Continuous System Simulation Languages:
Design Principles and Implementation Techniques

Richard E. Fairley*

CU-CS-034-73 December 1973

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

*This work stupported in pert by NSF grants GJ383 and GI660.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ABSTRACT

Continuous system simulation languages are very high level programming
languages which facilitate modelling and simulation of systems characterized
by ordinary and partial differential equations. This paper discusses design
principles and implementation techniques for continuous system simulation
languages.

Following a brief introduction to very high Tlevel Tanguages, design
principles for continuous system simulation languages are presented. These
principles are illustrated by examples from the Continuous System Modelling
Program (CSMP) and the Partial Differential Equation Language (PDEL). A
typical program in each language is included.

Batch and interactive implementation techniques for continuous system
simulation Tanguages are discussed. The classical batch implementation
technique is to provide a preprocessor which translates the simulation language
into an algorithmic language such as FORTRAN or PL/1. The PL/1 preprocessor
is described as a useful Tanguage for the implementation of very high level
language translators.

The final section of the paper presents an interactive implementation
technique which interfaces a batch program processor to interactive graphics
display and updating routines. In this manner, efficient simulation code is
interfaced to flexible interaction routines. In addition, the batch pro-
cessor is preserved intact, thus requiring only one implementation of the

language for both batch and interactive applications.

INTRODUCTION

Programming Tanguages facilitate the mapping of abstractions from various
domains of application into the computer representation of those abstractions.
A programming language is thus a vehicle of communication between man and
machine. The well-known high level Tanguages, such as FORTRAN, ALGOL 60, and
PL/1 permit the implementation of algorithmic computer programs in notations
that are both human oriented and machine translatable.

Very high level Tanguages narrow the conceptual gap between man and
machine by permitting a description of the problem to be solved; statement of
the algorithmic solution is not explicitly required. The very high level
language translator automatically synthesizes an algorithmic program to
solve the relationships among selected attributes of the system, and to
present the solutions to the user in human oriented formats. By restricting
the universe of denotation to a specific area of application, a high degree
of structure and context can be incorporated into a very high level language,
thus making the language easy to use and relatively easy to implement.

Modelling and simulation languages form an important subset of the very
high level languages. Modelling and simulation languages have been developed
for a wide range of applications including computer simulation (hardware and
software), discrete systems simulation, ordinary differential equation modelling,
and partial differential equation modelling. Languages for modelling of
ordinary and partial differential equations are termed continuous system simula-
tion languages. The activities accommodated by these languages are analysis,
synthesis, identification, and optimization of continuous systems. Analysis

involves the determination of system output, given the structural description

and the external inputs to the system. Synthesis involves finding a structural
description which transforms given inputs into desired outputs. Identification
is concerned with finding inputs to produce desired outputs for a given
structural description. Optimization involves finding a system which is optimal
with respect to some criteria of optimality. Due to the lack of algorithmic
techniques for synthesis, identification, and optimization, these activities

are best accomplished in a Tanguage which permits trial and error analysis in

an interactive mode. The following sections of this paper describe design
principles, and batch and interactive implementation techniques for continuous

system simulation languages.

LANGUAGE DESIGN PRINCIPLES

The high level languages, such as FORTRAN and PL/T1, have certain
technical characteristics which facilitate the specification of algorithmic
processes. These characteristics include the syntactic structure, data types,
data structures, operators, control mechanisms, I/0 facilities, and storage
management capabilities of the language. In a similar manner, very high level
languages incorporate certain characteristics which facilitate the description
of models. These characteristics include:

@ structural description

@ parameterization

e algorithm control

e default conditions

e multiple reruns

e initialization control

@ termination control

¢ flexible output control
e user extensions

e free format syntax

The structure of a model specifies the 1nterre1ationships among the
independent and dependent variables of the model. The structural description
includes specification of equations, number of dimensions, geometry, the
solution algorithm to be used, and the types of initial conditions and boundary

conditions. For example, the Partial Differential Equation Language (PDEL) (1)

permits the transcription of partial differential equations into alphanumeric
PDEL statements. A two dimensional diffusion equation of the form:

