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ABSTRACT.

A characterization theorem is given for a class of developmental
languages. The theorem binds together the number of occurrences of let-
ters in the words of the given language with the distribution of these

letters.



0. TINTRODUCTION.

This paper deals with a class of developmental languages. The theory
of developmental systems and languages originated in the works of Lindenmayer
(see [Lindenmayer]). This theory provided a useful theoretical framework
within which the nature of cellular behavior in development can be discussed,
computed and compared (see, e.g., [Herman and Rozenbergl], [Lindenmayer] and
[Lindenmayer and Rozenberg]). It turned out that developmental systems and
languages are interesting and novel objects from the formal language theory
point of view. Especially in comparison with Chomsky grammars and languages
(see, e.g., [Ginsburg]) they provided a lot of insight into the basic problems
of formal language theory.

An important subclass of developmental systems are the so-called EOL
systems (see, e.g., [Herman] or [Herman, Lindenmayer, and Rozenberg]) which
were devised to allow descriptions of development which take into account
the inaccuracy of our observations.

One of the basic open problems within the theory of EOL systems (and
in fact within the whole theory of developmental systems) 1is the characteriza-
tion theorems which allow one, for example, to prove that some languages
are not EOL languages (i.e., languages generated by the EOL systems).

This paper provides such a characterization for a subclass of EOL
languages. The characterization theorem binds together the number of occur-
rences (in the words of the given EOL language) of letters from a given set
of letters with the distribution of these letters.

The paper also discusses some applications of the main result.



1. PRELIMINARIES.

We assume the reader to be familiar with the basics of formal language
theory (see, e.g., [Ginsburg], whose notation and terminology we shall mostly
follow). 1In addition to this, we shall use the following notation:

(1) N denotes the set of nonnegative integers and N+ =N- {0}. If
n is an integer, then abs(n) denotes its absolute value.

(ii) If x is a word over an alphabet I, then [x{ denotes the length
of x and Min(x) denotes the set of letters which occur in x. For a in 7%,
#a(X) denotes the number of occurrences of the letter a in x and if B is a
subset of Z then #B(x) = iB # (x). If k is a positive integer, then Xk
denotes x catenated k time: with itself.

(iii) If A is a finite set, then #A denotes its cardinality. If
BC A and #B = 1 then B is called a singleton in A.

(iv) A coding is a letter to letter homomorphism. If h is a homomor-
phism from I* into V* and L C V* then h_l(L) = {xel*: h(x) = y for some y in
L}

(v) If t= Sys Sps Sgsee- is a sequence of objects and il’ iz, 13,...
are such that i1 < iz < i3 < ..., then 8, 5 8y 5 8y 5. is called a sub-

1 2 3
sequence of T.

(vi) @ denotes the empty set and A denotes the empty word.

(vii) If A is a (nondeterministic) finite automaton, then L(A) denotes
its language.

(viii) If A is an ultimately periodic sequence (set) of nonnegative
integers then thres(A) denotes the smallest integer j for which there exists
a positive integer q such that, for every i > j, if i is in A then (i+q) is
in A. The smallest positive integer p such that, for every i > thres(A),

whenever i is in A then also (itp) is in A, is denoted by per(A).



2. DEFINITIONS AND EXAMPLES OF EOL SYSTEMS

In this section we give basic definitions concerning developmental

languages, which are relevant for this paper.

Definition 1. An EOL system is a construct G = (V s, V., P, w> such that

T’

VN is a finite alphabet (of nonterminal letters and symbols),

VT is a finite nonempty alphabet (of terminal letters or symbols), such that

VNHVT=¢,

w is an element of (VN U VT)+ (called the axiom of G),

P is a finite nonempty set (called the set of productions of G) each element

of which is of the form a + o, where the symbol "»'" is not in VN U VT’ a is

in VN V) VT’ and o is in (VN ) VT) . Moreover, for every a in VN V) VT there

exists a word o in (VNU VT)* such that a - o is in P.

"3 » o" rather than "a - o is in P."

P
Also a production of the form a - o is called a production for a in P.

In the sequel we shall often write

Definition 2. An EOL system G = <V s VT’ P, m) is called a OL system
if, and only if, V'N = ¢, (In this case we write G as <VT’ P, w>).

OL systems are investigated, for example, in [Rozenberg and Doucet].

P, w> be an EOL system.

Definition 3. Let G = <VN’ VT’

+ .
(i) Let x € (VNU VT) , 8say x = bl...bt for some bl,...,bt in VN (WAY

and let y ¢ (VN ) VT)*. We say that x directly derives y (in G), denoted as

T)

X ===y, 1f there exists a sequence 'rrl,...,ﬂt of productions from P, such that,
G

i i y ® 0 & &= + 3 = LU .
for every i in {1, ,th, L bi oy and y Oqeeely



+
(ii) As usual,=> denotes the transitive closure of the relation ==
G G
*
and == denotes the reflexive and transitive closure of the relation===3.
G, G
If x ==y then we say that x derives y in G.

