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Principal Minor Determinant Formulas

1. Introduction. Our purpose in these notes is to provide a reasonably
complete survey of the known formulas for expanding determinants of
matrices in terms of principal minors and to explain these formulas in
graph theoretic terms. Some of the results presented have been published
(see [1], [2]) or used in already published papers (see, for example,
137, 141, |5], 16], [7]D but nowhere has a systematic account of these
results been given. We shall also present several new formulas which
have not yet been published.

We shall denote by gh the set of the first n integers
@n =(l2...n) . By a path in 95 we mean an ordered sequence
(il 12 o is)’ s =2 2, of integers where each ij e ga . We say that
the path has length s-=1 . A path will be called a chain if the

integers 1 .,iS are distinct. Thus s < n for a chain. If all

10
of the indices in a path are distinct except for the first and last

indices we call the path a cycle (s <n+1 for a cycle). These

concepts relative to the set gh can be extended readily to matrices.

Definition 1. Let A = [aij]; be a square matrix over any field & .

i) By a chain in A we mean any product

s=1
a(iy ...15) = TT'aikik .
k=1 +

where P | is a chain in
(i, S) 2,

ii) By a cycle in A we mean any product

s=-1
a(l1 .a.ls) = ( TTvai i ) a;
k=1 kK k+1 s 1

where (il "'isil) is a cycle in @ , s =1



If (il ...is) is a chain in e, we call i1 the initial index
of the chain and is the terminal index of the chain. Thus if Jj and
k are fixed indices in g% and we wish to indicate a chain in A with
initial index j and terminal index k it is natural to use the
notation a(j - k) .

We require also the following concepts. Let H = (h "hr) be

1,0.

a subset of g% such that the indices satisfy h < h2 R hr .

1
We call H an increasing multi-index of length r . The set of all

increasing multi-indices of length r will be dencted by g(n,r) .

The set g(n,r) contains (2) elements. If H ¢ g(n,r) we denote
by H'’ the compliment of H in gh regarded as an element of g(n,n~-r).

If H € o¢(n,p) and K € g(n,p) we shall let A(H,K) denote the

submatrix of A contained in the rows H and columns K . Thus
P
A(H,K) = [ah.k.]l .
1)
When H = K we write A(H) in place of A(H,H) . The submatrices

A(H) are the principal submatrices of A . When H = Gh we have

A(@%) = A hence A 1is a principal submatrix of itself.

Definition 2. Let H € @(n,p) . We shall denote by A(H) the sum of

all of the cycles of length p (p-cycles) in A(H) .

We remark that there are (p=-1)! p=-cycles in A(H) where
H ¢ o(n,p)

As an example to illustrate these concepts suppose n =5 so

— 5 — [=
A = [aij]1 and H = (145) . Then



2. The graph of the matrix A . It is by now widely understood that
many results in matrix theory can be explained most conveniently with
the help of graphs. We shall indeed rely heavily upon this tool in

these notes.

Definition 3. Let A = [aij]z be a square matrix. The digraph

(directed graph) of A has vertex set gh and a (directed) edge (i,J)

whenever aij A0 . We denote the digraph of A by D(A) .

All concepts relative to a digraph such as path, chain, or cycle
should be mentioned with the adjective directed, but we shall usually
ignore this and speak simply of chains and cycles. We remind the
reader that a path in D(A) is an ordered sequence of integers

(i ...is), s = 2, such that each edge (i ,i ), 1 «j<«gs-1,

1 J 1j+l
belongs to D(A) . We then define chains and cycles in D(A) in the
same way as was done in the introduction for gh

Observe that our point of view here is different from that used
in the introduction. There we placed no restrictions upon the possible
paths, chainsg, and cycles. From the graph theoretic point of view
Qn was regarded as being the vertex set of a complete digraph so that
ifor any 1 and Jj, the edge (i,j) could be assumed to be present.
This enabled us to define chains and cycles in the matrix A in a
completely general way. Now, by associating D(A) with A, we can
concentrate only upon those chains and cycles of A which are not zero.
Indeed, it is clear that there is a 1-1 correspondence between the

nonzero cycles of A and the cycles of D(A) and a 1-1 correspondence

between the nonzero chains of A and the chains of D(A)



Another observation is in order. Our digraph D(A) has loops.
Many authors do not allow loops in digraphs but we find them essential
for our purposes. The loops are the 1-cycles of D(A) and correspond
to the elements on the principal diagonal of A

Now obviously one reason for introducing D(A) is to enable us to
give pictorial representations of the structure of the matrix A . As

an example consider any matrix of the form

A=l0 x x 0 0 0
X X X 0 0 0O
x 0 0 x 0 0 0
0O 0 x x x 0 0
0 0 0 x 0 x x
0 0 O 0 x
0 0 0 X x 0

where the x's denote the locations of nonzero elements. Then we have

D(A):

Figure 1

Here and elsewhere we follow the convention of using an undirected edge
between two vertices whenever both directed edges are present. This
should cause no confusion. Also it is not necessary to put an arrowhead
on any of the loops.