90

5 30y , 8 90y _ . 20
37 (o) 3% * o7 oy 57) = Ky 57

X X aY
is transcribed into the following EQUATION statement:
% EQUATION = 'PX, SIGX*PX, PHI + PY, SIGY*PY, PHI = KT*PT, PHI';
Expressions for SIGX, SIGY, and KT are provided in Parameter statements.
Symbols PX, PY, PT, and PHI are reserved words in the Tanguage.
Other stkuctura] statements in PDEL provide information such as the number
of spatial dimensions (the % DIMENSION statement), the geometry of the field
(the % GEOMETRY statement), the solution algorithm to be used (the % ALGORITHM
statement), the boundary condition type (the BCOND and BCGRAD statements), and
the initial condition type (the SCOND and SCGRAD statements). Parameterization
of a model permits specification of equation coefficients, boundary conditions,
and initial conditions in the form of general arithmetic expressions, which can
be arbitrary functions of the independent and dependent program variables. Thus,
particular solutions to non-Tinear and time and space varying problems can be
determined. For example a parameter statement in PDEL might be of the form:
% SIGX = 'X*%2 + Y**2t;
In addition to coefficients, and initial and boundary condition expressions,
other parameterization statements in PDEL permit specification of:
e the number of grid points
¢ the interval between grid points
e maximum number of iterations/step
® the overrelaxation factor
e the output print interval
& the output plot interval

& maximum relative error

-6-

A complete PDEL program is contained in Appendix 1.

The Continuous System Modelling Program (CSMP) (2), which is similar to
the Continucus System Simulation Language (CSSL) (3), permits the transcription
of ordinary differential equations into alphanumeric CSMP statements. For
example, a second order differential equation of the form:

X'+ aX+aX=fXt); X(0)=A X0)=8

2 1
can be converted into a pair of simultaneous first order differential equations

of the form:
X; = X% x](o) = A
X2 = f(X].t) - a2X2 - a]X] XZ(O) = B

This set of equations can then be programmed in CSMP as:

X1 = INTGRL(A,X2)
X2 = INTGRL (B,Y)
Y = F(X1,T) - A2*%X2 - A1*X1

As 1in the case of PDEL, numerous statement forms permit parameterization
of the model. A complete CSMP program is contained in Appendix 2.

The solution method for differential equations in CSMP and PDEL is by
finite difference algorithms. A 1ibrary of algorithms is provided in each
language, and the user can select an appropriate one. Parameterized subroutines
are retrieved from the translator library and linked together upon recognition
of the appropriate source statements. The nonprocedural source program is thus
translated into coordinated sequences of calls to subroutines which constitute
a procedural program. In CSMP, the user selects an integration algorithm
using the METHOD statement. Thus, a statement of the form:

METHOD MILNE
will cause retrieval of the MILNE integration routine from the translator

library.

In the absence of a METHOD statement, the translator retrieves
a default algorithm. Default conditions, free format source text, and non-
procedural ordering of statements allow the novice user to concentrate on the
essential features of the language. As the user becomes more sophisticated,
he can override the default conditions and gain greater control of the simu-
Tation program by specifying a particular algorithm, or by supplying his own
algorithm in the form of a procedural subroutine. In CSMP, a user supplied
integration routine is retrieved upon recognition of the statement:

METHOD CENTRL
The routine itself must be a FORTRAN coded algorithm, which is supplied be-
tween the STOP and END statements of the CSMP program.

The multiple rerun capability permits incremental updating of the model,
thus permitting parametric solution runs in one batch processing cycle. In
PDEL multiple reruns are specified by a % RUNNUMBER statement which specifies
the total number of runs. The parameters for each rerun are supplied as
illustrated in the sample program of Appendix 1.

Initialization control permits algorithmic manipulation of input data
prior to the start of the simulation run. Termination control can assume
various forms. In thé simplest case, termination can be unconditional; for
example, after 100 iterations of the integration algorithm. Conditional
termination control can be phrased in terms of acceptable relative error be-
tween two solution iteratiohs. Termination control can be combined with the
uéer extension capability to permit, for example, numerical solution of a two
point boundary value problem by iterative refinement of an initial value until

two successive final values agree to within an acceptable error value.

