NONTERMINALS VERSUS HOMOMORPHISMS IN
DEFINING LANGUAGES FOR SOME CLASSES
OF REWRITING SYSTEMST

A. Ehrenfeucht
Department of Computer Science
University of Colorado
Boulder, Colorado 80302 U.S.A.

G. Rozenberg
Institute of Mathematics
University of Utrecht
Utrecht~Uithof, The Netherlands

Report # CU-CS-027-73 August, 1973

All correspondence to:

G. Rozenberg

Institute of Mathematics
Utrecht University
Utrecht -~ Uithof

The Netherlands

+ This work supported by National Science Foundation Grant # GJ-660

TABLE OF CONTENTS.

INTRODUCTION.

PRELIMINARIES,

ETOL SYSTEMS AND LANGUAGES.

SPECTRA OF SETS OF SYMBOLS IN ETOL SYSTEMS.

CODINGS AND HOMOMORPHIC IMAGES OF TOL LANGUAGES.

EIL SYSTEMS AND LANGUAGES.

HOMOMORPHIC IMAGES OF IL LANGUAGES.

HOMOMORPHIC IMAGES OF SENTENTIAL FORMS OF CONTEXT~FREE AND
CONTEXT-SENSITIVE GRAMMARS.

REFERENCES.

ii

ABSTRACT.

Given a rewriting system G (its alphabet, the set of productions and
the axiom) one can define the language of G by

(1) taking out of all strings generated by G only those which are over
a distinguished subalphabet of G, or

(ii) translating the set of all strings generated by G by a fixed homo—
morphism,

The "trade-offs" between these two mechanisms for defining languages
are discussed for both, "parallel" rewriting systems from developmental sys-

tems hierarchy and '"sequential" rewriting systems from the Chomsky hierarchy.

iii

0. INTRODUCTION,

Given a rewriting system G consisting of an alphabet V, the set of
productions P and the axiom w, the most natural set of strings associated
with G is the set of all strings one can 'derive in G" starting with w and
using productions from P. Now one can define '"the language of G" in at least
two different ways:

(i) One defines a subalphabet VT of V and then takes as the language
of G only this subset of the set of all strings derived in G which consists
of all strings over the alphabet VT.

(ii) One defines a homomorphism h and then takes as the language of
G the set of all images under h of all words derived in G.

The first of these definitional mechanisms is called "defining languages
by the use of nonterminals" and the second one is called "defining languages
by the use of homomorphic tables'.

Thus, if G = <V, P, @)then its language in the first case is defined
by the system G' = <V, P, w, VT>'and in the second case by the system
¢' =4V, P, w, h).

Both approaches are used in formal language theory.

The use of nonterminals is a very well-established mechanism
in formal language theory and dates back at least to the fundamental works
of Chomsky (see [Chomsky, 1956]). It also has a deep linguistical motivation
(for a discussion of which the reader is referred to [Chomsky, 19571).

Homomorphic images of languages were the subject of quite a number of
papers in formal language theory (see, e.g., [Ginsburg and Greibach]). But
it is really the theory of developmental languages (see, e.g., [Lindenmayer],

[Lindenmayer and Rozenberg], and [Herman and Rozenberg]) in which the set

iv

of all strings generated by a rewriting system G is of primary interest and
then the homomorphic mappings (especially those in which a letter is mapped
to a letter, the so-called codings) of such languages are the "second natural
objects'". 1Indeed, it is the fact that the class of languages generated

by the use of codings turned out to be a subclass of the class of languages
generated by the use of nonterminals, for some classes of developmental sys-—
tems, which made the use of nonterminals interesting at all within the theory
of developmental systems and languages (for a discussion of this subject

see, e.g., [Herman, Lindenmayer and Rozenberg]).

Hence, the trade-off between these two mechanisms for defining languages
becomes an interesting and well-motivated problem to investigate.

For example, in [Ehrenfeucht and Rozenberg] it was proven that if one
considers a particular class of rewriting systems (the so=called)L sys-—
tems) then the use of codings or nonterminals for defining languages are
equivalent. This motivated quite strongly the investigation of the use
of nonterminals within this class of systems (see, e.g., [Herman],

[Herman, Lindenmayer, and Rozenbergl], and [Rozenberg and Doucet]).

This paper continues the work from [Ehrenfeucht and Rozenberg]. We in-
vestigate the trade-off between the use of nonterminals and the use of codings.
Itis shown that whereas these mechanisms are equivalent in the class of de-
velopmental systems without interactions (the so-called EOL and ETOL systems)
they are not equivalent when one deals with the class of systems in which
rewritings may be "context-dependent" (the so-called EIL systems). In the
latter case we also show how to modify codings to get the equivalence of

these two mechanisms for language definition.