G
(iii) A finite sequence D = (xo, Xl""’Xr) of words from (VN\J VT)*

such that, r > 1 and, for each i in {1,...,r}, Xiﬂf====§xi, is called a
G

derivation (of X from xo) in G. If Xy = W, then D is called a derivation of
x in G.
r =2

(iv) An infinite sequence D = (XO’ Xl,...) of words from (VN(J VT)+ such

that, for each i > 1, xi_l==%>xi, is called an infinite derivation in G.
G

(v) If D= (xo, Xl”’°’Xr) is a derivation in G, then its control sequence

is any sequence T = (T Tr) of subsets of P, such that, for each i in

1200
{1,...,r}, Xi_i==z=$xi "using" all and only productions from Ti'

(vi) For x in (VNlJ VT)+, y in (VNQJ VT)* and a positive integer r we ’
write X==§=>y ifothere exists a derivation D = (XO = Xy XpseeeX S y) in G;
We also write x::z?§x, for every x in (VNlJ VT)+.

(vii) max(G) is defined as maxf{|oa| : a==o for some a in V U V

P N T

%
and o in (VN\J VT) T

Definition 4. Let G = (V s VT’ P, w} be an EOL system. The language

, % %
of G, denoted as L(G), is defined by L(G) = {x ¢ Vo o: w===>x1}.
G

Definition 5. A language K is called an EOL language (CL language)

if, and only if, there exists an EOL system (OL system) G such that L(G) = K.

Remark 1. Given an EOL system G = (V’, VT’ P, w}, a derivation
D= (XO,...,Xr) and its control sequence T = (Tl,...,Tr), the
pair (D, 1), in general, does not tell us which productions are used to

rewrite the particular occurrences of letters in the words



XO""’Xr—l’ However (to avoid cumbersome notation and to keep the size

of this paper decent) we shall often assume that the pair (D, 1) provides

such information. This should not lead to confusion.

Remark 2. The properties we are interested in (in this paper) are

trivial for finite languages, hence we consider only infinite languages.

Thus in the sequel if we write "a language" (or "an EOL language') we mean
an infinite one, unless explicitly stated otherwise. Also whenever we write

"an EOL system" we mean one generating an infinite language.

Remark 3. Given an EOL system G = <V R VT’ P, w) we shall sometimes
consider P to be the '"set of names for productions" rather than the set of
productions itself. 1In this sense we can talk about the words over P, etc.,

and this should not lead to confusion.
We end this section with two examples of EOL systems.

Example 1. G = <V s> Voo Py w), where V. = {s}, Vp = {a, bl,

P={s~ a, S+b, a -~ az, b -+ b3} and w = S, is an EOL system such that
n n

L) = {a® : N > oruln? : n > 0}.

Example 2. G = <Z, P, w), where I = {a, b}, P = {a + (ab)z, b > A}
n
and w = ab, is a OL system such that L(G) = {(ab)2 :n >0}



3. BASIC NOTIONS AND THEIR PROPERTIES.

In this section we introduce basic notions describing the structure
of OL languages we are interested in and we prove some properties of these

notions.

Definition 6. Let L be a language over an alphabet I and let B be a

nonempty subset of X. Let IL B = {n € N : there exists a word w in L such
L

that #B(W) = n}.

(1) B is numerically dispersed (in L) if, and only if, IL B is infinite
k]

and for every positive integer k there exists a positive integer o, such
that, for every uys u, in IL,B’ if uy # Uy, Uy > omy and u, > ny then abs(ul—uz) > k.
(ii) B is clustered (in L) if, and only if, IL B is infinite and there
3
exist positive integers kl, k2 such that kl > 1, kz > 1 and, for every word

w in L, if #B(W) Z_kl, then w contains at least two occurrences of symbols

from B which are of distance smaller than k2.

Definition 7. Let L be a language over an alphabet I and let a be in I.

The symbol a is said to be frequent (in L) if, and only if, for every positive
integer n there exists a word w in L such that #a(w) > n; otherwise a is

called nonfrequent (iE’L).’

Definition 8. Let G = <Z, P, w> be a OL system, let B be a nonempty

subset of ¥ and let a be in I.

