Automated Input/Output Variable Classification
as an Aid to Validation of FORTRAN Programs*

by
Leon Osterweil
and
Lloyd D. Fosdick
Department of Computer Science
University of Colorado
Boulder, Colorado 80302

Report #CU~CS-037~74 January 1974

Revised June 4, 1974

*This work supported by NSF Grant GJ-36461.

Automated Input/Output Variable Classification
as an Aid to Validation of FORTRAN Programs

by

Leon Osterweil
and

Lloyd D. Fosdick

ABSTRACT -~ Certain types of errors in the coding of FORTRAN programs

can be detected by careful analysis of the input/output usage of the vari-
ables in the program. It is easy to distinguish the value giving from the
value receiving usages of variables within a statement. It is then easy to
identify the input and output variables for statements and basic blocks.

It is observed that a program variable must not be used as an input variable
unless it has been used earlier in the program as an output variable.
Conversely, once a variable has been used as an output variable, it should

be expected that it will be used later in the program as an input variable.
Algorithms are presented which employ depth-first searching techniques to
verify whether input uses and output uses are improperly interspersed.

These algorithms can also be used to determine the input and output parameters
for entire subprograms. This capability extends the usefulness of these
verification techniques, and can also be used in attempts to automate documen-
tation production.

Introduction

This paper presents some results which enable the automatic detection
of certain semantically incorrect FORTRAN coding structures. We take the
position that it is most difficult, perhaps impossible, to prove that a
program is correct, but that it is often possible to detect errors, or at
least highly questionable constructions, through more or less mechanical
analysis techniques. One class of such techniques involves the study of the
input/output behavior of a subprogram and its variables.

It is sometimes fruitful to think of a subprogram as being nothing
more than a black box, which accepts certain values as inputs and produces
others as outputs. The exact functional relationships between the inputs
and outputs can then be said to completely describe the behavior of the
subprogram. Clearly there are certain drawbacks to such an approach not the
least of which is a definite loss of intuitive feel for what the subprogram is
doing and hence whether it may for example be doing it inefficiently. We
have found, however, that by adopting this view of subprogram behavior, it is
possible to detect some semantic errors in programs.

In this paper we describe methods for identifying various classes of
input and output variables within FORTRAN subprograms. We observe that a
variable o which is found to be an input variable to a particular statement
should have been an output variable from a previously executed statement.

If there is no such previous statement, then the statement for which o

is an input variable cannot be expected to execute properly, and an error

in program logic is indicated. The use or potential use of an uninitialized
variable, due perhaps to misspelling, can be detected in this way. Simi-
larly if a variable B is found to be an output variable from a particular

statement, then we would ordinarily expect B to be used as an input to some

subsequent statement. TIf B is not, then a possible error is indicated.
While this is not as sure a sign of erroneous code, it seems to us to be
worth detecting.

Towards the detection of such errors and suspicious code sequences,
we present algorithms to detect the variables which are input variables and
output variables for entire subprograms. We first show that these algorithms
are directly useful in the detection of some types of errors. We then show
that certain slight modifications to the algorithms render them suitable for
other kinds of error detection.
Definitions

Before proceeding further it is important to define some basic terms.
We observe that virtually every reference to a variable in an executable

FORTRAN statement refers to that variable in either a value giving or value

receiving context. (It will be seen, however, that sometimes an external
subprogram invocation statement may employ a variable reference in both
giving and receiving contexts.) We say that a variable @ appears in a value
giving context in a statement provided that the statement cannot be executed
successfully until and unless the value of o is obtained and used. For
example, o is a value giver in each of the following FORTRAN statements:

X=A+

ARRAY (a + 2) = 2.9

IF (o - 10) 50, 60, 70

DOI0OI =1, a, 3

While the different statement types employ value givers in various ways,
it is certainly possible to create a simple mechanical analysis routine
capable of identifying the value givers for almost every statement type.
Statements referencing external subprograms need special consideration and

will be considered shortly.