The last part of this paper deals with the trade~off between the use
of nonterminals and the use of homomorphic mappings in the classes of context-—
free and context-sensitive grammars from the Chomsky hierarchy of classes

of rewriting systems.

1. PRELIMINARIES.

We assume the reader to be familiar with basics of formal language
theory, e.g., in the scope of [Hopcroft and Ullman], whose notation and
terminology we shall mostly follow. In addition, we shall use the follow-
ing notation:

(1) N denotes the set of nonnegative integers and N =N - {0}.

(i1) If x is a word, then le denotes its length and Min(x) denotes
the set of letters which occur in x.

(iii) If A is a set then ZA denotes the set of subsets of A and in the
case when A is finite, #A denotes its cardinality. If B is also a set then
A < B denotes the inclusion of A in B and A< B denotes the strict inclusion
of A in B.

(iv) If A is an ultimately periodic set of nonnegative integers then
thres(A) denotes the smallest integer j for which there exists a positive
integer q such that, for every i > j, if i is in A then (i + q) is in A.

The smallest positive integer p such that, for every i > thres(4), whenever
i is in A then also (i + p) is in A, is denoted by per(A).
(v) If T = (wl, Wy w3,.,.) is a sequence of words then a sequence

W, 5 W, ,... such that, for each j > 1, i, < i
10N -

of T.

J+1 is called a subsequence
(vi) 1If I is an alphabet and & is in N then tosxe T |x| = 2}.
(vii) ¢ denotes the empty set and A denotes the empty word.

(viii) If A is a finite automaton then L(A) denotes its language.
(ix) 1If G is a context-sensitive grammar then L(G) denotes its language
and Sent(G) denotes the set of sentential forms of G (the set of all strings

that can be derived in G starting with its axiom).

(x) A homomorphism which maps a letter to a letter is called a coding
and a homomorphism which maps a letter either to a letter or to the empty
word is called a weak coding.

In some portions of this paper we shall assume familiarity with some

additional material, but this will be always explicitly stated.

2. ETOL SYSTEMS AND LANGUAGES.

In this section we introduce ETOL systems and languages which is the
first class of systems and languages to be investigated in this paper. We
refer the reader to [Rozenberg, a] and [Rozenberg, b] where different pro-

perties of this class of systems and languages are proved.

Definition 1. An ETOL system is a comstruct G = <VN Vs P, wysuch that

VN is a finite alphabet (of nonterminal letters or symbols),

VT is a finite nonempty alphabet (of terminal letters or symbols), such that

v NV =8,

w is an element of (VN\J VT)+ (called the axiom of G),
P is a finite nonempty family, each element of which is a finite nonempty set

of the form {a +~ o : a is in VN UV, and a is in (VN\J VT)*} (where we assume

T
that the symbol » is not in Yy &}VT)‘

Each element P of P (called a table of G) satisfies the condition:

for every a in VN U V., there exists at least one a in (VN L!VT)* such

T

that a -+ o is in P.

(If P is in P, and a +~ o is in P then a »+ o is called a production in P, or

a production of G. We often write a-~a for "a -~ a is in P. VN'U Vo is called
P

the alphabet of G).

Definition 2. Let G = (V s V P, @)be an ETOL system.

T,

(1) A production a - o of G such that o = A is called an erasing produc-

tion. G is called propagating if no production of G is an erasing production.

(i1) G is called a TOL system, if VN = @, (In this case we often write

Gas {V_, P, wp.)

(iii) G is called an EQOL system, if #P = 1. (In this case, if P = {P},
then we often write G as <V s VT’ P, w).)
(iv) G is called a OL system if #P =1 and V;; = . (In this case,

if P = {P}, then we often write G as <VT, P, w).)

We shall use the letter P to denote the propagating restriction. For

example, "an EPTOL system" means a propagating EPTOL system.

Definition 3. Let G =<V, VT’ P, wY be an ETOL system.

. + _ .
(1) Let x ¢ (VN V) VT) , 8ay x = bl bZ”'bt for some bl’ b2""’bt in

VN UVT, and let y ¢ (VN \V VT)*. We say that x directly derives y (in G),

denoted as x=y, if there exist a P in P and a sequence Miseees T of productions
G

from P such that, for every 1 in {1,...,t}, mo= bi ooy and y = o R

1

(In this case we also write x==>y, and we say that x directly derives y (in G)
P

using P).