(1) We define a B-characteristic sequence of a (in G), denoted as

Seq(G, B, a), as an infinite sequence 2 Z,ys.. of finite subsets of N such

1’ 72

that, for each i > 1 and every nonnegative integer n, n is in Zi if, and
i

only if, a==> w for some w in I* such that #B(w) = 1.
G



(ii) Seq(G, B, a) = Zl, ZZ"'° is called unique if, and only if, for
every i > 1, #Zi =1,

(iii) Seq(G, B, a) = Zl’ ZZ"" is called bounded if, and only if,
there exists a constant C such that, for every i > 1, n < C for every n in
Zi' In this case we also say that a is B-bounded (in G) and that C bounds
Seq(G, B, a). We say that a is B-unbounded (in G) otherwise.

(iv) Seq(G, B, a) = Zl’ ZZ"" is called constant if, and only if,
for each i, j > 1, Zi = Zj' In this case we also say that a is B-constant

(in G).

Lemma 1., Let G = (2, P, w) be a OL system, let B be a nonempty subset
of I and let a be a symbol in Z. Let Seq(G, B, a) = Zl’ Zz,... and let
U(G, B, a) ='{il, iz,...} be the set of positive integers such that, foF
every j > 1, j is in U(G, B, a) if, and only if, Zj # 0 . Then U(G, B, a)
is an ultimately periodic set.

Proof.

Let G, B, a Seq(G, B, a) and U(G, B, a) be as in the statement of
the lemma.

Let A = <Q, v, ¢, 9 F> be a finite automaton such that

Q= I,
vV =P,
qo—a,
F = B,

for every q, a'in Q and every v in V, a‘e 8(q, v) if, and only if, v is a pro-

duction of the form q - Y1572 for some Y15 Yo in I%,



We leave to the reader the easy proof of the fact that, for every j > 1,
Zj # {0} if, and only if, there exist a word y over V such that |y| = j and
S(qo, y)N F # ¢. Hence, U(G, B, a) = {n ¢ N : there exists a word y in
L(A) such that |y|= n}.

But it is well known (see, e.g., [Ginsburg, Theorems 2.1.2 and 2.1.3])
that the set of lengths of a regular language is an ultimately periodic set

and consequently Lemma 1 holds.

Definition 9. Let G = <Z, P,-w) and let B be a nonempty subset of I.

A B~uniform period of G, denoted as m(G, B) is defined to be the smallest

positive integer such that
(i) for every b in I, m(G, B) > thres(U(G, B, b)), and
(ii) m(G, B) is divisible by per(G, B, b), for every b in I, such

that U(G, B, b) is infinite.

Lemma 2. Let G = (Z, P, w) be a OL system and let B be a nonempty sub-
set of *. If B is numerically dispersed in L(G), then, for every symbol a
which is frequent im L(G), Seq(G, B, a) is unique.
Proof.
Let G = (Z, P, w) be a OL system and let B be a numerically dispersed
(in L(G)) subset of . Let a be a symbol from I which is frequent in L(G).
Let us assume, to the contrary, that Seq(G, B, a) = Zl’ ZZ"" is not unique,

meaning that, for some iO > 1, Zi contains at least two nonnegative integers
0

2>0).

n., and n, (say n, > n,, so that n

2 1

Now, let m be an arbitrary positive integer.

1

Let X be a word in L(G) which containst occurrences of the letter a for

some t Z_mo (recall that a is frequent in L(G) and so such a word x exists).



Let D = (xo = Xy XyseeesX, ) be a derivation of some word X, from the

0 0
word x with a control sequence 1t = Tl""’Ti which is such that each occurrence
0
of a in x contributes n, occurrences of symbols from B in Xi (recall that
0
ngZ).
2 .
0 _ _ _
Let D= (X, = X, X.5.+.5%, ) be a derivation of some word x, from the
0 1 i, i,
word x with a control sequence T = Ti,...,f; which is such that exactly one
0
occurrence of a in x contributes n, occurrences of symbols from B in X,
0
(recall that n, € Zi ) and all other occurrences in x of the letter a as well

0
as all occurrences in x of all other letters '"behave" in exactly the same way

as in the derivation D with the control sequence T.
- < = - > fe
Thus #B(Xio) #B(xio) n, nl,where #B(Xio) Z ton,.

Consequently, there exists a positive integer kO (put kO =1, 1

such that for every integer m there exist integers uy and u, larger than m

(put u, = tn, - (n2 - nl), u, = ten, and notice that u, and u, are large enough

-n, + 1)

if t is large enough) such that u, > uy (note that u, = u; =1, = nl), u

1 1

and u, - uy < kO. Thus B is not numerically dispersed;

and uy are in IL(G),B 2

a contradiction.

Hence Seq(G, B, a) must be unique and Lemma 2 holds.

Lemma 3. Let G = (Z, P, w> be a OL system and let B be a subset of &
which is numerically dispersed in L(G). Let a be a symbol from I such that a
is frequent in L(G) and a is B-unbounded in L(G). Then, for every o in I%,
if a——3}qg, then ¢ must contain at least one occurrence of a B-unbounded letter.