Output control specifies the solution output interval, and the format
of the solution presentation. For example, numerical 1listings, alphanumeric
print plots, and hard copy analog plots may be requested. In the case of
analog plots, a data set is prepared for off-line plotting. In CSMP the PRINT,
and PRTPLT statements permit specification of output variables. The output
interval is specified in the TIMER statement.

The user extension facility in CSMP permits incorporation of user defined
macros and subroutines into the simulation program. Macro definitions permit
the definition of new statement forms in terms of existing statement forms.
Thus, complex functions can be constructed from the elementary ones. User
supplied algorithmic subroutines can be provided as the semantic definition
of a new statement form. User supplied routines can also replace existing
subroutines in the translator Tibrary.

In a nonprocedural language, such as PDEL or CSMP, the ordering of source
statements is not related to the sequential order of the algorithmic code
produced by the translator. Thus, source statements can appear in any order.
In some cases, sorting routines are used to automatically order the source
statements prior to translation. For example, the sorting method used in
CSMP assumes that all integrator outputs are available. The sorting routine
then traces each input of each integrator backwards through all the preceding
functional operations until each path is terminated by the appropriate
integrator output. The computational sequence for a system of ordinary
differential equations is established by reversing the order of operations en-
countered in each computational path. Within a source statement the syntax 1is
free format. Delimiters such as blanks and column alignments are avoided in

order to make the language easy to use.

A BATCH IMPLEMENTATION TECHNIQUE

The classical implementation technique for a very high Tevel language
is to provide a preprocessor which translates very high Tevel language state-
ments into a procedural language such as FORTRAN or PL/1. While this approach
is less efficient than direct translation into assembly Tanguage or machine
code, it is more flexible and easier to implement. Desirable features of a
preprocessor include a pattern matching macro facility, and the ability to
conditional retrieve source text from a program library. These capabilities
permit retrieval and compi]afion of a procedural source program, whose final
form is dependent upon the very high level language source statements.

The PL/1 preprocessor, which was used as the implementation Tanguage for
PDEL (4), provides desirable features for the implementation of a very high
level language translator. Preprocessor statements are distinguished by a
leading percent sign (%). The preprocessor statement types and their usage
are summarized in Table 1.

The %INCLUDE statement retrieves source text from a program library and
incorporates it into a source program. Retrieved Tibrary text may contain
both preprocessor and nonpreprocessor statements. The retrieved source text
is subsequently scanned for preprocessor statements. In particular, the re-
trieved text may contain other %INCLUDE statements. Conditional retrieval of
source text can be accomplished by using the %INCLUDE statement in conjunction
with the %IF statement.

ATl preprocessof variables must be declared in a %DECLARE statement. Pre-
processor variables can be of integer type or character string type. Integer

variables can be used as counters to control the scan of the source text.

-10-

TABLE I

PL/T Preprocessor Statements

Statement Type

%

%
%
%
%

[

&)
(]

%
%
%
%
%

INCLUDE

DECLARE
Assignment
ACTIVATE
DEACTIVATE

PROCEDURE
RETURN

DO
END
IF
GOTO
Null

Use

Retrieval of source text
from a Tibrary.

Declaration and manipulation
of preprocessor variables

Declaration of preprocessor
functions

Control of the
preprocessor scanner

-11=

Character string variables permit alteration of procedural program text. When
a preprocessor variable is encountered in the text, it is replaced by the
character string which is the current value of the variable. In this manner,
procedural source text can be parameterized by the use of preprocessor
variable names. Statements in the very high level language can be used to
assign values to the preprocessor variables, thus particularizing the algor-
ithmic program to the problem description.

The %ACTIVATE and %DEACTIVATE statements permit selective scanning of
the source text. Thus, selected portions of the source program can be included
or omitted from preprocessing.

Preprocessor function procedures are similar to preprocessor variables,
in that the value of the function (an integer or character string) is copied
into the source text in place of the function name. However, preprocessor
functions are more powerful; they can generate new source statements whose
formats are determined by the arguments passed to the function procedure.

The %DO and %END statements delimit preprocessor DO groups, and pre-
processor DO Toops. Preprocessor DO Toops allow 1teratiVe preprocessing. The
%IF statement resembles the normal IF statement; the %ELSE clause is optional,
and nesting is permitted. The %GOTO statement is used to transfer control of
the preprocessing scanner. The %GOTO statement must specify the Tabel of a
preprocessor statement. The %NULL statement can be used to provide a preprocessor
transfer of control point, and to allow proper pairing of the %THEN and %ELSE
clauses in nested %IF statements.