Among the nonzero cycles of any such matrix A as shown above are
345a57a76a64 » which is indeed the only nonzero 4 - cycle of A , and
a12a23a31 Each pair of distinct vertices is connected by a chain,

for example, is a chain of length 6 .

291%13%34%45%57%76



3. The first determinant formula. We begin our discussion of principal

minor determinant formulas with

Theorem 1. Let H ¢ o(n,n-1) be fixed. Then

n- 2
\ L ngl-p -
d(a) = " AH + ZJ (-1) ?J AKA(K’) (1)
=0 K¢o(H,r)

Before proving Theorem 1 some remarks are in order. Note first

that H’ is a single index, hence is simply a 1-cycle of A .

SH
Moreover, we have used the symbol o(H,r) to denote the set of multi-
indices of length r, 0 < r < n-;2 ; contained in the set H . When
r =0 this set is empty and we set AK = 1 . This convention will be

uged henceforth.

Proof of Theorem 1. For definiteness we shall suppose that H’ = n

Recall that

!
det A = zJ sgn o alg(l) a20(2) e ano(n)
0(95)
Consider the set of permutations of 9% for which o(n) = n . There is

a 1-1 correspondence between this set and the set of permutations of

éh—l . Thus we can write
det A = ann §: sgn o al,c(l) “ o an—l,c(n—l)
o(@,_;)
’
+ E: sgn o alc(l) e B0
o)

4

a A+ S‘ sgn 0 a

nn H ced
o (@n)

, (2)

lo(l) °°° ano(n)



where the prime on the summation means the terms corresponding to permu-
tations of gh leaving n and éh-l invariant are omitted. To com-
plete the proof consider next the set of permutations of éh such that

a. . oA, . P . a, . is a fixed cycle of length
310G31) 3,90, SRR A IPD I BC & I
r>1 in A . Let K be the set of indices complimentary to (jl,...,jn)

in g(n,n-r) . Our set of permutations is in 1-1 correspondence to

the set of permutations o(X) . Note that the set (jl "'jr) must
contain n . Moreover, we have
n+l-r
sgn 0(@ ) = (-1) sgn o(K)
for any such permutation of g% . Thus the contribution of this set to
14
), in (2) is
n+l-r
(-1) a, . ceea, , a, p A
JyoGp Jpq0GLy) 300G K
where is a fixed r-cycle in A(K’) . It only

a. . el a, .
JlU(Jl) JrG(Jr)
7
remains for us to establish that all of the sum z: in (2) is exhausted
by such terms. But this follows from the fact that every permutation
c(gh) can be written uniquely as the product of cycles and all of

those in which the 1 - cycle ann occurs appear in the first term

of (2). Thus theorem 1 is proved.

There are some important facts that should be noted before we turn
to some examples illustrating the formula. Suppose that n-r is even

so that each summand in A is a cycle of even length. Then the

(K"
corresponding term in formula (1) has a negative sign attached. On the

other hand, if n-r is odd the corresponding term has a positive sign

attached. Hence we have the following rule of signs for the terms in



formula (1): Each term corresponding to a cycle of even length has a
negative sign attached and each term corresponding to a cycle of odd
length has a positive sign attached.

In view of the above remarks we can rewrite formula (1) in the
following way. Let i be a fixed index and set H =i’ =
(L2...i-1i+1...n) . Then

n

) N\ r—1 l
d(a) =a . A+ }J (-1) 21 A

'
. 1n

)
r=2 k € (H,n~r)

Next we point out that the formula may be thought of as an expansion
formula relative to a fixed principal diagonal element of the matrix A
Each cycle which appears explicitly in (1) contains the index H' .

This fact leads us at once into a graph theoretic interpretation of the

formula which is embodied in the following proposition.

Proposition 1. The only possible nonzero terms in the formula (1) are

those which correspond to cycles of D(A) which contain the vertex H! .

With the above facts at our disposal let us turn to some examples

illustrating the theoremn.