P
Proof.

Let G, B, and a satisfy the statement of the lemma.

Let Seq(G, B, a) = Zl’ Zz,... .
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Let a—>0 and let us assume, to the contrary, that either o = A or
P
o # A and each letter which occurs in o is B-bounded.

First, let us note that, if for every y such that a—>y we would have
that either y = A or vy # A and every letter which occursii v is B~bounded,
then a itself would be B-bounded; a contradiction.

Thus for some o in Z+ we have that a-———)&'and o contains an occurrence
of a B-unbounded letter. !

Let G = <2, ?; w> be a OL system such that P differs from P only in
this that all productions for a that are different from a - o are delted.

Then, obviously, Seq(G, B, a) = Ei, Zz,...

n e Zi then n < C for some positive integer constant E'dependent on E-only).

is bounded (say for every i > 1, if

As a is B-unbounded, for every positive integer C (in particular for E),

there exists an integer i, such that Zi contains an integer larger than C.

_ C
But, obviously, for each i > 1, Zi g&Zi, and consequently, for some iO >1

c

(set io = ia), Zi must contain at least two different integers (one smaller
0
than C and another equal to or larger than C).

Consequently, Seq(G, B, a) is not unique which contradicts Lemma 2.
Thus, for every o in I%*, if a - o, then o must contain an occurrence

P
of a B-unbounded letter. Hence Lemma 3 holds.

Definition 10. Let G = <Z, P, w) be a OL system and n a positive integer
i

such that n > 2. Let A(G, n) = {x e L(G): for some i in {0,...,n-1}, w=>x}.
G

(i) The n~decomposition of G, denoted as Dec(G, n), is the set of all OL

(n (n)

n
= {ga >+ o ¢ a==$0¢}'
G

systems of the form <Z, P ), z>, where z ¢ A(G, n) and P
Each OL system from Dec(G, n) is called a n-component of G.

(ii) A set {Gl,...,Gp} of OL systems is called a decomposition of G

if, and only if, for some n > 2, {G Gp} = Dec(G, n).

l,...,
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We leave to the reader the obvious proof of the following result.

Lemma 4. Let G = (Z, P, w) be a OL system and let G ='{Gl,...,Gp} be
its decomposition. Let n be a positive integer such that n > 2 and let, for
iin {1,...,p}, ¢l _ {Gl(l),...,Gp(l)} be the n-decomposition of Gi' Then

i
L,J G(l) is a decomposition of G.
i=1

The following lemma states a number of properties that follow directly
from defintions 6, 7, 8 and 10. As the proof of these properties is straight-
forward, we leave it to the reader. Some of these properties are so obvious
and useful that they will be used in the sequel without directly quoting

them.

‘Lemma 5. Let G = (Z, P, w> be a OL system and {G Gp} be a decomposi-

l,too,

tion of G.
p

(i) L(G) = U L(G,).
i=1

(ii) If B is a subset of & such that B is numerically dispersed in L(G),

then, for every i in‘{l,...,p}, if I is infinite, then B is numerically

L(Gi),B

dispersed in L(Gi)’ and for at least ome j in {1,...,p}, B is numerically
dispersed in L(Gj).
(iii) 1If B is a subset of % such that, for every i in {1,...,p}, B is

either clustered in L(Gi) or T is finite, then B is clustered in L(G).

L(Gi),B

(iv) 1If {G Gp} is a n-decomposition of G, B is a nonempty subset

1o

of T and a is in %, then, for each i in {1,...,p}, Seq(Gi, B, a) = Z_, ZZ""
with 25 = Zj~n for every j > 1 (where Seq(G, B, a) = Zl’ Zz,...).
(v) 1If B is a nonempty subset of I and the letter a is B-bounded in G,

then, for every i in {1,...,p}, a is also B-bounded in Gi'
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(vi) If the letter a is nonfrequent in L(G), then, for each i in'{l,...,p},
a is also nonfrequent in L(Gi).

(vii) 1If the letter a is frequent in L(Gi) for some i in‘{l,...,p},
then a is also frequent in L(Gi).

(viii) If B is a nonempty subset of £ and a is a symbol from I such that
a is B~unique (B-constant) in G, then, for each i in‘{l,...,p}, a is B-unique

(B-constant) in Gi'

Definition 11. Let G = <Z, P, w) be a OL system and G =‘{Gl""’Gp}
be a decompositon of G. Let B be a nonempty subset of . G is called a B-fitted

decomposition of G if, and only if, for every i in'{l,..., p} and for every

a in X, if a is frequent in L(Gi), then
(i) 1If a is B-bounded in Gi’ then a is B-constant in Gi’ and
(ii) 1If a is B~unbounded in Gi’ then, for every j > 1, Zj = {zj} for

some zj > 2 (where Seq(Gi, B, a) = Zl, Zoyese)

The reader may easily notice that, Lemma 2 implies that, if
G is a OL system, B is numerically dispersed in L(G), G is a B-fitted decomposi~-
tion of G and H is in G, then if a is a symbol which is both, frequent in L(H)
and B-bounded in H, then Seq(H, B, a) = {z}, {z},... where z is a nonnegative

integer.
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4, THE EXISTENCE OF B-FITTED DECOMPOSITIONS.

