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Introduction

The Interactive Semantic Modelling Systems (ISMS) is a software system
designed to facilitate interactive program development, debugging, testing,
and documentation. In addition, the system will permit familiarization of
prospective users with new programs, and will serve as a pedagogical device
for illustrating various programming concepts.

Programs are analyzed by the ISM System, and interactive displays of
various program attributes are presented to the user. Programs can be
executed statement by statement, either forward or backward in execution time.
Names can be associated with values, and control flow with program text,
under user control., Also, global summary information concerning program
behavior can be displayed. Initially, the system will operate on ALGOL 60
programs, Later extensions to include PASCAL and FORTRAN are planned. The
implementation language is PASCAL.

Emphasis is being placed on development of machine aids for interactive
debugging and testing of programs. Debugging is the process of finding and
correcting program bugs which produce known errors, while testing ascertains
the degree to which a debugged program meets its specifications. Thus,
program testing is the process of acquiring confidence that a functioning
program correctly implements the algorithm(s) on which it is based; i.e.,
that the program conforms to its documentation. Testing and debugging are
related activities in that program bugs are often discovered during the
testing phase.

Exhaustive program testing is neither feasible nor desirable. Thus, in
general, testing cannot demonstrate the correctness of a computer program.
However, properly conducted tests can increase the level of confidence in a

given program to the point that it can be certified.



Certification is an authoritative endorsement that the program meets
certain standards of quality. According to Cowell and Fosdick [1], the process
of certification should include examination of:

1. Completeness of program documentation

2. Performance of the program relative to its documentation

3. Comparison of the program with others of the same type

4. Adequacy of continuing maintenance and support
Thus, a certified program is one that has been thoroughly tested and is supported
by the certifying agency.

Formal correctness proof EZJ, structured programming [3], and chief
programmer teams [4] have all attracted interest as techniques to improve the
quality of software. The adoption of these techniques will not invalidate
the need for systematic program testing; testing will still be necessary to
verify the behavior of programs in their operating environments.

The major goal of the ISM System is to provide machine aids to

facilitate automated program testing and certification.



ISM System Concepts

Computer programs are characterized by a static syntactic structure and
a dynamic runtime structure. It is thus natural to categorize the information
content of a computer program as static information and dynamic information.
Static information is extracted by performing a syntactic analysis of the pro-
gram text, and dynamic information is collected by executing the program.

Static analysis can provide the following information:

—-— mode and type of identifiers

-- usage of identifiers

—— statement types

-— basic blocks

-— control paths

-- input/output variables

—-- graph structure

Dynamic analysis ?rovides information collected during execution of the
program. Dynamic information includes:

-— variable range summaries

—-- statement execution counts

—-—- branch execution counts

-— control flow trace

-- variable trace

—— timing histograms

~—- assertion checking

-— control flow traceback

-— variable dependency traceback



Dynamic information can be collected for a single execution, or accumulated over
a number of program executions.

The ISM System is designed to collect, analyze, and display dynamic infor-
mation. In addition, some static information is collected to support the dynamic
analysis. Information is collected and placed into a data base prior to and during
program execution. The user interacts with the ISM data base after the program
has terminated, rather than interacting directly with the executing program.

The three major components of the ISM data base are:

-—- an identifier table

—-—- a program model

-- one or more execution histories
In addition, the original source text, a compressed version of the source text,
and a textual cross reference table are maintained.

The program being investigated is preprocessed prior to compilation and
execution. During preprocessing, the identifier table and program model are
constructed, and subroutine calls are automatically inserted into the program
text. During execution, the invoked subroutines collect the execution history,
The program is thus "self-metric' in that it collects information concerning
its own behavior.

The various components of the ISM data base are interfaced to permit the
association of names with values, and control flow with program text., The entire
history can be searched to collect global information. Thus, ranges of variables
can be obtained, assertions about program behavior can be checked, variable and
control flow traces can be accomplished, and statement execution counts can be

obtained by interrogating the data base. Local information can be obtained by



aligning the history pointer to a particular position in the program model and
examining the state of the computation. Information is recorded into the history
to permit interpretation of the program model either forward or backward in
execution time. Thus, execution time can be reversed in order to determine how a
particular computational state was influenced by previous states.