Such a routine can certainly be created to identify variable usage in
value receiving contexts as well. We say that a variable o is used in a
value receiving context in a FORTRAN statement provided that as a result of
the execution of that statement the value which o contained before execution
of the statement (if any) is overwritten by a value generated during the
execution of the statement. The most common example of a value receiving use
of a variable is the use of a simple variable to the left of an equal sign in
an assignment; e.g.

a =0
But o is also used as a value receiver in the following statements

DO 100 o = 1, 10

READ(5,25)a
It is important to obgerve that a variable may be used both as a value giver
and a value receiver within a single statement as in the following example:

o =0+ 1

If a variable is used in a value giving context in a statement, we call it

an input variable for that statement. Similarly a variable is called an output

variable for a statement if it appears in that statement in a value receiving
context.

In order to extend these concepts to entire subprograms more machinery
is required. Let S be a FORIRAN subprogram consisting of the statements
Sy Sgs cees sn.* A basic block b, of S is a contiguous subset of the

statements of S, CFE Si+1’ sees Si k > 0, having the property that no state-

*In the following discussion it is convenient to think of a logical IF state-
ment as being not one, but rather two separate consecutively numbered statements,
the first consisting of the letters IF and the parenthesized logical expression
which follows, and the second consisting of the subsequent executable statement.

ment of b, except perhaps s, is the destination of any transfer of control
statement anywhere in S. Hence we know that whenever 8, is executed, Si41

then s, Hence it is reasonable to

will be executed next, then s, .
i itk

ITREE
think of a basic block as a contiguous uninterruptible sequence of code which
can be entered only at the top, and exited only at the bottom.

It is worthwhile to observe that we do not comsider a statement which
invokes an external subprogram to be a transfer of control statement, as it
does not transfer control to another statement within its own subprogram.
Hence, for example, a CALL statement need not terminate a basic block, but
can be imbedded within one. In this respect, the definition of a basic block
used here differs from some others in the literature.

Lef bl’ eees bn be the basic blocks of S. It is easy to see that the
bj partition the statements of S into disjoint subsets.

It is now possible to form G the program flow graph of S, in the

g?
following way. Let B = {bl, cees bm} be the vertex set of GS’ where it

is assumed that b1 is the basic block containing the unique entry point of

S. Let the edge set of GS be the set of all ordered pairs of vertices

(bx’ by) having the property that it is possible to execute the first
statement of by immediately following the execution of the last statement of
bx' Hence the vertices of GS are the uninterruptible units of code, and

the (directed) edges of GS are the possible transfers of control between units
of code.

For the definitions of other graph theoretic terms used in this paper,

see [1].

An execution sequence or control path for S is a sequence of basic blocks

b, , b, , ..., b, for which i = 1, b, 1s a basic block terminated by a STOP
1l 12 1X 1 lx
or RETURN statement, and for which (bi . bi) is an edge of GS’ j=1,2,
j j+1
LI Y X"‘la

It is dimportant to note that for a given subprogram, certain of its
execution sequences may not actually be executable. For example in the
following code sequence:

IF(X.GT.0) GP TP 10

IF(X.GT.0)I =T + 1

10 * . .
it is not possible to ever execute the statement I = I + 1. Hence any

execution sequence which includes this statement is in fact unexecutable.

We call such sequences nonsemantic execution sequences. Execution sequences

which are actually executable are called semantic execution sequences. It

is clearly desirable to restrict attention to only the semantic execution
sequences of a subprogram. Unfortunately the determination of whether an
execution sequence is semantic or not seems to be extremely difficult. In
fact, in general this determination is effectively undecidable. Hence, in
what follows, we treat both semantic and nonsemantic execution sequences
equally. As will be seen this weakens some of our results.

For a subprogram, S, suppése i is the number of a basic block in S and

o is a variable used in S. Define:

4
I

{j]sjebi and o is an input variable to sj}

o
I

{j[sjebi and o is an output variable for sj}

Now define a minimum function as follows:

o if X = @

Min (X) =3 50 (X) if X # ¢

where min is usual minimum function, having as its value the smallest value

in the set X.

Now if Min(I,) # « and Min(I,) < Min(0,) then o is defined to be
i,a i,o — i,a
an input variable to bi' Otherwise it is a non-input variable to bi'
If Min (Oi a) # «» then o is an output variable from bi' Otherwise it is
3
a non—output variable from bi'
Now suppose E = bi s b s e, bi is an execution sequence for S. In

1 *2 X
a similar way define

-~
il

{jla is an input variable to bi }
|
0 = j'@ is an output variable from b, }
E,a lj

Now suppose o is a variable which either appears in a COMMON statement

E,o

in S or in the formal parameter list for S§. If there exists an execution
sequence E for which

Mln(IE’a) # and Mln(IE,a) f_Mln(OE,u) then 0 is an input variable
to S.
If no such E exists then o is a non-input variable to S. If for every
execution sequence E, it is true that

., . < M4

Mln(IE:u) # o and Mln(IE,a) “‘Mln(OE,@)
then ¢ is called a strict input variable to S.