In this section we prove that, for every OL system G and for every B which

is numerically dispersed in L(G), there exists a B-fitted decomposition of G.

Lemma 6. Let G = <Z, P, w) be a OL system and let B be a nonempty subset

of I such that B is numerically dispersed in L(G). Let G = {G GP} be a

1200
m(G, B)-decomposition of G. Let i be in {1,...,p} and let a be in I. 1If a

is frequent in L(Gi) and Seq(Gi, B, a) = Z , then either Zj = {0}

1° ZZ,...
for every j 2.1’_?r Zj = {zj} where zj # 0 for every j > 1.

Let G, B, and G =‘{G1,...,Gp} be as in the statement of the lemma. Let
i be in {1,...,p} and let a be a symbol from 2 such that a is frequent in
L(Gi)'

By Lemma 2 and Lemma 5 (vii), Seq(G, B, a) is unique and hence, by Lemma 5
(viii), Seq(Gi, B, a) is unique.

By Lemma 1, U(G, B, a) is ultimately periodic. Hence, by Lemma 5 (iv)
and by the definition of m(G, B), for every i in {1,...,g}, if Seq(Gi, B, a) =
Zl’ Zz,..., then, for every j > 1, Zj # {0} if, and only if, Z1 # {0}.

Thus Lemma 6 holds.

Lemma 7. Let G = (Z, P, w) be a OL system and let B be a nonempty subset
of I such that B is numerically dispersed in G. Iet G =‘{G1,...,Gp} be the
m(G, B)-decomposition of G. Let i be in {1,...,p} and let a be in 2. If a
is frequent in L(Gi) and a is B-bounded in Gi’ then Seq(Gi, B, a) is an ulti-
mately periodic sequence.

Proof.

Let G, B and G = {G GP} satisfy the statement of the lemma. Let i

l,-no,
be in {1,...,p} and let a be a symbol from I such that a is frequent in L(G)
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and a is B-bounded in Gi' Let Seq(Gi, B, a) =2,, Z

12 Zoseee -

By Lemma 6, either Seq(Gi, B, a) = {0}, {0},... or Seq(Gi, B, a) consists
of singletons different from {0} only.

If Seq(Gi, B, a) = {0}, {0}, {O},... then obviously Lemma 7 holds.

Thus let us assume that Seq(Gi, B, a) consists of singletons different
from {0} only.

Let D = (a = Xys Xp» Xz,...) be an infinite derivation in Gi such that,
for each i > 1, X, contains at least one occurrence of a letter frequent in
L(Gi) such that its B-characteristic sequence’consists of singletons different
from {0} only. (Obviously such a derivation'exists.) Let, for j > 1, Yj be
a subset of all these letters from Min(xj) that their B-characteristic se-
quences consists of singletons different from {0} only.

First, we shall prove that there exists a constant F such that, for every
j>1, #Y.(Xj) < F. Let us put F to be a positive integer constant such
that, forJevery j > 1 and every integer n, if n is in Zj then n < F (recall

that a is B-bounded). Let us assume to the contrary,that, for some jO > 1,

#Y (xj ) > F. Thus Xj has more than F occurrences of letters which are
g 70 0

frequent in L(Gi) and B-characteristic sequences of which consist of singletons
different from {0} only. (Recall Lemma 6 and the choice of Yj for each j > 1).
Consequently, each such letter contributes at least one occurrence of an element

from B to x,  ; (and, in fact, to each next word in D), and so #_(x, ) > F
io S

which contradicts the fact that Seq(Gi, B, a) is bounded by F.

+ 1

Thus our claim holds.
Now, for j > 1, let;% denotes the word resulting by erasing from xj of
all occurrences of all letters in Min(xj) - Yj. Note that among all words of

the form Eﬁ, for j » 1, there is only a finite number of different words
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(because none of these words is longer than F). Hence for some jl’ jz,such

that j, > j, we have x, = x, . But note that, for each j > 2, x, "is con-
J2 7 3 3 - 3

: 2. 1.
tained" in the contribution to Xj from Xj—l'

an occurrence in Xj of a letter the B-characteristic sequence of which consists

This is so, because (obviously)

only of singletons different from {0} may be contributed from an occurrence
in Xj-l of a letter the B-characteristic sequence of which consists of single-
tons different from {0} only.