A block diagram of the ISM System is presented in Figure 1, and the inter—
relationships among the various components of the ISM data base are illustrated

in the following example,
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An Example
Consider the following ALGOL 60 segment: line #
L: A[K]:=K + 1; 1
for IT:=1 step 1 until N do 2
begin 3
if A[I] = K then goto L; 4
K=K + 1 5
end 6
the identifier table contains the following information:
Symbol #  Name Attributes
1 L label
2 K integer
3 I integer
4 A one dimensional integer array
the program model has the following form:
Model # Entry type Source pointer ‘Index Remark
1 assignment 3 4 Symbol table # of A
2 ss—assgnmt 5 2 Symbol table # of K
3 for 12 9 Model # of end-for
4 iter—assgnmt 13 3 Symbol table # of I
5 if 22 8 Model # of end-then
6 goto 30 1 Model # of stmt L
7 end-if 32 5 Model # of if stmt
8 assignment 33 2 Symbol table # of K

9 end-for 38 3 Model # of for



The source pointer is an index into the compressed version of the program
text, which has all non-significant blanks deleted. A cross reference table of
the form (source pointer, line number) provides the mechanism for association of
model entries with the original program text. The index field is a pointer either
to an identifier table entry, or to another model entry. The remarks column
describes the function of each index entry.

Assuming K = 1, and A[2] = 2 initially, the execution history will contain
the following value and control flow information:

2, 1, outfor, infor, 1, false, 2, infor, 1, infor, 2

true, gotofrom 6, 3,2, outfor, infor, 1 -—————-
The history entries are used to interpret the model by matching the first history
value with the first model éntry and using the history entries to interpret the

model as follows:

History entries Remarks
2 variable #4 in identifier table updated, value = 2
1 variable #2 used as subscript, value = 3
outfor, infor for loop entered
1 : iteration variable (#3) initialized, value = 1
false skip to end-then in model (entry #8)
2 variable #2 updated, value = 2
infor counted at end of for loop
1 iteration variable value =1
infor return to start of loop (entry #3)
2 iteration variable (#3) updated, value = 2
true continue with entry #6

 gotofromé6 gotofrombé used for backward execution, next model entry #1



History entries

3
2
outfor,infor

1

Remarks
variable #4 updated, value = 3
variable #2 used as subscript, value = 2
for loop entered

iteration variable (#3) initialized, value = 1

The outfor,infor combinations and the gotofrom entry permit backward inter-

pretation of the program model (backward execution of the program). Starting with

model entry #4 and the last history value (I:=1), backward interpretation proceeds

as follows:

History entries

1
infor,outfor
2
3
gotofromb
true
2

infor

infor

false
1
infor,outfor
1

2

Remarks
iteration variable initialized, value = 1
loop exited, next model entry is #2
variable #2 used as subscript, value = 2
variable #4 updated, value = 3
next model entry is #6
next model entry is #4
iteration variable updated, value = 2
control is at start of for loop
iteration variable, value = 1
control is at end of for loop
varigble #2 updated, value = 2
next model entry is #4
iteration variable updated, value = 1
loop exited, next model entry is #2
variable #2 used as subscript, value = 1

variable #4 updated, value = 2
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The instrumented source program which produces the execution history has
the following form:
L: A[K]:=K + 1;
assign(A[K]);
ssassign(X);
outfor;

for I:=1 step 1 until N do

infor(I);
begin if test (A[I] = K) then
'begin gotofrom(6);
goto L
‘end
Ke=K + 1
‘end
infor(I);
end
outfor;
The number of statements in the instrumented program will exceed the number in the
original source program by a factor of 2 to 3.

Due to convenience and efficiency considerations, the internal represen—-
tations of the various ISM data base components are somewhat different than por-
trayed in the preceding example. However, the external appearance of the data
base is as described. A subsequent paper will describe the internal organization

of, and method of access to, the ISM data base.
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Features of ALGOL 60 which were not illustrated in the preceding example
include:

-=- block structure

-- scope of names

-— parameter passing

~— environment of procedure evaluation

—-— recursive procedures

-- dynamic arrays

-- gwitch variables

~- multiple assignment statements
Techniques for instrumenting these and other ALGOL 60 constructs will be dis-

cussed in a forthcoming report.
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The ISMS Preprocessor

The ISMS Preprocessor is used to read in and compress the source
program, to produce the original source/compressed source cross reference
table, and to generate the identifier table, the program model, and the
instrumented source program. The identifier table, program model, and
instrumented source program are prepared in three different passes over
the source text, using three different parsers.