Similarly, suppose a is a variable which appears either in a COMMON

statement in S or in the formal parameter list for S. If there exists no

execution sequence, E, for which Min(OE u) # » then o is a non-output variable
, :

for S. If there exists such an E, then v is an output variable for S,

and if for all execution sequences, E, Min(OE a) # o , then o is a strict
3

output variable for S.

Hence we recognize three classes of input variables--strict input;'input;
and non-input variables-— and three classes of output variables--strict output,
output, and non-output. Thus, there are nine possible input/output classes
for variables. Every COMMON variable and subprogram parameter falls into one

of the nine classes.

We now present some algorithms for determining the input/output class of
a given COMMN variable or subprogram parameter, As will be shown later,
these algorithms can be rather easily adapted to the study of the input/output

behavior of variables which are internal to individual subprograms.

The TIdentification of the Input-output
Classes of COMMON and Parameter List Variables.

Before presenting the algorithms for identifying the input and output
classes, it is important to discuss two obstacles to precise identification.

The first obstacle involves statements which inyoke external subprograms,
Earlier it was noted that it is straightforward to produce for virtually
every statement type, mechanical analysis routines capable of identifying all
value givers and all value receivers in any statement of the given type.
CALL statements and function invocations are obvious exceptions to this claim.
It is possible to determine the input and output parameters to an entire
subprogram in the way which shall be demonstrated here, provided only that the
subprogram invokes no other subprograms. (We shall refer to such subprograms
as leaf subprograms.) Having made such analyses for leaf subprograms, however,
the analyzer then knows the input and output variable behavior of all statements
invoking such subprograms (e.g., CALL's). 1In this way, it is possible to
determine the input and output classes of COMMIN and parameter list variables
for successively higher level subprogram units.

It must be acknowledged here that this bottom up analytic approach will
fail for the case of a subprogram which can be called, perhaps indirectly,
from a program whicﬁ%it(can call itself. It is, of course, impossible to
execute such a recu?sivé sequence of procedure invocations in FORTRAN. However,

it is possible to construct subprograms which contain such calling linkages, but

for which it is perhaps impossible to ever attempt the execution of the
linkages which would force recursion. It is acknowledged that such constructions
are possible. We feel, however, that such practices are unusual and represent
poor coding practice. For these reasons we feel that the apparent failure of
our algorithms to analyze such programs does not seriously diminish their
usefulness.

The second obstacle involves array references. This is a more
serious problem. It is possible and perhaps reasonable for different elements
of a single array to exhibit different input/output behavior. For example,
in SUBROUTINE S, below, A(1l) and A(2) are clearly strict input, non-output
variables, while A(3) and A(4) are clearly strict output non-input variables.

SUBROUTINE S(A)

DIMENSION A(4)

A(3) = A1) + A(2)

A(4) = A(2) - A(D)

RETURN

END
This determination is easy to make in this case. If the subscripts used had
been variables and expressions instead of constants, however, the analysis
would have been far more difficult. Hence in our work we have made the
simplifying decision that subscripted variables are to be treated no differ-
ently than simple variables. This is tantamount to the assumption that
any reference to any element of an array in a particular context is equivalent
to a reference to all elements of that array in that context. In addition,
we have also assumed that whenever any variable is referenced in some context,
all variables which are EQUIVALENCEd to it are also referenced in that same
context. These assumptions can certainly cause us to make imprecise deter-—
minations of input-output behavior. 1In subroutine S, for example, we would

conclude that A is a strict input, strict output parameter. We see no viable

way to resolve this unfortunate weakness.

-10-

We now present inpvar, a procedure for determining the input class of v a
given COMMN or calling sequence variable in a leaf subprogram, S, and
outpvar, a procedure for determining the output class of v in S.

When inpvar terminates, it will be possible to use the variables strict and
input in the following way to determine the status of v. If strict and

input both are false, then v is a non-input variable. If input is true then

v is an input variable.
If, in addition, strict is also true, then v is a strict input variable.