Thus for some jl, j2 such that j2 > j1 we have §32 = E&l and, for every
g in'{jl, ip * 1yeeasdy = 1}, we have §é= Eg + s (j2 - jl) for every s > 0.

But the "contributions to Seq(Gi, B, a)" from the words in the derivation
D, depend (obviously) on the words §5 (for j > 1) only, and by the above, these
contributions form an ultimately periodic sequence of numbers different from
0. However, (recall Lemma 6) the sequence Seq(Gi, B, a) consists of single-

tons only and so it is itself an ultimately periodic sequence.

Thus the lemma is proved.

Lemma 8. Let G ==<Z, P, w) be a OL system, let B be a nonempty subset

l,...,GP}

be a m(G, B)-decomposition of G. Let i € {1,...,p} and let a be a symbol from

of T such that B is numerically dispersed in L(G) and let G = {G

z such that a is frequent in L(Gi) and a is B-unbounded in G,. let

Seq(Gi, B, a) = Z ZZ"" . Then for every positive integer C there exists

l’

a positive integer i, such that, for every j > i Zj ='{zj}where 2 > C,

C c’

Proof.

Let G, B, G = {G Gp}’ Gi’ a and Seq(Gi, B, a) satisfy the state-

l’..‘,
ment of the lemma.
is dnfinite.

As a is frequent in L(Gi) and B-unbounded in Gi, IL(Gi),B

Then by Lemmata 2, 5 (ii), 5 (vii) and 5 (viii), Seq (Gi’ B, a) is unique,

(say, for each & > 1, Zg = {ZQ})'
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Let C be an arbitrary positive integer and let iC be the smallest posi~

tive integer g such that zq > C-max(G),

Let D= (a, X,5++4,%, ) be a derivation in G, of a word x, such that
1 1. i 1c
#B(Xi ) = z; » Let T be a control sequence of D. Now, each occurrence of a
C C .
letter from B in Xi must be derived (in (D, T)) from some occurrence in

c

X, of a letter whose B-characteristic sequence in Gi consists of singletons

1C—l

different from {0} only. Consequently (recall the choice of i) Xic—l must
have more than C occurrences of letters whose B-characteristic sequences in

G, consist of singletons different from {0} only. Hence, one can "prolongate''
the derivation D to an infinite derivation D = (a, Xl""’XiC’ Xic+l,...) such
that, for each g z‘icﬁ #B(Xg) > C.

But Seq(Gi, B, a) consists of singletons only, and so Lemma 8 holds.

The property stated in Lemma 8 carries over through decompositions of OL
systems in the following way. (We leave to the reader the obvious proof of

the next result.)

Lemma 9. Let G=<Z, P, w) be a OL system, let B be a nonempty subset
of X such that B is numerically dispersed in L(G) and let G ='{Gl,...,Gp} be
a m(G, B)-decomposition of G. Let i 8‘{1,...,p}, let a be a symbol from I such

that a is frequent in L(Gi) and a is B-unbounded in Gi. Let

G(l) =‘{Gl(l),...,GP (1)} be a decomposition of Gi and let j E3‘{1,...,pi}.

(1) 1

Let Seq(Gj , B, a) = Zl’ Zz,... . Then for every positive integer C there
exists a positive integer iC such that, for every g 3-iC’ Zj =.{zj}, where
z, > C.

]

Definition 12. Let G = (Z, P, m> be a OL system, let B be a nonempty

subset of I such that B is numerically dispersed in G and let G = {G ,...,Gp}
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be the m(G, B)-decomposition of G. We define

(i) ml(G, B) to be the smallest positive integer such that, for every i
in {1,...,p} and for every a in I such that a is frequent in L(Gi) and B-
bounded in Gi’ ml(G, B) is divisible by per(Seq(Gi, B, a)) and ml(G, B) >
thres(Seq(Gi, B, a)).

(ii) mz(G, B) to be the smallest positive integer such that, for every
i in {1,...,p} and for every a in I such that a is frequent in L(Gi) and a
is B~unbounded in Gi’ mz(G, B) > 12 where i2 is defined as in the statement

of Lemma 8.

(iii) n(G, B) = ml(G, B)-mZ(G, B).

Lemma 10. Let G = (Z, P, w) be a OL system, let B be a nonempty subset

of ¥ such that B is numerically dispersed in G and let G = {¢ Gp}be the

TEREET
(m(G, B)-n(G, B))-decomposition of G. Let i € {1,...,p} and let a be a letter
in % such that4a is frequent in L(Gi) and a is B-bounded in Gi' Then a is
B-constant in L(Gi)'

Proof.