The primary disadvantage of the PL/1 preprocessor as an implementation
~ language is its inefficiency. However, it is easy to use and provides a great
deal of flexibility. This facilitates modifications and refinements to the

language being implemented.

-12-

AN INTERACTIVE IMPLEMENTATION TECHNIQUE

The user of a continuous system simulation language is typically con-
cerned with analysis, synthesis, identification, and optimization of continuous
systems models characterized by ordinary and partial differential equations.
Due to the lack of algorithmic techniques for synthesis, identification, and
optimization, these activities are often realized by iterative analysis, and
by other trial and error solution methods which require feedback from the user.
These activities are well suited to an interactive computing environment. In
addition, the use of an interactive graphics termina] permits human oriented
description of models and input data, and the rapid assimilation of large
quantities of output data.

The basic design criteria for an interactive graphics mode]]ing system
are flexible interaction, and efficient machine code. Flexible interaction
is a necessity in dynamic modelling studies; the on-line user must be able
to alter his model in an arbitrary manner by entering any valid set of state-
ments (including an entire source program) via the interactive console. How-
ever, efficient machine code for analysis and display computation is also
necessary; the finite difference algorithms utilized in the numerical solu-
tions of ordinary and partial differential equations, and the high data rates
inherent in the generation and manipulation of graphics console display orders
place heavy computational demands on the largest and most sophisticated
digital computers.

Flexibility and efficiency have traditionally been regarded as opposite
extremes of a common spectrum; the position that a particular implementation

technique occupies in that spectrum is a function of the trade-off decisions

-13-

made in the software design process. For instance, batch mode compilers
produce efficient, optimized, but inflexible object code; incremental compilers
and interpreters provide on-l1ine flexibility, but are typically orders of
magnitude sTower in execution speed than batch implementations of the same
language.

The concept of Batch Compatible Interaction (BCI) was developed to
achieve the conflicting goals of efficiency and flexibility in interactive
computing systems (5). In a BCI system, batch compiler generated analysis
and display code is interfaced to interpretive routines which permit flexible
output displays, and onfline updating of the source program.

Numerous advantages accrue by using existing batch program processors to
generate the machine code for analysis and display:

1. Efficient, directly executable object code is generated.

2. One processor is utilized for both batch and interactive applications,
thus insuring compatability between the two versions.

3. Existing higher level software for interactive display can be utilized.

4, Existing batch programs can be converted directly to interaction.

5. New language users can concentrate on learning the language in the
batch mode, using existing documentation.

6. New on-Tine users already familiar with the batch language are easily
acclimated to the interactive environment.

7. Programs can be debugged and checked out in either the batch or inter-
active mode, as desired.

8. Machine independent batch programs can be transferred from other

machines to the interactive machine.

-14-

9. The interactive display routines can be easi]y modified.

10. The accumulation of sophisticatgd and elaborate program processors
developed during the past decade is possible: a new implementation
of the Tanguage is not required.

The flow of control in a BCI dynamic modelling system is illustrated in
Figure 1, and explained in the following discussion:

STEP T: The user enters a simulation program by the card reader or at the
graphics terminal. During preprocessing, the source text is parsed to deter-
mine whether execution is to be accomplished in the batch or the interactive
mode. If the program is to be processed interactive]y, interrupt routines, and
interpretive display and input routines are retrieved from a program library
and linked to the compiler produced computational analysis code.

STEP 2: Processing is completed for the submitted program, utilizing the
input data file. An output data file containing user requested output data
is prepared for subsequent display and/or printing. When the initial analysis
cycle (including multiple reruns) is completed, the program either terminates
normally, in the batch mode, or else branches to the display routines to initiate
interaction.

STEP 3: The display routines permit the user to observe the output data
and the source text which produced that output. Numerical solution values are
transformed into display orders which generate solution graphs and equi=-
potential contour plots when executed by the terminal.

STEP'4: The user moves free1y between display and input routines; exam-
ining solutions, viewing old source texts, and entering new source statements

for on-Tine processing.

