062 006

ot soa | /I L | GRS | Y | e | oon,

spuod9s a93utad auIll 1ojutad SuIT 19peal paABD IopeaI pIABD 93nuTW yoon yooM

108S89001g yead o8eI0AY yead o8ri10AY sqor sqor S3Uu9pnig

Greater Less

Than Equal Number TQ% 20% 30% 40% 50%
; f f } f
1 19
1 2 0
2 3 44
12.8
3 4 2326 HEAER IR F KKK
T 205
4 5 3724 Fkkk ko dkFok ok Tk ko kk ok
S S . 2 6
5 6 4098 ek ek e Sk e ek e ko ek ok
S . .
6 7 3387 Sk ek e ek ek ok ek dek ek
o 12.2
7 8 2223 Jedke e de ek odek
5.8
8 9 1046 *kkkkk
3.4
9 10 618 FekKk
2.0
10 12 368 e
12 14 151
14 16 54
16 18 14
18 20 6
20 22 7
22 24 5
24 26 9
26 - 65
Mean: 184.8

Population: 18164

CARD COUNT IN SECTORS - SEMESTER
FIGURE 1

Greater Less

Than Equal Number 10% 20% 39% 49% 59%

1 7
1 2 0
2 3 3

2.1

3 4 77 *x

2.3

4 5 83 *x

10.0
5 6 360 dek ok KKtk k
3.2
6 7 1300 Kok dekkdedk gk kkhk kK hk Rk kkhkE Rk *E IR
21.8
7 8 784 Tk kkk gk dkk ok kkkk k& kk
11.5
8 9 411 K kkFk ke kkkkk
7.7
9 10 277 R
5.1
-lo '] 2 '] 82 kkkkk

1.5

12 14 53 **
14 16 18
16 18 6
18 20 4
20 22 2
22 24 3
24 26 5
26 14

Mean: 69.29

Population: 3589
CARD COUNT IN SECTORS - MAY

Figure 2

Greater Less

Than Equal Number 10% 29% 3@% 49% 59%
148 ‘ |
5 2690 Jekkkkdk ko ke dok ok ok k
35.0
5 10 6350 Fdek ke ke ddok ko dok Kk ok kh TR R IR K kR ARk &
10 15 4210 *********************ﬁ*
14,3
15 20 2603 dedede ek k ok kd Kk kok dek
9.2
20 30 1673 FkkdkkKkkok
1.5
30 40 268 *k
40 50 96
50 60 36
60 75 43
75 90 43
90 105 17
105 125 19
125 150 56
150 - 60
Mean: 13.88

Population: 18164

LINE COUNT IN SECTURS - SEMESTER

Figure 3

Greater
Than

10

15

20

30

40

50

60

75

90

105

125

150

Mean:

Population:

Less
Equal

10

15

20

30

40

50

60

75

90

105

125

150

3589

Number

88

724

1063

905

584

81

33

15

19

19

26

20

10% 20% 30% 40%

50%

2.5
ek

20.2

*kkdkkkhkhkkkhkkkkhkkkhk

29.6

kddokk R dekk ke ok kdok ok dok ko koo dokok ko k

25.2
Fook Kok ook ok kkeok ek ok ok sk deokok ok

16.3

Fhkhkkhkkhkkkkhkkhhkkkd

2.3

*%

LINE COUNT IN SECTORS - MAY

Figure 4

20

il T T AE S i b S D AR b i i D S S S i L L R i
[}
(o)}

—

May

March April

February

January

B T T T R RV SV g
o]
(Xe]
|
FRRERERPRNEE
—_
o
FRFKLRRRN
o)
w0
HHAK
o
3}
LO (en] [Xe]
— —

MEAN VALUE OF OUTPUT SECTORS /JOB BY MONTH

FIGURE 5

9 34N91d
d3LSAWIS - SONOIIS 40 SHIQTYANNH NI 3FWIL 49

#9181 :uotje|ndo

/L6 :ues
908 otz oL
22 o 09
92 09 05
o 05 ot
9 ot 0
7 0¢ 02
sxxnxnsxzer | €501 0z oL
8"
LR AR v | £8091 oL
I 701 709 705 oY 70 702 70T Aaquny Lenb3 e

$597 49308

Greater Less

Than Equal Number 10% 20% 30% 40% 50%
13.1
20 2372 FhKkdedekkkhkkdk
58.!
20 30 10618 Fokddd ke ke kkok kkk ek kkkdokddokdokokdok ok dokok ok kk ok ok ko kdokk sk kokkdek ok
‘ 7.4
30 40 1345 Kk dkkkk
11.1

40 50 2010 s

4.2
50 60 769 Fekkk
60 70 67

2.4
70 80 439 *k
80 90 114
90 100 54
100 120 110
120 140 78
140 160 49
160 180 36
180 103

Mean: 34.46

Population: 18164

ACCOUNTING CHARGE IN CENTS - SEMESTER
FIGURE 7