Example 1. Consider any matrix having the form given in section 2.
From the digraph illustrated in figure 1 we see that the vertex 1,

for example, is contained in exactly 3 nonzero cycles, namely

819897 0 Byg8gy s ARd a;,35434, -

Therefore by formula (1) we must have

d(A) = A

“210%91 A34567 T 213%31 “24567 (3)

* 898945857 Aysgy



for any such matrix. The formula therefore reduces the computation of
the seventh order determinant to that of two fifth order determinants
and one fourth order determinant.

In example 1 we deliberately choose to expand relative to an index
contained in a minimal number of cycles resulting in as few nonzero
terms as possible in the formula. That this is not always the best

policy is illustrated by the next example.

n

mm_@___l i -] } ii i ’ < < ’ i,14 l i 4
l 1 n l <t . - = C l 1 n l n = [0} Lh.e]: wise,
< < 3 & } ] P Y < < » a d a, |, 0

The graph of A 1is shown in figure 2. The number of cycles incident

Figure 2

at vertices one and two is n and the number incident at vertex k
for k >2 1is n-k+2 . Nevertheless it is somewhat simpler to use
formula (1) on vertex 1 because the corresponding principal submatrices

are all upper triangular, The 1-cycle at 1 is al and the corres-

n
ponding principal minor is TT“aj . The k-~-cycle at 1 1is

j=2
n
blbz "'bk—lck—l and the corresponding principal minor is WT_ aj o
J=k+l
Thus we arrive at
n n k~1 n
a) = TTa, + Yo e I, T a
i L k-1 J J

i:l k:z J::;l jzk-}-l



10

It is of interest to observe herc that

n n k-1 n
. k+1
dAa-AD = Tl a=0 +« ) D e o Ty T (@~ .
i=1 k =2 j=1 J=k+l

Let us observe next that formula (1) applies equally well to all
principal minors of the matrix A . Associated with each principal
submatrix A(H) of A is the digraph (H) which is the vertex induced
subgraph of D(A) with vertices (hl ...hp) (if H ¢ g(n,p) ).

To illustrate, consider again example 1. According to formula (3)
the principal minors A34567 R A24567 , and A4567 y occur in the
expansion of d(A) . The corresponding subgraphs are as shown in

figure 3, (a), (b), (c) respectively.

(34567): e
3
2
(24567): @
(b)
(4567 ): 7

Figure 3
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Observe, for example that (24567) is not connected hence A24567 is
the direct sum of the 1 x1 matrix a and the

99 4 ¥4 matrix A

4567 °

Thus A24567 = azz A4567 . This result could be substituted into

formula (3) to simplify it somewhat.
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4. Cycle bases and expansion with respect to a fixed principal submatrix.
Let i be a fixed vertex in D(A) . By the cycle bases at i we
simply mean the set of cycles of D(A) which contain the vertex i .
Similarly we can define the cycle bases at any subset of vertices of
D(A) as follows.

Two cycles of D(A) will be called disjoint if they contain no
common vertices. A set C of cycles in D{(A) spans the vertex set X
if every cycle in C contains at least one vertex from the set X,
every vertex in X appears in a cycle in C, and the cycles are
pairwise disjoint. ?hm cycle basis for the set X 1is the set of all
spanning sets of cycles for X .

Asg an example consider the graph of figure 1 and take X to be

the set X = {1,2} . The cycle basis at X is then

{{aa2n}, {a23n}, {22),@@3D}} .

Now if we have the cycle basis at i in D(A) this corresponds
to the cycle basis at the index i in A ., Similarly to the cycle

basis at the subset H = (h .hp), H ¢ a(n,p) , there corresponds

1

the cycle basis in A . FYor the above example this would be

{{a12a21} ,{a12a23331} ’{azz’al3a31}} . Let a be a cycle in the
cycle basis at i, then the principal minor of A defined by the
indices complimentary to thosé appearing in 4 will be called the
cominor of a . Similarly if we have an element of the cycle basis

at H, H ¢ o(n,p) , the principal minor defined by the indices compli-
mentary to those appearing in the cycles is called the cominor of the

spanning set.
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We can use these concepts and theorem 1 to obtain an interesting
and useful extension of the formula (1). For this purpose let
H € @(n,p) be fixed and let B = {cl,...,cm} be the cycle basis
in A at H . With the element Cj € BH we associate the numbers pj,
the product of the cycles in Cj’ and (~l)\)‘j where Vj is the number
of cycles of even length in cj . Let Kj be the set of indices from

gh not appearing in cj so that AK is the cominor of c‘j . Then
J

the following formula results from repeated application of theorem 1:

{(Fundamental Principal Minor Formula)

J K

m
1 Vs
da) = L (-1) 9 p.A (3)
J

=1

J=
We regard formula (3) as being the fundamental principal minor

determinant formula. From it all other formulas can be derived.