-15-

SOURCE PROGRAM

1

PREPROCESSOR
/ AND
COMPILER .
/ l
===, l
| .
INPUT !
,""“"""‘%DATA (|
[JFILE]y [
7 X / " ——— \) J{ !
COMPUTATION N {
UPDATE le— ANALYSIS
ROUTINES CODE :
R F——— / |
| OUTPUT '
DATA |
: FILE |
v \ 3. v f
DISPLAY e
ROUTINES [|
GRAPHICS I
TERMINAL i r.l_.i__r
INPUT | STRCE :
ROUTINES ‘*1 FILE ,
|l)
[' 5 l
P
INTERPRETIVE | INTERPRETIVE
SEMANTICS PARSING
INCREMEHTAL STRUCTURAL
CHANGES CHANGES

— CONTROL FLOW
= — — — DATA FLOW

BATCH-COMPATIBLE INTERACTION
FIGURE 1

-16-

STEP 5: MWhen the user has completed updating the model, control is
passed to the interpretive routines for initiation of the next solution cyc]e;
The interpretive routines have two primary functions: parsing of console
entered source text, and generation of semantics corresponding to valid source
statements. Parsing results in one of two alternatives, depending on the
type of statements entered by the user: structural processing or incremental
processihg. Structural statements are those which change the form of the
integration algorithm; for instance, changing the equation statements, the number
of dimensions, the equation type, the boundary condition type, or user selection
of a different algorithm. Structural changes necessitate recompilation of the
analysis code; the flow of control returns to step 1. A longer response time
delay will be required for recompilation of structural statements than for
incremental changes to the current model.

STEP 6: Incremental changes invoke interpretative routines which update
the computational analysis code.

STEP 7: In addition to supplying new input data, the computational up-
dating routines can alter the execution sequence of the analysis routines, and
selectively exclude or include compiled analysis code to be used in the next
solution cycle.

STEP 8: During reexecution of the analysis routines in step 2, incremental
updating is incorporated as follows:

Loop indices and tests relating to geometry, step size, errors, and
numbers of iterations, etc. are set in step 6. In step 2, all of the compu-
tational parameters are evaluated as if the present solution cycle was the

last of the initial reruns. At each step of the computation, just prior to

C=17-

execution of the integration algorithm, a branch is made to the updating
routines of step 7, where updated parameters are evaluated interpretively.
Any new values generated in this evaluation overwrite the values used in the
last initial rerun. The integration routine is executed to completion 1in
this manner, and new output data is included in the output data file. The
entire process between steps 2 and 7 (or 1 and 7) can be repeated iteratively
until the desired solution is obtained, or until the user determines that the
desired solution is not obtainable.

N The thrée hajor séftwére Components in a BCI system are the analysis
(simulation) code, the display code, and the interpreter. The interaction of
these éOmponents is illustrated in Figure 2. Interfacing of the analysis and
display routines in BCI-PDEL was accomplished by compile time replacement of
calls to batch output routines with calls to interactive graphics routines. These
routines have access to the output data file utilized by the analysis code.
Thus, solution displays can be prepared and presented by the display routines.
The implementation was slightly complicated by the fact that analysis code is
generated by the PL/1 compiler and display code is generated by the FORTRAN
compiler. For instance, PL/1 arrays are referenced by dope vectors and are
stored in row major order, while FORTRAN accesses arrays in column major order
with no dope vectors assumed. Despite minor problems, the two languages were
successfully interfaced.

The basic functions of the interpreter are:

¢ parsing of interactively entered source statements

e formatting and writing input data into the analysis code input file
e preparation of a source code file for recompilation (if necessary)

e control of the execution sequence of batch generated routines

-19-

The interpreter was generated by a meta-translator based on the APAREL
system designed by Balzer and Farber (6). APAREL consists of a set of PL/1
callable subroutines which permit definition of syntax in a BNF-like notation,
and the association of PL/1 coded semantics routines with a successful parse.