(ii) Let x ¢ (VN v VT)+ and y € (VN.U VT)*. We say that x derives y in
G, denoted as X=:éy, if,

either x = ;,

or, for some n > 0, there exists a sequence XO; KyseresX of words in

(VN UVT)*, such that x5 = x, x =y and x, ;=x, for 1 < i <n. (If the

+ -1l
latter holds then we also write x?y. Also, if T = Tl“'Tn is a sequence
of tables from P and X0===>Xl—-———-> Koo =§Xn, then we write X:%y) .
T T T
1 2 n

(iii) TFor x in (VN U VT)+ and y in (VN V] VT)*, a derivation of y from

x (in G) is a sequence D = (XO, Xl,...,xn) of words in (VN v VT)* such that

for 1 < i <n, x; =x,. If x4~ 0, then D is called a derivation of y

1
G
(in G), and then we say that x is derived in G in n steps, and write
= 0 X Y o 2EERR
Xy == X (by definition x====x, for every x in (V. U V_)%).
c G N T

(iv) Let D = (Xb, Xl,...,Xn) be a derivation of X from Xy in G and

let T,...T_ be a sequence of tables from P such that x,==x.=> ...==x .
1 n 0 T 1 T p B

A control sequence of D is a sequence T,,..,T of sets of productions n
—_— 1 n

such that, for each 1 < i < n, ig‘gz‘fi and E; consists of all and only these

productions which are "used" in deriving 3 from x, (Note that the sets

i-1°
of productions in a control sequence of D may contain no productions for
some letters. For this reason we often "complete them'" by adding productions
of the form a -+ a for all letters a for which the table does not contain a

production. The resulting sequence is also called a control sequence of D

but this should not lead to any confusion).

Definition 4. Let G =<V s VT’ P, w) be an ETOL system. The language

* %
of G, denoted as L(G), is defined by L(G) = {x ¢ VT : w=>x}.
‘ G

Definition 5. A nonempty language K different from {A} is called an

ETOL (TOL, EOL, EPTOL, etc.) language if, and only if, there exists an ETOL
(TOL, EOL, EPTOL, etc.) system G such that L(G) = K. A language K is called

a CTOL language (an HTOL language) if, and only if, there exists a TOL language

K and a coding h (a homomorphism h) such that h(ib = K.

F and F will denote the classes of ETOL,

In the sequel FETOL’ CTOL HTOL

CTOL and HTOL languages, respectively. In fact in this paper whenever FX

denotes the class of languages, then F F.., F.., and FPHX denote the class

cx’? HX

of coding of languages from FX’ the class of weak codings of languages from FX’
the class of homomorphic images of languages from FX and the class of images

under A-free homomorphisms of languages from Fy.

Remark 1. 1In the sequel, given an ETOL system G = <V . VT’ P, Q>, we

shall sometimes consider P as a set of tables as defined in Definition 1, and

sometimes we shall consider P to be the set of symbols ('names'" of tables),
but this should not lead to any confusion. (For example, we may talk about

an alphabet P, words over P, etc.).

Remark 2. It is well-known (see e.g., [Rozenberg, al) that for every
ETOL system G there exists an ETOL system H ==<V', VT’ P, w>>such that w is in

V.

X Thus in the sequel we shall often assume that an ETOL system we deal

with is such that its axiom is a nonterminal symbol, and in this case the

axiom shall be denoted by the symbol S.
We end this section with two examples of ETOL.systems and languages.

Example 1.

2

¢ =<@, {a, b}, {{a > A°, B> B}, {A+A, A~ AB, A~ BA, B~ B}}, A

is a PTOL system such that L(G) = {x ¢ {a, pit s #a(x) = 2" for some n >0},

Example 2.
G = {{A}, {a}, {{a~ Az, a~>al, {A~ 33, a -+ al}l, A) is a EPTOL system

n
3-2 :n >0},

such that L(G) = {a

3. SPECTRA OF SETS OF SYMBOLS IN ETOL SYSTEMS.

In this section we introduce the basic notion of the so-called spectrum
of a set of symbols in an ETOL system. (In this section and in most of the
next section we talk about EPTOL systems only and, for the sake of clarity,
though most of the notions apply to arbitrary ETOL systems we define them for
EPTOL systems only).

We start by defining an analogous notion for a finite automaton.

Definition 6. Let A =4Q, I, &, dg» F)be a finite automaton and let

q be in Q. The spectrum of q in A, denoted as Spec(A, q), is defined by

Spec(A, q) = {n ¢ Nt 8(q, x) € F for some x in st such that Ix[= n}.
Spectra of states in finite automata satisfy the following basic property.

Lemma 1. If A is a finite automaton and q is its state then Spec(A, q)
is an ultimately periodic set.

Proof.