The parsers are generated by a parser generator program from a
modified BNF grammar. Semantic actions can be invoked upon successful
matching of a production rule with the input string, and output strings
can be automatically generated. The parsers produced by the parser
generator are top-down recursive descent parsers, in which syntactic
backtracking is automatically handled.

The modified BNF notation for the grammars is described in BNF
as follows:

(1) <MBNG> :: = <PRODUCTION> '.'

A modified BNF grammar consists of an arbitrary number of production
rules {(zero or more), terminated by the literal LI

(2) <PRODUCTION> :: = <LHS> '::=' [QMETAELEMENT>]

[<FOLLOWING ALTERNATIVE>]
[<EOP>]

A production is of the form ¢Left Hand Side? ::= an arbitrary number
of metaelements followed by an arbitrary number of alternatives, terminated
by an End of Production,

(3) <LHS> :: = "<' ————— '>!

The Left Hand Side of a production is defined as the sequence of

symbols appearing between the brackets.
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(4) <EOP> :: = ';!
Productions are terminated by a ;
(5) <FOLLOWING ALTERNATIVE>::= <NEW ALTERNATIVE> [<METAELEMENT> ]
(6) <NEW ALTERNATIVE> ::= '|'
Alternatives are delimited by a ‘ .

(7) <METAELEMENT> ::= <TERMINAL STRING>|<NONTERMINAL NAME>|
<OUTPUT STRING>|<CODE STRING>|
<START REPETITION>[<METALEMENT>] <END REPETITION>

(8) <TERMINAL STRING> :: = ' ————— !

(9) <NONTERMINAL NAME> :: = '<' ——e—e—n 1
(10) <CODE STRING> :: = '$' ——em—n A
(11) <OUTPUT STRING> :: = '4' ————— e

(12) <START REPETITION> o= '5'

(13) <END REPETITIONs :: = 'l

Terminal strings are delimited by quotes, nonterminal names by
brackets, code strings by $, and output strings by +'s. A code string
is a sequence of statements that is executed upon successful matching of
the associated alternative in a production rule. In this manner, semantic
actions can be specified, or comment statements concerning semantic
actions can be supplied in the grammar. An output string is a sequence
of characters that becomes the argument of an output routine. A value is
written into a prespecified file when the associated alternative in the
production rule succeeds. The START REPETITION and END REPETITION
brackets denote an arbitrary number of occurrences of the syntactic unit

enclosed in the brackets.
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The parser generator accepts sets of grammatical rules whose syntax
conforms to the above description, and generates PASCAL code that can be
used to subsequently parse and perform semantics on programs whose syntax
conforms to those grammatical rules. In effect, the parser generator is
very similar to a metacompiler.

The following examples illustrate various modified BNF rules, and the
PASCAL code generated in response to those rules by the parser generator.

Example 1: <LHS> :: = <STR1>|<STR2>;

Line #
1 PROCEDURE LHS;
2 BEGIN IF MATCH THEN BEGIN NEWPHRASE §
3 STR1;
4 IF — MATCH THEN BEGIN TRYALTERNATIVE;
5 STR2;
6 ENDPHRASE(nnn); END END END;

T ITO

Lines 1 and 2 are generated in response to <LHS> :: =
The nonterminal name on the left hand side of the production rule becomes
the name of a corresponding PASCAL procedure. The nonterminals STR1 and
STR2 are translated into procedure calls in lines 3 and 5. The alternation
symbol, ,, is translated into line 4. TRYALTERNATIVE is a procedure that
sets MATCH := TRUE, and resets the parse string and stack pointers.
MATCH is a global Boolean variable which tells whether the current
alternative of a production rule has matched up to this point.

Line 6 is generated in response to the end of production marker ';'.
ENDPHRASE and NEWPHRASE are procedures that manipulate stack pointers.

Each procedure generated has a unique integer (nnn) that can be used to

provide a trace of the parse, or can be used as an error diagnostic label.
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Example 2: LHS ::= <STR1> ['STR2'];

Line #
1 PROCEDURE LHS;
2 BEGIN IF MATCH THEN BEGIN NEWPHRASE;
3 STR1;
4 IF MATCH THEN BEGIN REPEAT
5 TERMINAL('STR2'") ;
6 UNTIL =3 MATCH: MATCH := TRUE END;
7 ENDPHRASE(nnn) ;. END END;

As before, lines 1 and 2 are generated in response to <LHS>::=.
Line 3 is in response to the nonterminal name <STR1>. Line 4 is in
response to the start of repetition bracket '['. Line 5 is in respomse to
the terminal string 'STR2'. Line 6 is in response to the end of repetition
bracket ']', and line 7 is in response to the end of production symbol ';'.
TERMINAL is a procedure that matches its argument against the next nonblank

input characters.