Example 3: Formula (1) is the special case of formula (3) when

H ¢ ¢(n,1) and BH is the cycle basis in A at a single index.

Example 4. Let H = g% then each element of BH =B 1is called
a linear spanning set for D(A) . Each cominor becomes equal to 1

and the formula (3) becomes

m

Vs

_ - J

aw) = ), D Jopg . @
j=1

This formula appears to be due to Goldberg [2], but it first was put

into the above form by Harary [8].
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Example 5. Consider once again any matrix whose digraph is given

in figure 1. Choose H = (123) . We have
By = {{312323a31} ,{313331,a22} ,{a12a21,a34a43}} . The corresponding

cominors are A A

4567 ° A respectively. The formula (3)

4567 ' 567
therefore gives

A = 810%3%51 Aaser T 222%13%1 Aaser * 212%21%84%3 Aser

We can refine the formula (3) with the help of example 4. 1In the

cycle basis BH we can distinguish two types of elements. A spanning

set of cycles in A for H will be called minimal if the set of
indices appearing in the set contains no elements of H’ . For each

minimal spanning set of cycles for H the cominor is A Clearly,

H,

if we sum over the terms in formula (3) which correspond to minimal

spanning sets we obtain simply A A

i Let us denote by E the

H
subset of spanning sets of cycles of H which are not minimal. If

C e EH let p(e) be the product of the cycles in the spanning set ¢

and let wv(c) be the number of even cycles in C . Then (3) becomes

O vw{e)
N DG P IO TSN (5)
C QEH
where AK(c) is the cominor of ¢ . The set EH will be called the

set of essential spanning sets of H
Observe that we can expand d(A) relative to the principal minor

AH even if AH = 0 . Observe also that by formula (5) the matrix A

is indecomposable iff there exists an H € a(n,p) for some 1 < P<n,

such that d(A) = AHAH' + Finally observe that each cominor AK(c)

for ¢ ¢ E  is a principal minor of A(H’) of order < n- P .

H
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In the form (5) formula (3) appears as a direct generalization of
formula (1). It plays the same role in the theory of principal minor
determinant formulas as the genoral Laplace expansion formula does in
the classical determinant formulag.

Now we can return to the point of view of section 1 and derive a
formula similar to the formula (1). As in formula (5) let H and H'
be fixed, H € g(n,p) . For r =2, 1 <4q < min(p,r~-1), let
(4,8 , (9,r-q)) denote the set of multi~indices of length r with
q indices in H and r-q indices in H’ . If K ¢ o((H,H") , (g,r-q))
we shall denote by A(H-K) the principal submatrix of A(H) obtained
by deleting the ¢q indices in H N K . A(H’-K) is similarly defined.
Then formula (5) becomes

n p

_ o r+l1 4 ’
d(A) = Ahy s+ ) (D) ), D APtk ¢+ GO0
r=2 a=1k ca((H,H),(q,r-q))

As an illustration of the formula (5¢) consider for n =5,

H = (13), H’ = (245) . Then

Aghpe = |31 233 890 %94 Bg5 | -
831 %33 | %42 %44 %5
a a

52 %54 255

There will be six terms for r =2, p =1 of which a typical term is

T814%41%33 | %22 P25

There will be six terms for r =3, p =1, a typical term being

+

e

(a15895857 + 8585,8,,)8, .8,



There will be three terms for
(213855%9;

There will be three terms for

p =1, and one term for r =

+

r=3, p

812%23%31

r=4, p

-2,

16
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5. The cofactor formula and the quasi-principal minor formula.

Let o,T, o # T, be fixed indices in ¢ and let KGT be the com-

plimentary minor in A to the element a o i.e., A is the deter-
o} aT

minant of the submatrix A(c’,7t’) of A obtained by deleting row ¢

and column T . After o+ 7-~3 interchanges of rows and columns this

determinant can be put into the form

A = (~1) a a eee @
o ( o0 Tl ™ ’
ala
. A((om D
a
no

where, as the notation implies, A((oT)’) is the principal submatrix
of A of order n-~2 consisting of the elements in all rows and
columns except o and T .
If we pnow apply formula (1) relative to the element aTG we arrive
immediately at the formula
n-3
ton b L DTN ARG )
r=0 Heallom) ', 1)

["i - (_l)G”FT"'B{
oT

Here the only notational difficulty would be with the term A(g',T')(H,)

which is the sum over all n-1-7r cycles in the submatrix A(g’,t")
complimentary to A(H) . From the combinatorial point of view, however,
the formula requires more explanation which we defer until after we

write out the cofactor formula.

