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INTRODUCTION,

This paper deals with a class of developmental languages. The
theory of developmental systems and languages originated in the works of
Lindenmayer (see [Lindenmayer]). This theory provided a useful theoretical
framework within which the nature of cellular behavior in development can
be discussed, computed and compared (see, e.g., [Herman and Rozenberg],
[Lindenmayer] and [Lindenmayer and Rozenberg]). It turned out that develop-
mental systems and languages are interesting and novel objects from the
formal language theory point of view., Especially in comparison with Chomsky
grammars and languages (see, e.g., [Ginsburg]) they provided a lot of

insight into the basic problems of formal language theory.

An important subelass of developmental systems are the so called ETOL
systems (see [Rozenberg, 1973]) which were devised to allow descriptioné
of development which take into account both the changing environment and
the inaccuracy of our observations.

One of the basic open problems within the theory of ETOL systems
(and in fact within the whole theory of developmental systems) are the
characterization theorems which allow one, for example, to prove that
some languages are not ETOL languages (i.e. languages generated by the
ETOL systems).

This paper provides such a characterization for a subclass of ETOL
languages. The characterization theorem (Theorem 7) binds together the
number of occurrences (in the words of the given ETOL language) of letters

from a given set of letters with the distribution of these letters.

The paper also discusses some applications of the main result,



PRELIMINARIES,

We assume the reader to be familiar with the basics of formal
language theory (see, e.g., [Ginsburg], whose ﬁotation and terminology
we shall mostly follow). In addition to this we shall use the following
notation:

(i) N denotes the set of nomnnegative integers and N = N —‘{0}:

(ii) If x is a word over an alphabet I, then !xl denotes the length
of x and Min(x) denotes the set of letters which occur in x; For a in I,
#a(x) denotes the number of occurrences of the letter a in x and if B is
a subset of ¥ then #B(x) = g%ﬁ #a(x):

(iii) If A is a finite set then #A denotes its cardinality. If

(iv) A coding is a letter to letter homomorphism. If h is a homo-
A * * k. -1 : %
morphism from £ into V and L&V then h "(L) = {xeX : h(x) = y for some

v in L}.



DEFINITIONS AND EXAMPLES.

In this section we define the notions needed for this paper and

give some examples.

Definition 1. If L is a language over an:alphabet & and B is a non-

empty subset of I, then

(i) B is called nonfrequent (in L) if there exists a constant CB L
H
Lo
(ii) B is rare (in L) if for every positive integer k there exists
. + . . .
amn in N such that for every n larger than o s if a word x in L contains
n occurrences of letters from B then each two such occurrences are distant

not less than k.

‘Definition 2. An ETOL system is a construct G =<<VN,VT,P,Q> such that

VN is a finite alphabet (of nonterminal letters or symbols),

VT is a finite nonempty alphabet (of terminal letters or symbols),

such that VNrw Vo = @,

w is an element of (VN U VT)+ (called the axiom of G),

P is a finite nonempty family, each element of which is a finite nonempty
set of the form {a - a: a is in vy V) vV, and o is in (VN\J VT)*} (where
we assume that the symbol - is not in VN V] VT}. Each element P of P
(called a table of G) satisfies the condition:

%
for every a in VNl) V_ there exists at least one o in (VN U VT) such

T
that a > ¢ is in P, (If P is in P and a -+ o is in P then a - ¢ is called

.......




Remark. In the sequel we shall consider only reduced ETOL systems,

i.e., ETOL systems G =<V , V., P, @ such that each letter from

T’
VN Y VT occur in some word in L(G).

Definition 3. Let G =<vN, Vs P, &> be an ETOL system.

(i) 1If VN = (¢ then G is called a TOL system. (In this case we write

G as <VT’ P, w>).

(ii) 1If for every P in P and for every a in VN U VT there exists

exactly one o such that a -+ o is in P, then G is called deterministic.,

(We use the letter D to denote the deterministic restriction, and so, e.g.,

a DTOL system means a deterministic TOL system) .

Definition 4., Let G ==<VN, V., P, w>be an ETOL system.