Execution of the same batch compiled code for both batch and on-Tine
entered source statements can be accomplished by specifying the label of a call
statement to the batch compiled procedure as the entry point of the semantics
generator for the on-line entered source statement. FORTRAN generated subroutines
can be invoked by supplying a PL/1 call statement which calls the FORTRAN sub-
routine. Control is passed to the PL/1 call statement upon successful parsing
of the appropriate on-line input statement. Thus, it is always possible to
execute PL/T or FORTRAN compiled object code in an on-line mode, independent of
the particular function of the compiled program being converted to batch-
compatible interaction. If necessary or desirable, the original batch program
can be partitioned into sets of subroutines, each of which is a meaningful atomic
program unit in the on-1ine mode. The segmentation of a program into sets of
subprograms can always be accomplished; no new algorithmic code need be inserted
into the program being converted to batch-compatible interaction. The primary
advantage of this approach is that the on-Tine interpreter can coordinate the
execution sequence of batch compiled routines. Thus, the compiler generated
object code can be restructured at run time to reflect the new processing re-
quirements imposed by interactive processing. The entire program must be re-
compiled if the interactive input requests a subroutine that has not been
compiled and linked to the program. In this event, a warning message is issued,

and a somewhat longer response delay is incurred.

-20-

| The>f1ex1bilityVof a BCI system is illustrated ianigure 1:

1. Blocks 1 and 2 provide a batch processing capability.

2. Blocks T -2 -3 -4 ~ T establish a remote batch processing loop.

3. Blocks 3 -4 ~-5=-6~7 - 3 form an interactive processing‘1oop.

The BCI system thus provides the advantages of efficient batch processing
and flexible interactive processing.

The BCI methodology has been used to convert CSMP and PDEL from the
batch mode to Batch Compatible Interaction (7). The implementations are truly
batch compatible: Batch mode CSMP and PDEL programs can be processed in the
interactive mode without modification, and with complete agreement of obtained
solutions.

Execution time for the interactive solution cycle is dependent on the
types of statements processed, but in general, response time is short enough
that the user experiences no significant time delays, except in the case of
structural changes, which necessitate recompilation of the analysis routines.
Execution time for the analysis routines is not noticeably different between
batch and interactive modes, because the same object code is executed in both

cases.,

-2]~

Summary

This paper has presented design principles and implementation techniques
for continuous system simulation Tanguages. The design features of a simulation
language were summarized and illustrated by sample programs in the CSMP and
PDEL Tanguages.

The PL/T preprocessor language was described as a batch implementation
language for very high level language translators. The utility of preprocessor
PL/1 has been demonstrated in the implementation of PDEL.

Batch Compatible Interaction was discussed as an interactive implementation
technique which utilizes the batch processor. The advantages of batch efficiency

and interactive flexibility are accrued in this manner,

-20-

REFERENCES

1. Cardenas, A. F. and W. J. Karplus, "PDEL - A Language for Partial Differen-
tial Equations", CACM, Vol. 13, pp. 184-191, March, 1970.

2. System/360 Continuous System Modeling Program (360A-CS-16X), IBM Applica-
tion Program H20-0240-3.

3. SCI Software Committee, "The Continuous System Simulation Language (CSSL)",
Simulation, pp. 281-303, December, 1967.

4, Cardenas, A. F. and W. J. Karplus, "Design and Organization of a Translator
for a Partial Differential Equation Language", AFIPS Conference Proceedings,
Vol. 36, pp. 513-523, Spring, 1970.

5. Fairley, R. E., "A Batch-Compatible Interactive Computing System for Dynamic
Model1ling", Ph.D. Dissertation, UCLA, July, 1971.

6. Balzer, R. M. and D. J. Farber "APAREL - A Parse and Request Language",
CACM, Vol. 12, pp. 624-631, November, 1969.

7. Fairley, R. E. and A. F. Cardenas, "Batch and Interactive Simulation of
Partial Differential Equation Models", 1971 Summer Computer Simulation
Conference Proceedings, July, 1971.

-23-

APPENDIX 1
Sample PDEL Program

The following two-dimensional elliptical equation is to be modelled:

i
~

(e)l
where:

Oy T Oy = 10+Y K=20
The initial solution run is for a discretized rectangular 25 x 25 grid, with
a spacing of 2 units between grid points in both the X and Y directions.