The variables strict and output can be used analogously after outpvar has

finished execution.
Program notes for procedure inpvar.
Global quantities.

procedures:

bboutpv (a, b) - Boolean procedure, with bboutpv assigned the
value true if the variable b is an output variable for basic
block a; otherwise it is assigned the value false.
bbinpv (a, b) - Boolean procedure, with bbinpv assigned the value
true if the variable b, is an input variable for basic block a;
otherwise it is assigned the value false.

arrays:
outdegree [a] ~ The outdegree of the vertex representing basic block
a in the graph of the subprogram.
head [a, b] - The basic block at the head of the edge b from the
basic block a.

variables:

n - The number of basic blocks, an integer.

Numbering conventions.

Basic blocks of a subprogram are assumed to be numbered 1, 2, ..., n

where n is the number of basic blocks in the subprogram.

-11-

The unique entry vertex of the subprogram graph represents basic

block 1.

The edges from a vertex are numbered 1, 2, ..., n, where n, is the

outdegree of the vertex.
procedure subprogram inpvar (v, input, strict);

integer v; Boolean input, strict;

begin
Boolean array visited [1: n]; integer j;

comment basic blocks are numbered 1, 2, ..., nj;

procedure inpvar (basic block);
integer basic block;

begin
integer edge;

visited [basic block] := true;

if bbinpv (basic block, v) then input := true

else
if (outdegree [basic block] = 0 ¥ bboutpv (basic block, v
strict := false
else

for edge &= 1, edge + 1 while

((edge < outdegree [basic block]) A (strict V ™linput))

do
begin
if — visited [head [basic block, edge]] then
inpvar (head [basic block, edgel);
end

end inpvar;

—1 -

strict ;= true; input := false;

for j:= 1 step 1 until n do visited [§] := false;

inpvar (1)
end subprogram inpvar
Program notes for procedure outpvar.
Global quantities,
procedures:
bboutpv (a, b) - Boolean procedure, with bboutpv assigned the
value true if the variable b is an output variable for basic
block a; otherwise it is assigned the value false.
arrays:
indegree [§]~~ The indegree of basic block a in the subprogram gtaph.
tail [a, b] - The basic block at the tail of the edge b to basic block a.
Jleaf Li] - The basic block which is the jth leaf (i.e. a vertex with
with outdegree = 0) of the subprogram graph.
variables:
n ~- The number of basic blocks in the subprogram graph.

number of leaves - The number of leaves in the subprogram graph.,

procedure subprogram outpvar (v, output, strict)

integer v; Boolean output, strict;

begin

Boolean array visited [1: n]; integer j:

comment basic blocks are numbered 1, 2, ..., n;
procedure outpvar (basic block);

integer basic block;

begin

integer edge;

visited [basic block] := true

if bboutpv (basic block, v) then output := true

else
if indegree [basic block] = 0 then strict := false
else

for edge := 1, edge + 1 while

((edge = indegree [basic block] A (strict Vv T output))

do

begin
if “ivisited [tail[basic block, edge]] then

outpvar (tail [basic block, edge]);

end

end outpvar;
strict = true; output := fglse;

for j := 1 step 1 until n do visited [j]:= false;

for j:= 1 step 1 until number of leaves do

outpvar (leaf[j])
end subprogram outpvar
It is important to observe that outpvar may not yield valid results
if there are vertices of C% which cannot be reached from the start vertex.
This does not appear to be a harsh assumption as it eliminates only subprograms

having segments of code which can never be executed. Such routines have an

obvious flaw which should be fixed before attempting the more complex analysis

discussed here.

T

Algorithms inpvar and outpvar are efficient. Both reqﬁire Ehat each
edge of (% be traversed at most once. Hence the running time of each is
at most proportional to the number of edges in (%. Mreover, by examining
the storage requirements of the various auxiliary arrays, it becomes clear
that the storage required to execute these algorithms is at most proportional
’to the sum of the number of vertices and edges of (%.

Both algorithms can be readily adapted to perform their tasks in
parallel for several variables at once. There is no reason why we must
determine input or output status for individual variables one at a time.
Instead it is possible and preferable to execute each algorithm only once,

for the set of all variables appearing either in COMMN or as bound variables.

As already noted inpvar and oupvar work properly for leaf subprograms.