Let A =<Q, %, 8, d4p> F) and let q be in Q. Let A(q) =<4q, =, ¢, q, F>
It is clear that, for n in N+, n is in Spec(A, q) if, and only if, there exists
a word x in L(A(g)) such that |X| = n. But it is well-known that the set of
lengths of words in a regular language is ah4ultimate1y periodic set (see, e,g.,

[Ginsburg, Theorems 2.1.2 and 2.1.3]). Thus Lemma 1 holds.
The following notions will be useful in the sequel.

Definition 7.

(i) Let A be a finite automaton and q a state of A. We say that q is

weak if Spec(A, q) is a finite set, otherwise gq is called strong.

(ii) A uniform period for A, denoted as my» is the smallest positive

integer j such that
1) for each q in Q, j > thres(Spec(A, q)), and

2) for each strong q in Q, j is divisible by per(Spec(A, q)).

Definition 8. Let G =<{V_, VT’ P, S» be an EPTOL system and let B be
a nonempty subset of VN V] VT' The spectrum of B in G, denoted as Spec(G, B),
is defined by

: + . .
Spec(G, B) = {n ¢ N : there exists a word x in B and a sequence T = Pi "'Pi
1 n
of tables in P such that x:%w for some word w in VT+}.
G
Thus a positive integer n is in Spec(G, B) if, and only if, there exists

a sequence T of length n of tables from P such that each letter in B can,

"using T"' derive a word consisting of terminal symbols only.

Definition 9. Let G = <VN’ VT’ P, S> be an EPTOL system. The closure

of P, denoted as Clos(P), is defined as the family of sets of productions such
that R is in Clos(P) if, and only if,

(i) for some P in P, R<T P, and

(ii) for every a in VN U V., R contains at least one production with a

as its left-hand side.

The spectra of states in finite automata and the spectra of sets of symbols

in ETOL systems are connected through the following construct.

Definition 10. If G =<V_, VT’ P, S> is an EPTOL system and B is a

nonempty subset of VNU VT’ then the B-spectral representation of G is a finite

automaton, denoted as A defined by AG B = <Q,, %, 6, 44> F>, where
3

G,B

v. UV
Q=2N T_¢’
L = Clos(P),

99 = B

F=1{qeQ: qE_ZVT}, and
for every q, q in Q and P in Clos(P), &(q, P) = q if, and only if,
q=UMin(a) : a € q and a + o is in P}.

AGiS} is called a spectral representation of G and is denoted by AG.

The easy proof of the following result is left to the reader.

Lemma 2. Let G = <V s V.., P, S>'be an EPTOL system and B be a nonempty

T
subset of VN\J VT. Then Spec(G, B) = Spec(A, B).

The following result expresses the basic property of spectra of sets of

symbols in ETOL systems.

Lemma 3. If G =:<Vﬁ'VT’ P, S> is an EPTOL system and B is a nonempty
subset of VN\J VT’ then Spec(G, B) is an ultimately periodic set.
Proof.

This result follows directly from Lemma 1 and Lemma 2.

Definition 11. If G is an EPTOL system, then the uniform period of G,

denoted as m., is defined by m, = mAG.

Spectral representations of ETOL systems do not contain by themselves
enough information for our purposes. However, together with the following

construct they turn out to be the basic comstructs for proving equality of

F and F

ETOL CTOL"®

10

Definition 12. Let G be an EPTOL system and let AG =<q, 1, ¢, a4 F),

where we assume some, fixed but an arbitrary, ordering on Q, say Q = {uo,...,up}.

(For convenience, we always assume that Uy = qo.) An indexed spectral repre-

sentation of G, denoted as IG’ is a finite automaton IG‘==<EL Eﬂ 5; ab; f:>

defined as follows:

Q

‘{uivx {i} : 0 <1 < p}.

|

= {p*J . p ¢ %, i, j ¢ {0,...,p} and G(ui, P) = uj}, where if P ¢ I,
i, 5 ¢ {0,...,p} and S(ui, P) = ugs then P7?J = {[a, 1] - [a, i] : a € Vg &}V& and
a¢ ui} U {la, i] ~ [bl’ 3]...[bt, il : a e uy and a - bl"°bt is in P}.
9 = {uo} x {0},
F={u, x {j} : u, e F}.

3o _

r o T i,j . % % , i,]

For uy x{i}, uy x{k} in Q and P in Z, 6(ui x {i}, p7Y) = u

X {k} if, and

only if, k = j and 6(ui, P) = uj.

Note that an indexed spectral representation of G depends on the ordering
of states of AG’ but as we always assume some fixed ordering of states of Ag,
we can talk about the indexed spectral representation of G without any con-
fusion.