This result follows directly from Lemma 4, Lemma 5 (ii), Lemma 5 (vii),

Lemma 5 (viii), Lemma 7 and the definition of n(G, B).

Lemma 11. Let G = <Z, P, w) be a OL system and let B be a nonempty subset
of I such that B is numerically dispersed in G. Then there exists a B-fitted
decomposition of G.

Let G and B satisfy the statement of the lemma. From Lemma 5, Lemma 7,
Lemma 8, Lemma 9, Lemma 10, and the definition of n(G, B) it follows that the
(m(G, B)*n(G, B))-decomposition of G is a B-fitted decomposition of G.

Thus Lemma 11 holds.
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5. THE MAIN RESULT AND ITS APPLICATIONS.

In this section we prove the main result of this paper which states that if
L is an EOL language and B is numerically dispersed in L, then B is clustered

in L. We also show some applications of this result.

Definition 13. Let G = (Z, P, w> be a OL system and let B be a nonempty

subset of IZ. A word x in L(G) is called B-dispersed in G if, and only if,

#B(x)_i 2 and every two occurrences in x of symbols from I are of distance larger

than max(G).

Lemma 12, Let G = <Z, P, u> be a OL system, let B be a nonempty subset
of I such that B is numerically dispersed in G and let G ='{Gl,...,GP} be a
B-fitted decomposition of G. Let i & {1,...,p} and let x be a word in L(G)
such that x is B-dispersed in Gi' Then, if D = (XO = Wy XyseeesX = x) is a
derivation of x in G, then, for every j in {0,...,r-11, x, does not contain
an occurrence of a letter which is frequent in L(Gi) and B-unbounded in Gi'

Let G, B, Gi and x satisfy the statement of the lemma.

Let us assume, to the contrary, that D= (XO = W Xyesss X x) is a
derivation of x in Gi’ such that for some f in {0,...,r-1}, Xe contains an
occurrence of g letter, say c, which is frequent in L(Gi) and B-unbounded
in Gi' But then (recall a definition of a B-fitted decomposition), for
every j > 1, Zj =‘{zj} for some z > 2, where Seq(Gi, By @) = Zys Zyseen

Thus by Lemma 3, X4 contains an occurrence of a letter which is fre-
quent in L(Gi) and B-unbounded in Gi’ and this occurrence will contribute
at least two occurrences in %r of letters from B. These two occurrences,obviously,

must be of distance smaller than max(G) which contradicts the definition of x.
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Thus Lemma 12 holds.

" Lemma 13. Let G = (Z, P, w> be a OL system, let B be a nonempty subset

of ¥ and let G ='{G1,...,

ie {l,...,p}. If for every positive integer n there exists a word v, in

Gb}, be a B-fitted decomposition of G. Let

L(Gi) such that #B(yn)_z n and vy, is B-dispersed in G, then B is not nu-
merically dispersed in L(Gi)'
Proof.
Let G, B and G = {G,,...,G_} satisfy the statement of the lemma. Let
1 P
ie{l,...,p} and let us assume that for every positive integer n there
exists a word y_ in L(G,) such that #B(yn) >n and y_ is B-dispersed in G,.
For each a in ¥ such that a is nonfrequent in Gi’ let bound (Gi’ a) be

the smallest positive integer larger than the maximal number of occurrences of

a in any word in L(Gi)’ and let t(a) = max{z : z ¢ Zz(a)} where Seq(Gi, B, a) =

7 (a) 7 (a)

1 s Zgy yeeo o« Let F = t(a)'bound(Gi, a), where N(Gi) denotes

ae N(Gi)

the set of all letters from I which are nonfrequent in Gi'

Let n be larger than (max(G))z-(#B(w)) and let x be a word in L(Gi)
such that #B(x).z n and x is B-dispersed in Gi’

Let D = (xo = Wy KyseeeX = x) be a derivation of x in Gi (note that
by the choice of n, r 3_3); Let 60 = #B(XO), Bl = #B(Xl),...,Br = #B(Xr)'
(We assume also that we are given a control sequence T of D). Let s be an

integer in {2,...,r} such that Br <B i-Bs > Bs—l (such an s exists

< s
r-1 —
because of our choice of n).

By Lemma 12, X _o does not contain occurrences of letters which are fre-
quent in L(Gi) and B-unbounded in Gi. Consequently

_ . (s=1) (s-1) _ (s) (s)
Bs—l = Ul + U2 and BS = Ul + U2 where
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Uis—l) is the number of such occurrences in X, _1 of letters from B which

are contributed from occurrences in X, o of letters which are nonfrequent in

L(e,),

U£S) is the number of such occurrences in X of letters from B which are con-

tributed from occurrences in X o of letters which are nonfrequent in L(Gi)’
(s-1) , . . ,

U2 is the number of such occurrences in Xs-l of letters from B which are

contributed from occurrences in X o of letters which are frequent in L(Gi)

and B-bounded in Gi’ and

S . .
Ué ) is the number of such occurrences in X of letters from B which are con=

tributed from occurrences in X _o of such letters which are frequent in L(Gi)
and B-bounded in Gi'

Because G is B-fitted, U , and by the definition of F, U

(s-1) _ . (s)
2 = U2 < F.