Example 3: <LHS> ::= 'STR1' <STR2> ¢ 'CODE" § +OUTPUT+;

Line #
1 PROCEDURE LHS;
BEGIN IF MATCH THEN BEGIN NEWPHRASE;
2 TERMINAL('STR1 ') ;
3 STR2;
4 "CODE"
5 PUTCHAR (OUTPUT) ;

6 ENDPHRASE (nnn) ; END END;
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This example illustrates the use of the <CODE STRING> and <OUTPUT STRING>
options in a production rule. 'CODE' is inserted into the generated
procedure and provides a mechanism for specifying arbitrarily complex
semantic actions. OUTPUT becomes the argument to an output routine.

This provides a variety of capabilities; in particular subroutine calls
can be automatically inserted into the source program to produce an
instrumented source program.

Due to the recursive top-down nature of the parsers, left recursion
is not permitted in the production rules of the grammars. Thus, the left
recursive definition of an ALGOL 60 identifier as:

<identifier> ::= <letter>]<identifier><letter>]<identifier><digit>
is translated into the following equivalent form:

<identifier> ::= <letter>[<]ord>]

<loxrd> ::= [<letter>] l [<digit>]
where the square brackets denoted arbitrary replication.

There are also certain restrictions on the ordering of production rules,
and on the ordering of alternatives within production rules. The implementa-
tion of the parser generator requires that non-terminal symbols appear on
the left hand side of a production rule before they are used on the right
hand sides of production rules. Thus, the grammar is processed in "bottom-up"
fashion. 1In certain case, efficiency considerations dictate a preferred
ordering of alternatives within a production rule.

A detailed discussion of the parser generator and the ISM preprocessor

will be provided in a subsequent report.
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ISMS Program Analysis and Display

The ISM System has been designed to isolate preprocessing and execution of
a user's program from the analysis and display of that program's behavior. This
allows analysis of global program behavior, and permits backward execution of
the program. Also, the analysis and display routines are designed to interface
to the ISM database independent of the particular programming language being
analyzed. This capability, when combined with the parser generator methodology
utilized in the preprocessor should facilitate adaption of the ISM System to
a number of different programming languages. A major goal of the project is
to determine the flexibility and adaptability of the ISM design.

As illustrated in Figure 1, analysis and display is accomplished by inter-
active routines that access the data base and present information to the user in
a meaningful format. A major aspect of the ISMS research project is to determine
what information is useful for program testing, and how to display that information
to the user of the system., The display formats are termed semantic models of
program execution. Different semantic models will be required to model the
many different attributes of computer programs.

A partial list of useful information that might be displayed includes:

-~ variable range summaries

-— statement execution counts

~-= branch execution counts

—-— control flow trace

-- variable trace

~— timing histograms

-- assertion checking
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-- control flow trace back

—-—- variable dependency trace back

—— identifier accessing environments

—-— parameter passing

-~ environments of procedure evaluations

-— recursive procedure evaluation

Variable range summaries, statement execution counts, branch execution
counts, control flow traces, and variable traces can all be obtained by straight-
forward analysis of the ISM data base. Timing estimates can be collected by
inserting subroutine calls into the instrumented source program to record a time
reading before and after execution of the statement.

Assertions can be local or global., A local assertion is verified at a
particular point in the program, and global assertions are true throughout the
entire execution history. A local assertion might be of the form: I < J
after statement #10. Global assertions can be used to verify range and monoticity
of variables, execution paths, initial and final values of variables, number
of loop traversals, etc. Assertions are checked by comparison with the execution
history.