We leave for the reader the easy proof of the following result.

Lemma 4. Let G be an EPTOL system, A.G =<q, z, 8, dp» F) with
Q= {uo,...,up} and IG ={q, I, S, :1_0, F). Then for each i in 10,...,p},

Spec(IG, u, X {ih = Spec(AG, ui) (and so mAG = mIG).

11

4. CODINGS AND HOMOMORPHIC IMAGES OF TOL LANGUAGES.

In this section we prove that each ETOL language is a coding of a TOL

language, and then using previously known results we prove that FETOL =

F F

HTOL ~ ' cToL

First we need the following construct.

Construction 1. Let G =<VN, VT’ P, S> be an EPTOL system and let k

be a nonnegative integer such that k < m, Let AG = <Q, %y G, dpe F>where

Q = {uo,...,up} and let IG =<6, E, s, "q_O, O,
Let Ax(G, k) be the set of all nonempty words w over an alphabet

__\.2 {q} such that w = [bl’ j]"'[bt’ j] where there exists a derivation of
q €Q

b,...b_in G with a control sequence T = P, ...P, for which

1 t 11 lm

= G
‘d(qo, T) = uj and (mG + k) ¢ Spec(AG, uj).

For every r, s in {0,...,p} such that (mG +k) ¢ Spec(AG, ur) and

,S,k

(mG + k) ¢ Spec(AG, us) let P* be the set of all compositions

u,,u u,,u u u —_
P 1’72 P 2’ 3,_,]‘9 mG, mG+l of mey tables from I such that up =T and u
G

for all r, s in {0,...,p}

H
w0

Let Pk be the set~-theoretical union of all Pr,s,k

such that (mG + k) € Spec(AG,ur) and (mG + k) € Spec(AG, us).

Let £¥ = {[a, i] : a ¢ VN.U Vo and i e {0,...,p}}.

If vy is a word over Zk, say y = [cl, i]...[cs, i], then proj(y) is de-
fined by proj(y) = CqeeeCyn

If Ax(G, k) is not empty, then for every w in Ax(G, k) we define a PTOL

system G(k, w) by G(k, w) =<Zk, Pk, w). We also define M(G(k, w)) by

MGk, w)) = {x ¢ VT+ : there exists a word y in L(G(k, w)) such
m k
. G
Proj (y)__."——_:——__::)}{},
G

The languages M(G(k, w)) can be used to "generate" L(G) as follows.

12

Lemma 5. Let G =<V_, V., P, S>be an EPTOL system and let k < m,.

T? G
, + %
let F,={xe V : S=3x for some ¢ < 2m.}. Then
G T c G
r, U U Kg M(G(k,w)) = L(E).
k<m, we (G, k)

G

Proof.

Obviously F L,}L_/) k_/) M(G(k, w)) € L(G).

k < m, we Ax (G, k)

Now, let us assume that x is in L(G).

If x can be derived in G in less than ZmG steps, then x is in FG and

consequently x is in FG_) k\./) k\h‘,) M(G(k, w)).

k < m, We Ax(G, k)

Thus let us assume that x is in L(G) and x is derived in G in at least

2mG steps. Let D = (S, KyseeesX = x) be a derivation of x in G with r i.sz

and let T ’Tr be a control sequence of D. Let r = & m, + kr for some

IERRE s
. + .
. in N' and kr in {O,...,mG—l}. Let AG ={q, z, ¢, > F) where Q = {uo,...,up}.
Note that:

(i) X derives (in G) x in (%r - l)mG + kr steps. But (Qr - l)mG +k_ >m

¢ T G
and so (mG + kr) € Spec(AG, Mln(me)). Obviously G(qo, Tl...TmG) =
Min(x_) and so, if Min(x_) = u,, for some j in {0,...,p}, then
e ! J
[bl’ j]...[bt, 3] is in Ax(G, k), where me = bl...bt for some bl,...,bt in
Vg V Voo

(ii) For every £ in {l,...,%r - 1}, we have (2r - l)mG + kr > m, and

consequently (mG + kr) e Spec(A Min(x,)).

G’

(iii) Let z = [bl, ile..[b_, jl (see (i)) and let u, = Min(xz _ l).

r

t

If Xy 1 T Cpee-Cy then [Cl’ i]...[cs, i] € L(G(k, w)).
r mG + k

But x2 ========;X and consequently x € M(G(k, z)).

Hence x is in FGK“) _/} k_/) MGk, w)).

w £ Ax(G, k)

Thus L(G) CF k,J _/) _/) M(G(k, w)) and Lemma 5 holds.