Let us denote by A the algebraic cofactor of the element a y
oT oT

AT, of A so that A = (-1)°"T A . Then we have
oT oT

n-3

. Y - n-x O ’ ’
AGT = [amA(GT), + L (-1) ZJ AAG!,T )(H,)] .
r=0 Heo((or ', 1)

(6)
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Let us begin by relating the graph of A(c’,7’) +to the graph of
A itself. The nonzero elements in row o of A correspond to edges
in D(A) with ¢ as initial vertex and the nonzero elements in column
T of A correspond to edges in D(A) with T as terminal vertex.
Consequently D(A(g’,7’)) 1is obtained from D(A) by deleting all such
edges. It is the subgraph of D(A) in which the vertex + is a source
and the vertex ¢ 18 a sink.

Now we shall perform the following construction. Let DO(A(U',T’))
be the digraph obtained from D(A(c’,77)) by replacing the pair of
vertices ¢ and T by a single vertex denoted by (T,U> . Thus the
vertices of DO(A(G’,T')) are (g%-{c,v)) U{{(r,0)} . Since 1 is
a source and ¢ a sink in D(A(s’,T’)) , DO(A(c’,T’)) is a digraph.
The cycle basis in DO(A(G',T’)) at the vertex (rv,0) clearly consists of the

chains in D(A(C!,7%)) from T to ¢. Thus the nonzero terms in A(c,,Tl) in
?

H
formulas (6) or (7) correspond to the nonzero chains in A from T to g. These
chains play the same role in the cofactor formula that the cycles play in
formula (1).

Example 6., Conaiderxr any matrix having the form

A = X x x 0 0 x|
x 0 x x x 0
0 0 x x 0 O
0O x 0 x x O
0O 0 0 x x x
X x 0 x 0

The cofactor graph D(A(3/,6’)) is as shown in figure 4(a), and

DO(A(S',G’)) is shown in figure 4(b).
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Figure 4(b)

The cycle basis at (6,3) is

{((6,3),1,2,(6,3)) , ((6,3),2,(6,3)) , ({6,3),5,4,2,(6,3)) , ((6,3),5,4,2,1, (6,3

with corresponding chains in A given by

{ag12)0854 » 359894 ' 365254849703 1 Ae5754242%21%13)
Therefore, according to formula (7)

A A

36 = TP61%12%23"45 * 2627230145 T %65%54242%23%11 T 265%54%22%01%13
Observe that the rule of signs for terms in either of the formulas

(8) or (7) is the following: Each term corresponding to a chain of

even length has a positive sign attached and each term corresponding

to a chain of odd length has a negative sign attached.

The cofactors of A are important because of their close connection

with the inverse of A, but they are a special case of the following

more general class of minors of the matrix A .
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Definition 3. The minor AH K is called a quasi-principal minor of
3

the matrix A if H € g(n,p), K € g{n,p) and H Y X ¢ o(n,p+l) .
(Note: by H UK ¢ @{n,p+rl) we mean that the corresponding

ordered set is in o(n,p+l) )

We can apply the formula (1) (or (5)) to a quasi-principal minor
in the following way. Let L ¢ w{(n,p+l) contain the distinct indices
in H and X, i.e., L 1is the properly ordered set H |JK . Let
L-H=h, L-XK =%k . Then A(H,K) is the submatrix of A(L) obtained

by deleting row h and column k from A(L) . Thus AH K is the
¥

complimentary minor to the element ahk in the submatrix A(L) . Let

w(h) be the number of elements in K which precede h and p(k) be the

number of elements in H which precede k. We may therefore apply the

formula (6) to obtain

p-3
e M(h)"‘i‘@(k)"g _ p-r .
Ay g = D l~akhAHﬂK ) (=D » AAGLK) ;]
r=0 I co(HNK,r)

Formula (8) is the general formula for the expansion of a quasi-
principal minor of A in terms of principal minors of A .