T’

* -
(i) Let x ¢ (VNU VT) , say x = bl"'bt for some bl"“’bt in (VNU VT),

%
and let v ¢ (VN V) VT) . We say that x directly derives y (in G), denoted

as x%y, if there exist P in P and a sequence MiseeesT, of productions from
G

P such that, for every i in {1,...,t}, 7.

l=bi+<>ti andy=ocl...oc o

t

(In this case we also write x=»y, and we say that x directly derives'y
P

(in G) using P).

(ii) As usual:—l%denotes the transitive closure, and %the reflexive
and transitive closurg of the relation%. If x:{%y for some x, vy in
(VN Y VT)* then we say ﬁhat % derives yc(;_g“ G). y

(iii) If xo—.——.% Xy > X,= = ...-—>xp, for some p > 1 and some

T T T Tp Tl...T

. 1 . 3 P . .
Tl,...,TO in P then we also“write XOZG—>XP, and if G :Ls‘

deterministic then we write X, = Tl"'TP (XO).‘ The .sequence D = (XO, xl,...,xp)

0

is called an associated sequence of D, If Xg = W then D is called a

is called a'derivation of Xp from x, in G and the sequence 1 = Tl""’TP




-5

: P
‘derivation giexp in G (in this case we also write x0===g>xp). If G is

‘deterministic then the pair (D,1) is called a:descriptgon of Xp'QiE G).

.Reﬁark; ,If G is an arbitrary ETOL system and D = (XQ’°;;’XP) is a
derivation of xp in G with én éssociated sequence {; then, in general, the
pair (D,t) does not provide us with the information needed to determine
which particular productions were used to rewrite particular occurrences of
letters in X, (for 0 <1 < p-1), However, we shall agsume that the
pair (D,T) provides such an information, but this should not lead to

confusion. (Such a convention saves us a lot of combersome notation).

Definition 5. Let G = <yN, Vs Ps w>be an ETOL system. The language

of G, denoted as L(G), is defined by L(G) = {x ¢ V; : w==%>x}.
G

Definition 6. A nonempty language K different from {A} is called an

ETOL (TOL, DTOL, etc.) language if, and only if, there exists an ETOL

(TOL, DTOL, etc.) system G such that L(G) = K.

We end this section with some examples of ETOL systems and languages.

Example 1.
¢ =<{s, A, B, C, D}, {a, b}, {{S >AB, S+ CD, A>A, B>B, C~>C,
D+ D, a+a,b+b},’{A—>A2,B+B,c+c,D+D,s~>s,a+a,b+b},

'{c+c3,A+A,B+B,D+D,s—>s,a+a,b+b},'{A—>a,B->b,c-+b,

D+a, S+8S, a—»a, b~>b}}, S> is an ETOL system such that L(G) =
B - 3B ‘ k
{a"b :n>0}yY{b” a:n>0}L



Example 2.
G =<{‘a},' {{a ~ alz}, {a » a'3>}}, a>1is a TOL system such that L(G) =
n .m :
273
a

:n, m >0},

{



AUXILLIARY RESULTS.

In this section we shall show how the properties of being rare and being
unfrequent are connected with each other in TOL languages. As our main
result (Theorem 1) is trivially true for finite languages, in the sequel

we shall deal with infinite languages only. Thus, if we shall write "a

language' we shall mean an infinite one.

The following construct will turn out to be a useful one for this paper.

Definition 7. Let G=<&, P, w> be a TOL system, A DITOL'system associated

with G, denoted as Assoc(G), is defined by Assoc(G) = <Z, P, w> where a

table P is in P if, and only if, there exists a table P in P such that PE P.
We leave to the reader the obvious proof of the following result.
Lemma 1. If G is a TOL system, then L(Assoc(G))& L(G).

In the first part of this section we shall deal with sets of letters which
are singletons. This will turn out to be sufficient for the proof of our
main result (Theorem 1).

First of all we have the following result.

Lemma 2. Let G =<Z, P, w>be a TOL system and B a singleton in I.
If B is rare in L(G), then B is also rare in L(Assoc(G)).
Proof,

This result follows directly from Lemma 1.
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The next result shows that the property of being nonfrequent in L(G)
is invariant under the operation of taking Assoc(G), for all TOL systems

G and all singletons B.