< m, We Ax (G, k)

13

Before we can prove that each language of the form M(G(k, w)) is a

finite union of codings of TOL languages we need the following construction.

Construction 2. Let G ==<V', V.., P, S> be an ETOL system and let k be

T,
a nonnegative integer such that k < m, . Let AG =<@, Z, &, dg0 F), where

Q =‘{u0,...,up}, and let IG =<q, t, ¢, ab, F). Let Aﬁ(G, k) # @, let w be
in Ax(G, k) and let G(k, w) =<V, R, WO

If B is a nonempty subset of VN U VT’ then let Seq(B, m. + k) be the set

G

1"'TmG+k of tables from Clos(P) such that if x is a

. . _ , R +
word over (VN U VT) with Min(x) = B then Tl"’TmG+k(X) contains a word in VT .

of all compositions T

If a is in VN U V_ and T is a sequence of tables from Clos(P) then

T
Contr(a, 1) is defined as the set of all words y in VT+ such that a:%?y,
Let Z = {[a, 1, T, b] : [a, i] e V, T ¢ Seq(ui, k) and b ¢ VT} U
{[a, 1, 7, b] : [a, i] eV, T ¢ Seq(u;, k) and b ¢ V..
Let T be in R. Let r, s in {0,...,p} be such that T is in Pr,s,k (see

Construction 1). If 1 is in Seq(us, k) then we define T to be a table

consisting of the following productions:

{la, r, p, b] »~[c1, S, T, bll][cl, S, T, blz]...[cl, S, T, blnl][CZ’ S, T, bZl]"‘
...[c2, S, T, b2n]...[cv, S, T, bvl]...[cv, S, T, bvn 1 : [a, r] -~ [cl,s]...
2 v
...[cv, s] is in T, bll...bznl e Contr(cl, 1), bzl...bznz
bvl...bvn € Contr(cv, n} U {[la, r, p, bl > A : [a, T, p, b] € Z}.
v

If w = [el, i]...[eg, i] then we define W(w) to be the set consisting

£ Contr(cz, T),...,

of all the words of the form

[els i, p, bll][el’ i, p, b12]'--[elg 1, p, blnl]{ezs 1, 0O, bZl]Ht[ezs 1, P, bznz]o-o
...[eg, i, p, bgl]"'[eg’ i, p, bgng] where p ¢ Seq(ui, mG+k) and
. gl...bgng € Contr(eg, 0).

b b £ Contr(el, 0)see.,b

11°°"71n

14

For every y in W(w) let G(k, w, y) be the TOL system {Z, S, yD, where
S is the following set of tables:

k

S = {T" : for some r, s in {0,...,p}, T is in P2 % X gnd 1 is in Seqﬁls, kK)}.

Lemma 6. Let G be an EPTOL system, k < m., Ax(G, k) # ® and let w be
in Ax(G, k). Then there exist a finite set"{Hl,...,Hf} of TOL systems and

a coding h such that
f

M(G(k, W) = Uh“&)'

i=1
Proof.

Let G be an EPTOL system, k < o Ax(G, k) # @ and let w be in Ax(G, k).

Let h be the coding from Z into VT defined as follows:

h([a9 i, p, b]) = h([a’ i, p, b]) = b.
We leave to the reader the obvious, but tedious proof, (based on

Lemmata 3, 4, 5 and 6) of the fact that

M(G(k, w)) = U h(L(G(k, w,y))).
y & W(w)

Thus Lemma 6 holds.

The following two results are very easy to prove, and so we leave their

proofs for the reader.

Lemma 7. If K is a finite language, then there exists a TOL system G

and a coding h such that K = h(L(G)).

Lemma 8. If K is a language such that there exist a finite set'{Hl,...,Hf}

of TOL systems and a finite set of codingsk{hl,...,hf} such that

15

f

K =L_/)hi(L(Hi))’ then there exist a TOL system G and a coding h such that
i=1
K = h(L(G)).
Now we can easily show that every EPTOL language is a coding of a TOL
language.

Lemma 9. For every EPTOL language K there exist a TOL language L and
a coding h such that K = h(L).
Proof.

This result follows directly from Lemmata 5 through 8.
The following obvious result is given without a proof.

Lemma 10. If a language L is a coding of a TOL language, then also

the language L U{A} is a coding of a OL language.
Arbitrary ETOL languages are handled now as follows.

Theorem 1. For every ETOL language K there exist a OL language L and
a coding h such that K = h(L).
This theorem follows from Lemmata 9 and 10 and from the known fact

(see, e.g., [Rozenberg, a]) that for each ETOL system G there exists an EPTOL

system H such that L(G) - {A} = L(H).
Now we can prove the main result of this section.