Let us analize this formula from the graph theoretic point of view.
Consider the vertex induced subgraph (H (JK) . Tet D{(H (J K) denote
the graph obtained from <H U K) by deleting edges so that vertex k
becomes a source and vertex h Dbecomes a sink. Finally let DO<H U K
be obtained from D(H 9] K> by Jjoining the pair of vertices h and k
into the ordered vertex pair (k,h) . Then the nonzero terms in formula
(8) are those corresponding to the cycle basis in D0<H U K) at the
vertex pair (k,h) . This is precisely the set of nonzero chains in

the submatrix A(H Y K) from k to h

(8)
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Example 7. Among the quasi-principal minors of A an important
subset consists of the almost-principal minors first introduced by

Gantmacher and Krein [9]. The minor AH g 1is called almost principal
?

if among the differences hi—-ki , Lei<cp (Hean,p K ¢ oln,p),
exactly one is different from zerc. For such minors wlh) = u(k) and

we have

p~3
< p~1 N
A ) -D > A ACH,K)

o £
H,K MM1HHK 8%
r=0 Ico(HNK,r)

A anl

In order to clarify the above concepts we note that A12347,23578

is a quasi-principal minor but not an almost principal minor. On the

other hand, is an almost principal minor.

A12357,12457
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6. The general formula for minor determinants. We turn next to a

formula which furnishes the expansion of an arbitrary minor of A in
terms of principal minors of A . The development combines all of the
previous ideas and we ghall start from the graph of A . Suppose, in

fact, that H ¢ o(n,p), XK € ofn,p), H # K . Let us again set

L =HUK, L € gln,q) for some p<«d<n . L~H = (hl"“°’hs)’
L-K = (k1’°"’ks) where s = qg-p and hl < hz <l < hs,
ky <k, <...< L Define the numbers M(hj) ) u(kj) y 123 <8,

as the number of elements of H N K which precede h , respectively,
the number of elements of H N K which precede k

Now consider the subgraph (L) of D(A) . Let D(L) denote the
graph obtained from (L) by deleting edges so that each vertex

K, yeoa,k becomes a source and each vertex h ca B becomes a sink.
1’ s s

1’
Then let DO<L> be obtained from D(L) by joining the pairs hj and
kj’

DO(L> has p vertices consisting of the s ordered vertex pairs

1 £ 3 <« s, into the ordered vertex pairs <kj’hj> . The graph

<kj’hj> , 1 € j<s, and p-s8 ordinary vertices. It is now only
necessary to apply formula (3) using the cycle basis at the set
(<k1’hl>”""<ks’hs>) =1 . Clearly this cycle basis consists of
products of chains having initial vertices in the set (kl,...,ks)

and terminal vertices in the set (h ...,hs) . A chain is of the

1?
first kind if its initial vertex is ki and its terminal vertex is hi .
The sign attached to a chian of the first kind is (-~1)’()’+1 where

is the length of the chain. A chain is of the second kind if its
initial vertex is ki and its terminal vertex is h.,, j #£i1 . A

chain of the second kind is not an element of a spanning set of cycles

* ;
for L , but in general there will be elements of a spanning set of cycles
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*
for L which consist of the product of two or more chains of the
second kind. The sign attached to such an element depends only upon

(—l)ﬂ+1 These rules make

the length 4 of the product and is again
it a comparatively simple task to write out the formula for given specific

minors of A .

In view of the above discussion we have from formula (3) the result

s
Z (u(h.)m(kj)) m

o gyd=l 3 d
Ay g = D ) L T ©)
j=1 J

Here, pj is the product of all of the chains in the j~th spanning

*
set of cycles of L in A, Vj is the nuwber of chains of the first
kind or products of chains of the second kind of even length in the

j=th spanning set, and AK is the cominor of the j~th spanning set.

J
Each AK is a principal minor of A(H N K) (which may be empty).
J
s
= (u(hj)+u(kj))
The factor (-—1)3:1 results from combining the sets of
vertices (hl""’hs) and (kl,...,ks) into the set of vertex pairs

((kl,h1>,...,(ks,hs>) . This operation is equivalent to rearranging

the rows and columns of A(H,K) so that rows (k ..,ks) are the

1’

first s rows and (h ...,hs) are the first s columns.

11

Example 8. Consider again a matrix having the form illustrated
in Example 6. Let H = (1346) , K = (2356) . Then L =H (J K = (123456) ,
L-H=1(25), L-K=(14), p(l) =y(2) =0, p@) =pu(d) =1 . We
obtain for D(L) the graph shown in figure 5(a) and for DO(L) the

graph shown in figure 5(b).



Thus we have

A1346,2356

Figure 5(b)

#12%45%33%66 T *16%65%42%33
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