Variable dependency and control flow trace backs are provided by backward
execution of the program. A particularly valuable technique is the flowback
analysis capability described by Balzer [ 5]:

This analysis appears in the form of an inverted tree,

with the bottom node corresponding to the value for which

the flowback analysis was desired. Fach node consists of

the source-language assigmment statement that produced the

value, the value itself, and links to nodes at the next

level. These nodes correspond to the non-constant values

in the assignment statement displayed in the node that links

with these nodes. These nodes have the same format as the

original and are linked to nodes for all non-constant values

used in the particular assignment statement producing their
value.
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Figure 2 illustrates the use of flowback analysis. This technique will
be particularly valuable when used in conjuction with other displays to deter-
mine information such as the range of input data required to force execution down
a particular path in the program graph.

Parameter passing and execution environments can be displayed as information
structure models that evolve with time. The execution
history is regarded as a sequence of snapshots, and the displays will consist
of these sequences. One of the most appealing informétion structure models is
the Contour Model [6]. The Contour Model is an intuitive, pictorial representa-
tion of block structured processes (e.g., ALGOL 60 programs) which emphasizes
identifier accessing environments and transfer of control mechanisms.

Another interesting candidate for an information structure model is the
Vienna Definition Language representation of a computation, which models the
computation in terms of control, enviromment, denotation, unique name, and dump
components [7]. Variations of these models will be investigated as semantic
models of flow of control mechanisms in computer programs.

In addition to the models described, structural models of the source text
will provide formatted displays of the syntactic structure of the program. The
user will be able to request or suppress source text at a certain level of program
structure to obtain a structural overview of the program. For instance, selective
suppression of the bodies of procedures, IF--THEN--ELSE statements, compound
statements, iterative loops, and recursive procedures are possibilities for
structural displays.

An important computational model which is not within the scope of the present

investigation is the Data Sensitivity Model. A data sensitivity model would
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display the effects of input data inaccuracies and finite word length on the
computation being performed by tracing the numerical significance of the compu-
tation. A system of this type has been described by Bright, Calhoun, and
Mallory [8]:

A FORTRAN program processed by the system is executed in an

artificial arithmetic, in which every arithmetic step produces,

in addition to the numerical result, an estimate of the number

of significant digits in that result . . . . The user may

specify initial accuracy of data; may select any part or parts

of a program for execution in the error~indicating mode; and

may request accuracy of any variable quantity at any point

during program execution.

A similar technique could be integrated into the ISM System by saving
additional information in the data base. A display of source statement, values
computed, and errors accumulated in the computation could then be displayed as
an aid in determining the numerical properties of the program. Combining this

capability with the flowback analysis technique would provide a powerful and

versatile program testing tool.
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Summary

To summarize, the Interactive Semantic Modelling System is a batch-inter-
active system for collecting, constructing, and displaying semantic models of
program execution. A variety of software tools for program testing, documentation
verification, and pedagogical purposes are being developed.

Program modelling and history-gathering occur during preprocessing and
execution of the prbgram in the batch mode, and result in creation of a data base
that contains a model of the program and a history of its execution. Modelling
tools are used to access the data base to construct models of the program, and
to present displays of these models to the user at an interactive console. The
primary advantages of the data base approach are:

1. The program is executed in the actual usage environment.,

2. Experimentation with a variety of modelling aids is facilitated.

3. Batch efficiency and expertise are combined with interactive flexi-

bility.

4, The modelling tools are language independent.

The primary disadvantage is that the user cannot directly interact with his
executing program. However, we envision a short response time for re-execution
of the same program with new input data, based on a previous system of similar
design [9].

The user of the ISM System will use a command language to selectively collect
or suppress history information. Details of the command language will be pro-
vided in a separate report.

Major goals of this project are to consolidate existing modelling techmniques,

and to investigate new modelling and testing aids which cannot be envisioned



-2 3~

until the system is constructed and actual experimentation begins. Thus, a

flexible, generalized data base approach has been utilized to facilitate

implementation of existing models, and experimentation with new models.

In addition to investigating the utility of various program models,

attention is being given to the human factors involved in man-machine system

design.

A major feature of the system will be the ability to alternate between

models in a natural and straightforward manner. This is essential if the user

is to gain new viewpoints and insights into the behavior of his program.

Applications arising from the ISMS project may include:

l‘

Development of procedures and software tools for systematic machine
aided program testing.

Development of a programming concepts and program testing laboratory
for student use.

Development of a program testing compiler which would provide user
requested information concerning program behavior.

A prepackaged ISM System to aid in testing of computer programs in the
environment of a large, shared resource computing network, such as the

ARPA Network.

Design specifications for a programming language to facilitate

program validation.
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