Theorem 2. FETOL = FCTOL = FHTOL'

Proof.

This follows from Theorem 1, from the known fact (see, e.g., [Rozenberg,al)

that the class of ETOL languages is closed with respect to homomorphic

16

mappings and from the fact that each coding is a homomorphism.

In fact one may observe that the above result is a constructive one in

the following sense (the next result is a sample of the three possible re-

sults of the same character).

Proposition 1. The classes F and F are effectively equal, meaning

that

(1)

ETOL CTOL

there exists an algorithm which, given an arbitrary ETOL system G,

produces a TOL system H and a coding h such that L(G) = h(L(H)), and

(i1)

there exists an algorithm which, given an arbitrary TOL system

and a coding h produces an EOL system H such that L(H) = h(L(G)).

Proof.

This result follows from the fact that all the constructions involved

in the proof of Theorem 2 may be effectively performed (we leave to the

reader the

As an
of lengths
gating the

motivated,

tedious, but straightforward proof of this result).

application of Theorem 2 we present a result concerning the sets
of words in ETOL languages. We may point out here that investi-
sets of lengths of words in ETOL languages forms an active, and well

research area (see, e.g., [Paz and Salamaa]). The following result,

as far as we know, is a new result in this area.

Before we state it we need a definition.

Definition 12. The length set of an ETOL system G, denoted as Lg(G),

is defined by Lg(G) = {n e N: [w] = n for some w in L(G)}.

Corollary 1. A subset U of nonnegative integers is the length set of an

ETOL if, and only if, it is the length set of a TOL system.

17

This result follows directly from Theorem 1, from the fact that if x
is a word and h is a coding defined for elements of Min(x), then |x| = |h(x)|
and from the fact that each TOL language is, by definition, also an ETOL

language.

Let us recall, for the sake of completeness, the following result from

[Ehrenfeucht and Rozenberg].

Theorem 3. A language is an EOL language if, and only if, it is a coding

of a OL language.

Thus, within developmental systems, we have the following informal
thesis:

If G is a class of systems in which a rewriting of a symbol is done in-
dependently of its context (like ETOL or EOL systems) then defining the language
of a system G in G by intersecting the set of all words generated in G with
the set of all words over a particular alphabet (thus using nonterminals)
is equivalent, as far as the class of all languages obtained in G
is concerned, to'using "a coding table" to translate (only once) letter-by-
letter all words generated in G.

The rest of this paper is devoted to a further discussion of this thesis.
First we show that the result is 'inherent" to systems with "context-free
rewritings'". For eXample, we show next that even a weaker result is not true
for the so-called EIL systems, which are very much the same as EOL systems,‘
except that rewriting of a letter in a word may depend on the context ofy

the letter.

18

5. EIL SYSTEMS AND LANGUAGES.

In this section we give formal definitions of EIL systems and languages

(see, e.g., [Herman and Rozenbergl).

Definition 13. Let k and £ be nonnegative integers. An E -{k, & >~-system

is a construct G = {V_, Vs Pyogs wy, where

VN is a finite alphabet (of nonterminal letters or symbols),

VT is a finite nonempty alphabet (of terminal letters or symbols), such that

VN(\ VT = @ (where Vﬁ.U VT is called the alphabet of G),
w is an element of (VN V) VT)+ (the axiom of G),
g is an element which is not in Vﬁ v VT (the marker of G),

P is a finite nonempty relation (set of productions of G)
- k v L
PC@E VUlgh) x2 x CU{gh” x z*

such that

1) if <Wl, a, Vg, w4> e P,

then
1.1) if W, = ﬁi g ﬁi for some %i, Ei e (U {gh*, then %i e {g}*,
1.2) if Wy = 55 g ﬁé for some ﬁé, Es e (£ U{gh*, then Qé e {g}*,
and

2) for every <Wl’ a, w3> e (2 \){g})k x z x (z \){g})ﬁ, such that Wy and W

satisfy conditions 1.1 and 1.2, there exists a v, in £* such that
<ﬁi, a, Wy, w4> e P.
If vy = @ then G is called a'<k,£>—system.
Any E—(?,Q>—system is also called an EIL system and an <k,£>—system

is also called an IL system.