(s-1)
1

\ (e
Hence B_ - B8 = pls) _ pls=D)

1= Y1 1 < F.

Thus we have proved (recall that Bs = Br) that for n "large enough" if
x is a word in L(Gi) such that #B(x) > n and x is B-dispersed in Gi’ then there
exists a word x in L(Gi) (set x = xs_l) such that #B(x) - #B(Q) < F where F
is a constant dependent on Gi only.

Consequently B is not numerically dispersed in Gi and Lemma 13 holds.

Lemma 14. Let K be a OL language over an alphabet X and let B be a nonempty
subset of X, If B is numerically dispersed in K, then B is clustered in K.

Proof.

Let K and B satisfy the statement of the lemma. Let K = L(G) where
G = (Z, P, u>is a OL system. Let G =‘{Gl"'°’Gp} be a B-fitted decomposition
of G (its existence is guaranteed by Lemma 11). By Lemma 5 (ii), for each

iin {1,...,p}, either B is numerically dispersed in L(Gi) or I is

L(Gi),B

finite, and for every j in {1,...,p},if I is infinite, then B is nu-

L(Gj),B

merically dispersed in L(Gj).
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Let s be in {1,...,p} and let I be infinite. So B is numerically

L(G),B
dispersed in L(GS). If we assume that B is not clustered in GS, then for
every positive integer larger than 1 there exists a word Yy in L(Gi) such
that #B(yn) > n and v, is B-dispersed in G;. But then,by Lemma 13, B is not
numerically dispersed in L(GS); a contradiction.

Thus, for every i in'{l,...,p}, either T is finite or B is

L(Gi) »B
clustered in L(Gi).
But then, by Lemma 5 (iii), B must also be clustered in L(G) and so if

B is numerically dispersed in K then B is clustered in G, which proves the

lemma.

The following result, which was proved in [Ehrenfeucht and Rozenberg]

turns out to be a very useful one for this paper.

Lemma 15. For every EOL language L there exist a OL language K and a

coding ysuch that y(K) = L.
We leave to the reader the easy proof of our next result.

Lemma 16. Let K and L be languages {over alphabets I and V respectively)
and let ¢ be a coding such that ¢(XK) = L. Then

(i) If B is a subset of V such that B is numerically dispersed in L,
then w—l(B) is numerically dispersed in K, and

(ii) If U is a subset of I such that U is clustered in K, then ¥ (U)

is clustered in L.

‘Theorem. Let K be an EOL language over an alphabet I and let B be a non-
empty subset of %. If B is numerically dispersed in K, then B is clustered

in K.
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" Proof.

This result follows directly from Lemma 14, Lemma 15, and Lemma 16.

It should be clear to the reader that the Theorem may be used to prove
that a considerable number of languages are not EOL languages. This, by itself,
fills in a gap in the developmental systems theory (for a discussion, see
[Herman] or [Herman and Rozenberg]).

We shall present now two examples of such application.

Example 3. (See [Herman]). The language L = {x ¢ {a, b}* : #a(x) = o
for some n > 0} is not an EOL language. This is so because {a} is numerically

dispersed in L, but, at the same time, {a} is not clustered in L.

Example 4. Let ¢ be a function from N to N such that, for every n in N,
ooy ‘ 3 = n 3
P(n) > n. Let L¢ = {yoayla...yr_l ay . r 2" for some n > 0 and, for each

i in {0,...,r}, Yy e {b, c}* and ]yi] = y(r)}.

Finally, let us discuss the "structural" character of the Theorem. The
Theorem states the structural rather than numerical characterization of the
subclass of EOL languages. This statement is not precise but it may be il-
lustrated by the following. Whereas it was proved in Example 3 that the language
L=1{x¢e{a, b}* : #a(x) = 2" for some n > 0} is not an EOL language, the
language L= {azn b . n, m > 0} is generated by the EOL grammar <VN, VT, P, w)

. 2
such that V. = {8}, V, = {a, b}, P={S~>a, S+ A, S+sb, a+a, b~ b},

N T

w = S. But L results from L by an appropriate permutation of occurrences

of letters in the words of L. Consequently, all "numerical characteristics"
(such as the set of lengths, the number of occurrences of particular symbols,
etc.) are the same for both languages and one of them is an EOL language,while

the other is not an EOL language.
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