These subprograms have the property that every input variable to a block is

a strict input variable, and every output variable from a block is a strict
output variable. Since non-leaf subprograms do not in general have this
property, some modifications must be made to the algorithms for such

programs., Specifically, inpvar can be used to determine the input status of
v in a non~leaf subprogram if the algorithm is augmented so that strict is set
equal to false every time a block using v as a nonstrict input variable is
encountered during execution. A similar minor modification to outpvar

will likewise enable it to work correctly on non-~leaf subprograms. Of

course, the modified outpvar and inpvar continue to work correctly on leaf

subprograms.

Applications of Input and Output Class Determination for Variables

Now that it has been demonstrated that the input and output classes of
COMMN and parameter list variables to FORTRAN subprograms can be efficiently
determined automatically, several applications become evident. Probably the
most obvious of these is as an automated documentation tool. By using the
methods outlined above, it is easy to automatically obtain the identities of
all variables which carry values into a given subprogram, as well as those
which carry values out. This is perhaps more useful as a check on existing
documentation than as a way of generating documentation from scratch. It is
quite conceivable that erroneous coding might be detected more readily if the
input-output status of subprogram variables is determined to be different from
the status asserted by the programmer in his documentation. Such unexpected
results can be assumed to be stimuli to sharply focused debugging efforts.
This application is philosophically akin to a number of efforts (see, for
example, [2], [3], [4], [5]1, and [6]) in the general area of verifying assertions
about programs.

Another obvious use is in verifying that values are not passed back to
calling subprograms through non-variables. Suppose S is a subprogram for
which the input-output status of its parameters is known. If S is invoked with
constants and/or expressions used as arguments, then it is important that
these non-variables be associated with formal parameters which are non-output
parameters from S. Anything else would cause a potential violation of the

ANST standard. It is now possible to make such determinations.

It is also worth observing that non-input, non-output parameters serve
no purpose in the formal parameter list of a subprogram. While it is unlikely
that putting such a variable in the parameter list of a subprogram will cause
an error, it is conceivable that it is symptomatic of some other error (e.g.

a misspelled name), however, or at best represents a coding inefficiency. TFor
these reasons, it seems reasonable to alert the programmer to the existence
of such parameters.

It is far more interesting, however, to reflect on the ways in which
these techniques can be employed to automatically detect semantic irregularities
in FORTRAN programs. Suppose that subprogram S is a leaf subprogram, and that
the input-output behavior of its variables has been analyzed. Assume that v,

a formal parameter of S, is found to be a strict input parameter to S. Suppose
T is a subprogram which invokes S, passing a value to the parameter v through
the argument variable w. Because v 1s a strict input parameter to S, we
cannot expect S to function properly within the ANSI FORTRAN standard unless

w receives a value prior to any invocation of S from T. Thus suppose E

is an execution path for T in which S is invoked during the execution of

block bi,' S cannot be expected to execute correctly unless w is an output

J
variable from some block, bi » where k < j; where it is assumed here for

k
simplicity that w is not an output variable in any statement of bj prior to

J
the invocation of S. If there exists an execution path which does not result
in w being an output variable before the invocation of S, then we must assume

that the path is never actually executed, or that its execution will cause an

error. In either case, the programmer should be advised of a probable error.

-17-

The above situation is readily detected with only the algorithmic tools

already at hand. Let us suppose that S is invoked during block b, of T and

J
that w is not used as an output from any statement prior to the invocation within

b, , as stated above. We consider bi to be a stop vertex of T, and use procedure
A| 3
outpvar to determine the output status of the variable w. If w turns out to be

strict output, no trouble is suspected. If not, there are at least some paths
which, if executed, will cause errors. If w turns out to be non-output a serious
coding error is indicated, for no matter how bi is reached, an error must result

k|
when S is invoked.

In the case where v is simply an input variable (but not a strict input)
to S we can no longer be certain of such errors. It is perhaps worthwhile
to print out a warning that all (or even some) execution sequences do not
initialize w before invocation of S, but this can at best be a tentative
warning with slight conviction behind it. Here we see the weakening effects
of not being able to distinguish between the semantic and nonsemantic
execution sequences of a subprogram. Perhaps v is used first as an input
parameter for all semantic execution sequences of S, but not for some non-
semantic execution sequences. In such a case v is semantically a strict
input variable. Hence even if all execution sequences of T (even all semantic
execution sequences of T) fail to initialize w before invoking S, however,
we cannot be sure we have detected an error.