Dirichlet boundary conditions of 0.0 and 100.0 are specified as illustrated in

Figure 3.
A 0.0

£ ™~

- -\
25 x 25 GRID
100.0 ¢ o }0-0

N o

— g J

100.0

GEOMETRY AND BOUNDARY CONDITIONS FOR PDEL EXAMPLE
FIGURE 3

-24-
In addition, the following items are specified:

1. a overrelaxation factor of 1.7

2. a relative error tolerance of 0.05

3. a maximum of 100 iterations

4, solution printout at every grid point

The model is updated for the second run by changing the geometry and
boundary conditions to those illustrated in Figure 4; In addition, the following
changes are made:

1. a 16 x 16 grid

2. a spacing of 1.0 between grid points in the X and Y directions

50..0
F‘(2
50.0 % $0.0
500 |
£ T\
P
16 x 16 GRID 0.0
q-*—~"———~—\
ﬁ
50.09
50.0
N p
| J
v
0.0

GEOMETRY AND BOUNDARY CONDITIONS FOR PDEL EXAMPLE
ETCHRE 4

3.

-25-

an overrelaxation factor of 1.5

4. a relative error tolevance of 0.1

5.

a maximum of 155 iterations.

The PDEL program has the following form:

W oo ~NOUT W N

T8 39 59 3T 52 9 3¢ 3 2 ¢ 3¢ 5 59 39 39 39 29 3 38 5e e e e

INCLUDE S$PDEL(INITIAL);

DIMENSION = '2%;

DCL (PARAMI1 ,PARAM2) CHARACTER;
EQUATION="'PARAMI*PX,PX,PHI + PY,PARAMI*PY ,PHI=PARAM2';
PARAM2='0.0";
DELTAX="2.0";
DELTAY="2,0";

PARAMI="10+Y'; %
GRIDPOINTSX="24"; %
GRIDPOINTSY="24"'; %

GEOMETRY="(1:23,1:23)";

BCOND='(*,0)=100; (*,24)=0;

MAXERROR='0.05"; %
ORF='1.70";
PRINTINTX="'1": %
RUNNUMBER="2";
INCLUDE $PDEL(HEART)
/% RruN2 . */;
MAXERROR="'0.1";
ITERATE="155"
ORF="1.,5";
GRIDPOINTSX='15'; ¥
GRIDPOINTSY="15"; %
GEOMETRY=" (1:15,1:4)"
BCOND="' (*,15)=50.0;
INCLUDE S$PDEL(HEART) :

(0,%)=1005 (24,%)=0";

LTERATE="100";

PRINTINTY="1";

DELTAX="1.0":
DELTAY="1.0";

(1:11,5:6) ¢
(0,%)=50.0;

(511,734 ¢
(*%,0)=50.0";

-26-

APPENDIX 2
SampTe CSMP Program

The following second order system is to be modelled by two simultaneous

first order differential equations:

X + AX + BX = Y X(0) = IC1
X(0) = IC2
or.
X1 = INTGRL(ICT,X2)
X2 = INTGRL(IC2,F)
F =Y - A%K2 - BA(T
where

X1 = X.

The following conditions are specified for the mode]:

1. Milne integration

2. Solution interval: 0 - 7.5

3. Solution step size: 0.05

4, Print and plot X1, X2, and F

5. Parameters: A = 4.0, B = 6.0, IC1 = 2.0, IC2 = 0.0, Y = 10.0
The model is updated in the following ways:

1. Parameters: A = 2.0, B = 3.0, IC1 = 5,0, IC2 = 3.0

2, Solution interval: 0 - 15

3. Step size: 0.1

4, Integration method: Runge-Kutta

e
The batch CSMP program for this model has the following form:

* FIRST RUN

F=Y-A*X1-B*X2
X2=INTGRL(IC2,X1)
X1=INTGRL(IC1,F)

METHOD MILNE

TIMER DELT=0.05,FINTIM= 7 5,0UTDEL=0.05 ,PRDEL=0.]
PARAM A=4.0, B= 6 0, IC1=0. O IC2=3.0, Y= 10.0
PREPAR ‘ XT,XZ,F

PRINT X1,X2,F

PRTPLT X1,X2,F

END

* SECOND RUN

PARAM £=2.0,B=3,0,1C1=5.0,1C2=3.0

TIMER DELT= 0 1, FINTIM 15, 0 ,OUTDEL=0.1,PRDEL= O 1
METHOD RKS

END

STOP

ENDJOB