‘Lemma 3. If ¢ =<z, P; w>is a TOL system and B is a singleton in I,
then B is nonfrequent in L(G) if; and only if; B is nonfrequent in L(Assoc(G)).
Let G =<, P, w>be a TOL system and B a singleton in I, say B = {o}.
We shall prove that if B is nonfrequent in L(G), then it is also nonfrequent
in L(Assoc(G)) and if B is frequent in L(G); then it is also frequent in
L(Assoc(G)). (This is obviously equivalent to the statement of the lemma).
By Lemma 1, L(Assoc(G))< L(G) and so if B is nonfrequent in L(G)
it is also nonfrequent in L(Assoc(G));
Now, let us assume that B is frequent in L(G).
Let x be a nonempty word in L(G) such that x # w, let D = (w = Xgs

Kisees,X = x) be a deriviation of x in G and let T T2,...,Tp be an
p

1°
associated sequence of G. For each i in'{O, l,...,p—l} and for each a in
Min(xi), let (a, 1) denote fixed (but an arbitrary) occurrence of a in X
such that it "contributes" in the derivation D with an associated sequence
Tl,...,’l‘p at least as many occurrences of ¢ to x as any other occurrence

of a in X o For each i in‘{O, lyeeo, p—l} and for each a in Min(xi), let
m(a, 1) denote the production (from Ti)/applied to (a, i) in the derivation
D. Finally for each i in {0, 1,;.;, p-1} let T; denote a subset of Ti

such that, for every a in Min(xi) the only production for a‘in ?; is 7w(a, 1),

and if a is not in Min(xi) then the only production for a in Ti is some fixed

production from Ti'
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Now let D = (w = Xy

that, for each i in {1,..., p},~§£ = %;<§£m1)° By construction of D,

§l,.f.,'§P).be a derivation in Assoc(G)»such
#B(x) > #B(x). | |

Thus, for every nonempty word x in L(G), such that x # w, there exists
a word x in L(Assoc(G)) such that #BCE) i.#BCX)' Hence if B is frequent in
L(G), it must be also frequent in L(Assoc(G)).

Thus Lemma 3 holds.

Lemma 4, Let G =<12; P, w>be a DIOL system. If B is a singleton in
% and B is rare in L(G), then B is nonfrequent in L(G);

Let 6 =<3, P, w>be a DTOL system and let B be a singleton in 3, say
B = {¢}, such that B is rare in L(G). We shall prove the lemma by showing
that if B is frequent in L(G), then it cannot be rare in L(G).

Thus, let us assume that B is frequent in L(G).

Let #r = £ and let F = max {|y| : there exists a in I such that
a L3 (L-1)+2+1 vl

Let n be a positive integer such that n > lw

Let z be a word in L(G) such that z contains at least n occurrences
of the letter 0;: Let D = (y = Zyseses Zp = z) be a derivation of z in G
and let (D,f)zbe a description of z in G, where t = Tl... % o For i in
‘{0;.;.;‘p—1}, the level i of (D,t) is called productive if there exists a
letter a in Min(xi) such that Ti+l:'; Tp(xi) contains at least two occur-

rences of ¢; otherwise the level i is called unproductive.
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Note that:

(i) #B(z) > [m| and so at least one level of (D,T) is productive,
and

(ii) 4if the level i is umproductive and (i+1) é.p—l; then also the
level (i+l) is ﬁnproductive;

Let i, be the largest nonegative integer such that the level i

0

is productive.

0

The tail of (D,t), denoted as tail (D,t1), is a pair (D, 1) where

D = (Xio+l, xio+2,..., xp) and T = Ti0+2 Tio+3.., TP,(p—(iO+l) is said to

be the length of the tail).

If the length of tail (D,r) is smaller than ((f-1)°L!+f+1) then z
contains at least two occurrences of ¢ distant no more than F (because

iO is a productive level of (D,r) and so there exists a letter, say d, in

Min(xi ) which contributes at least two occurrences of ¢ in z, but at the
0
same time the whole subword of z contributed by any occurrence of d in Xy
0
is no longer than F).