There is an analog to the above situation in which errors are identified
with more difficulty and less certainty. Let us suppose now that v is a non-
input, strict output parameter from S, whose value is picked up by w in block
bi. of subprogram T. We would normally expect that w would be an input variable

j

to some block of T executed subsequent to bi or some statement of bi executed

. Y

subsequent to the invocation of S. It is easy to check for this situation by

-18~

using procedure inpvar in a way analogous to the way in which procedure outpvar

is used above. If w is not used as input for any execution path subsequent to
bi.” it is probably worthwhile to alert the programmer to this situation.
Un%ortunately this situation is not certain to be symptomatic of an error. It

is possible that the value placed into v by S is needed only after some invocations
of §, but not after all. If the value placed into v by S is never used as input
in any block following any invocation of S in any subprogram which ever invokes

S, then it is probably reasonable to suspect a coding error, or at least wasted

effort within subprogram S. Unfortunately the detection of this error is more

complex and time consuming than the detection of the previous case.

It is now clear that inpvar and outpvar are valuable in identifying

inconsistencies between the usage of variables in calling and in called sub-
programs., This is done essentially by first studying a called subprogram to
determine which calling sequence variables are input and which are output,
and then by studying the contexts of all statements involving invocations of
the subprogram to determine whether input variables have been previously
assigned values, and whether the values of output variables are subsequently
used.

It is clear that these techniques are perfectly applicable to all
execqtable statements, not just those invoking external subprograms. It is
certainly easier to make input and output variable determinations for state-
ments not involving external routines than for those which do. Once those
determinations are made for a given statement it is possible to use the exact
techniques described above to study the context of that statement. As before
we are interested in whether input variables have been previously assigned
values and whether the values in output variables are subsequently used.

There seems to us to be a slight difference in the severity of output

variable misusages, however. We feel that variables which are outputs from

—

non-external subprogram invocation statements should more strongly be expected
to be used subsequently as inputs. With the exception of the non-
utilization of a DO~index or subprogram parameter, there seems to be little
excuse for the creation of an output value which is never to be used as an
input. Hence for instance if the final use of a variable is as an output
from a non-external subprogram invocation statement which is not a DO, then
a serious error is indicated unless the variable is in COMMIN or the parameter
list.

The previous discussion suggests that inpvar and outpvar could and should
be modified to perform useful checking on variables which are internal to a
given subprogram. For each such internal variable, v, a routine much like
inpvar could be used to verify that v is first used as an output variable.
If there is any path for which this is not true, an error should be indicated.

Similarly a routine much like outpvar could be used to verify that the last

use of v is as an input variable, or perhaps as an output from a DO or external
subprogram invocation statement. If there is any path for which this is

not true, an error is likely.

iV AV Ll

Conclusions

We feel that this work is a first step towards the goal of computer
aided verification of FORTRAN programs. As noted earlier, we have not
addressed ourselves to the task of proving correctness of programs, but
rather have confined ourselves to searching for certain or highly likely
errors. We have demonstrated that it is possible to automatically detect
certain structural and semantic deficiencies. It is expected that packages
utilizing these techniques will prove useful to programmers by helping them
to find errors or weaknesses in their programs. Our goal, however, is to
produce comprehensive packages of such tools to be placed in the hands of
independent evaluators. The purpose of such packages would be to increase
the certainty of the evaluator that a given FORTRAN program is reliable and

correct.

References

Frank Harary, Graph Theory, Addison Wesley, 1969.

J. King, A Verifying Compiler, Debugging Techniques in Large Systems
(R. Rustin, ed.), Prentice Hall, 1971, pp. 17-39.

Hetzel, W. C. (Ed) Program Test Methods, Prentice Hall, 1973.

Floyd, R. W. Assigning meanings to programs. In Proceedings of Symposia

in Applied Mathematics, J. T. Schwartz (Ed), Vol. 19, 1966, pp. 19-32.

London, Ralph L. Bibliography on proving the correctness of computer
programs. In Machine Intelligence 5, 1970, pp. 469-580.

London, Ralph L. U, Wisconsin Computer Science Dept., Report No. 104
(Dec. 1970), 1-8.