So let us assume that the length of tail (D,t) is larger than or equal
to ((-1)° pi+prl).

For each i in {0,..., p-1}, let MinB(xi);denote the set of all letters
in Min(xi) which contribute in (D,t) an occurrence of ¢ in z.

Let us consider the sequence #MinB(xio+l), #MinB(xiO+2),..;, #MinB(xp).
Obviously, if i+l <g <3 <p, then #MinB<xg)gg #MinB(xj). But #3 =£ and

so for no more than £ elements i in the sequence #MinB(xi +l>"'°’

. #Min(xp)

).

we have #MinB(xi) > #Min(xi+l
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Let jO’ jl be arbitrary two levels such that iO+l f,jo < ji spP

and #MinB(xj ) = #MinB(xj ) Feae= #Min (X. : ) < #Min.(x, ); We shall

0 1 : 1 J1
show now that if (jl—jo) > pi, then there exists two. levels fO’ fl.such
that JO < fO < f) = Jl and if c ¢ Mln (x 0), then Tfo l...ifl_l(c) =
Bi C Bys Where,Bl’ By € (Mln(xfl)—Mln (x l)) ‘

This is proved as follows.
Note that, for every s in‘{jo,...,jl—Z}, every occurrence of a letter
from MinB(xS) in X contributes exactly one occurrence of a letter from

MinB(XS+l) in x and (because G is deterministic) two different

s+1

occurrences in X of the same letter from Min(xs) contribute exactly the

same words into x Thus we have a one-to-one correspondence between

s+1°

letters in Mln (x ) and Mln (x ), and we can talk about a permutation Ty

s+1
(taking MinB(Xs) into MinB(xS+l) and extended by identify on all other

symbols of ). Thus we deal with a finite group of permutations with at
most f+« elements (recall that #y = f). Hence (see Lemma 8 in the Appendix),

because (jl-jo) > Qi+, there must be two levels f,. ,f.  such that j0< f <

0’71

is the identity permutation.

0

f1 <3 and the permutation ﬂfoﬂfo+lo.o ﬁflfl

Thus our claim holds.

But then we can 'shorten' the derivation D by the "piece from the level

1

" . . . _ =

fO to the level fl and obtain a derivation Dl = (w Xy Xl,...,xf s §f +l’
1) . . =

0oy §P ) with an associated sequence Ty l...TfOTfl+l..aT . whlch are

such that #B(§;)) > #B(Xp) and the length of the tail of (D ) is smaller

1°%1
than the length of the tail of (D, 7).
Now we iterate the whole procedure (based on the length of the tail of

the currently considered pair (Di,Ti)) and eventually we obtain a pair
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(Du,Tu),for some u > 1, such that Du is a derivation in G of the word é;)
with #B(ég)) > #B(xp) and the length of the tail of (Du’Tﬁ) is smaller than
((g-1)°pl+g+l). (Note that the length of the longest tail without repetitions

cannot be longer than ((g-1)° gtg+l)). But then (repeating the argument

o

used before in this proof) .

contains at least two oacurrences of ©
distant no more than F.

Consequently, we have proved that there exists a positive integer

k_ (k

. +
5 &g = F) such that for every n in N+ there exist an m in N and a word

x in L(G) such that m > 1, #B(x) =m and x contains at least two
occurrences of g distant less than kB. Thus B is not rare in L(G).
Hence assuming that B is frequent in L(G) we get that B is not rare

in L(G) and this proves Lemma 4.

Thus for an arbitrary TOL language L and for an arbitrary singleton

rare in L we have the following result.

Lemma 5. If G =<3, P,w> 1s a TOL system, B is a nonmempty subset of
v and B is rare in L(G), then B is nonfrequent in L(G).

Let L be a TOL language generated by a TOL system G =‘<§,,P,@> and let
B be a nonempty subset of y such that B is rare in L.

Obviously, each subset of B is also rare in L and in particular each
singleton in B is rare in L(where L = L(G)).

Thus, if C is a singleton in B, then by Lemma 2, C is rare in L(Assoc(G)).
But then (recall that Assoc(G) is a DTOL system) from Lemma 4 it follows
that C is nonfrequent in L(Assoc(G)), and consequently, by Lemma 3, C is

nonfrequent in L(G) = L,
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Thus (because B is a finite union of singletons in B) B itself is non-

frequent in L and Lemma 5 holds,
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THE RESULT AND ITS APPLICATIONS.

In this section we prove our main result which is a characterization
of a subclass of ETOL languages. As an application we prove some languages

to be non~ETOL languages.

To generalize Lemma 5 to arbitrary ETOL systems we need the following

result proved in [Rozenberg & Ehrenfeucht].
Lemma 6., Every ETOL language is a coding of a TOL language.

Now let us notice that the operation of coding preserves the properties
of being rare and nonfrequent in the following sense (the easy proof

of the next result is left to the reader).

Lemma 7. Let L be a language over an alphabet I, K be a language over
an alphabet V and h be a coding from V* into'Zv'c such that h(K) = L. Let
B be a nonempty subset of I. Then

(i) 4if B is rare in L, then h—l(B) is rare in K, and

(ii) if C is nonfrequent in K, then h(C) is nonfrequent in L.
Now we can easily prove our main result.

" Theorem 1., If L is an ETOL language over an alphabet %, B is a non-
empty subset of % and B is rare in L, then B is nonfrequent in L.
‘Proof,

This result follows directly from Lemmata 5, 6, and 7.
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It should be obvious to the reader that Theorem 1 may be used to
prove that certain languages are not ETOL languages.

For example we have the following useful result,
. + + ;
Theorem 2, Let ¢ be a function from N into N such thatnlgmmy(n) = o
+
and let U be an arbitrary infinite subset of N , Then, the language

m m
1 Mg + .
{ba ~ ba 2 oo Da t ke U, Mysees, M € N and m, = P(i)

It

K(y, U)

for 1 <i <k} is not an ETOL language.

Proof.

Let ¥, U and K(y, U) satisfy the statement of Theorem 2.

If we assume that K(¢, U) is an ETOL language, then the singleton {b}
must be nonfrequent in K(y, U) (because {b} is obviously rare in K(y, U)).
But {b} is frequent in K(y, U); a contradiction.

Thus K(¢, U) is not an ETOL language, and Theorem 2 holds.

As an application of Theorem 2 we shall give a constructive proof of
a previously known result, It was proved in [Rozenberg, 1973] that the
class of ETOL languages is strictly included in the class of A-free
context-free programmed languages (for the definition of this class see,
e.8., [Rozenberg, 1972], whose "graph notation" for context-free programmed
grammars we shall use in the procf of our next result)., This proof was,
however, "nonconstructive", based on different closure properties of
discussed classes of languages. In fact until now it was an open problem
to find a A-free context-free programmed language which is not an ETOL

language. We can solve this problem now.
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Theorem 3. There exists a A-free context-free programmed language
which is not an ETOL language.
Proof.
Let L={(aMH™ : n ¢ N+}.
By Theorem 2 (put ¥ to be the identity function on N+ and U = N+,
then K(y, U) = L) L is not an ETOL language.

But the reader can easily check that L is generated by the A-free

context—free programmed grammar with the following

Hence L is a A-free context-free programmed language, whereas it is not

an ETOL language. Thus Theorem 3 holds.
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APPENDIX.

Lemma 8. If G is a finite group consisting of s elements and
gl°g2°...‘gk is a product of k elements of the group for some k > s, then
for some i, in {1,...,k=1} and a positive integer r such that (iO+r) <k

0
we have gi- gi +l'...°gi +r - &G where eG is the identity in G.
0 0 0
Proof.
Let G, s and k satisfy the statement of the lemma.
Then 81s B1°Bys B °ByBgseess8 °8, 0.8 are k elements of G and, as

k > s, for some i, in {1,e.., k—-1} and for some positive integer r such

0
that (1O+r) < k we have gl."'.gio = gl‘...'810“810+1°...°gio+r and
consequently 8, +l°'°°.g’ +r = ge Thus Lemma 8 holds.

0 )
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