19

If <wl, a, Vs, W4> is an element of P, then we denote this by

<Wl, a, w3>—%w4 and we call <Wl, a, w?—> W, a production in P.
P
For any nonnegative integer k, if w = a

...a 1s a word such that
1 m

ayseee,a are symbols and m > k, then Sufk(w) = a ..a_and

&kt Zm-k+2° " %n

Prefk(w) = age..a .
Definition 14. If G = <VN, \

P, g, w}is an E—<k,k>- system, X = a a

IERRE
28 € VN Vi VT, and y is in (VN U VT)*, then we say that x

T’

with m > 1, ayse-

dirvectly derives y in G (denoted as x=sy) if, and only if
G

k
<g s a1, Pref (az...amgg‘)>_..;al,
P h
k
<Sufk(g al), a,s Prefg(aB...amgQ»——)ocz,
P

.
°

<Sufk(gkal...am_1), a s gg“>?ozm,
1> Ogseces0 € (VNU XT)* such that y = oy -
e.g., Definition 3) we define ==>and =;)as transitive, and reflexive and
transitive closure of the relat(;on ==-§(,; respectively.
G

for some o L As usually (see

Definition 15. Let G =<V s VT, P, g, W be an E-(k,z)-system. The language

, *
of G, denoted as L(G), is defined by L(G) = {x ¢ (VN v VT)* w=>x}.
G

Definition 16, Let k and & be nonnegative integers. If M is a nonempty

language different from {A} such that there exists an E-{k,%>-system (a <k,52>-—

system) G such that L(G) = M, then M is called an E-<k,%>-language (a <k,2>—

language). Each E-—<k,2>—language (<k,$?,>—language) is also called an EIL

We shall use symbols FEIL and FIL to denote the classes of EIL and IL

languages, respectively.

20

We end this section with an example of an EIL system and language.

Example 3.
¢ = {s}, {a, b}, Kb, a, a) + 1,<{g, a, ay + az, {a, a, ay > a2,
{a, a, g - a2, {g, b, ay - ba, (g, S, g+ ba5, {g, S, &)~ a2 and
{x, y, z)~ y otherwise}, g, S is an E—<1,1> -system such that
n 2%41,

L(G) = {a2 : n_>_yl} U {ba n > 2}.

21

6. HOMOMORPHIC IMAGES OF IL LANGUAGES.

In this section we show that the class of EIL languages does not result
from codings of IL languages. Then we discuss a situation when codings are
replaced by arbitrary homomorphisms.

We shall use the following known fact (for its proof see, e.g.,

[Herman and Rozenberg, Chapter 10]).

Lemma 11. A language is recursively enumerable if, and only if, it is

an EIL language.

But it is well-known (see, e.g., [Hopcroft and Ullman, Theorem 9.10])
that recursively enumerable languages are closed under an arbitrary homo-

morphic mapping. Thus we have the following result.
Corollary 2. A homomorphic image of an EIL language is an EIL language.

However, unlike for the situation in Section 4, one does not get all
EIL languages by taking codings of IL languages. To prove this we need first

the following result.

Lemma 12. If L is an infinite IL language, then there exists a positive

integer constant C. such that if‘{wl, Wz,...} is any ordering of elements of

L

L in such a way that, for j > i, |w 3~[wi‘, then, for every k > 1,

5

.

o | <€ oy

- Theorem 5. There exist EIL languages which are not images under A-free

homomorphisms of IL languages.

22

Proof.

By Lemma 11 each recursively enumerable language is an EIL language.
Let L be any infinite recursively enumerable language such that no two
different words in L are of the same length and if‘{xl,xz,...} is an ordering
of L according to the growing len;gh of words, then]xnl —Ixn_ll Z_Zzn. (An
example of such a language is'{a2 :n > 0}).

Let us assume to the contrary, that there exist a language K (over some
alphabet 3) and a A-free homomorphism h such that h(K) = L. Then, obviously
K must be an infinite language and thus, by Lemma 12, for every word x in L
there exist a word y in L such that x # y and the absolute value of |x| - |y|
is not larger than Ck'Dh where Ck is a constant defined as in Lemma 12 and
D = max {|a| : h(a) = o for some a in $}. This however contradicts the
definition of L.

Thus L is not an image of any IL language under a A-free homomorphism.

Hence Theorem 5 holds.

However, if we allow weak codings, rather than codings only, the situation

becomes very different.

Before we prove our main result concerning weak codings of IL languages
we need some auxiliary results concerning Turing machines. From now on we
assume the reader to be familiar with constructions of Turing machines, for
example, in the scope of [Davis] and [Hopcroft and Ullman]. In particular,
we will not define the notion of a Turing machine here and we shall use
standard terminology concerning Turing machines (as given, for example, in

the above references).

23

A language is recursively enumerable if, and only if, it can be generated
by a Turing machine. We shall adopt here the following definition of the
generation of languages by Turing machines. (In the following, if n is a
natural number then n denotes its unary tape representation for a Turing

machine, it is n = , where | is a special distinguished symbol).

Definition 17. An infinite recursively enumerable language‘{wl, wz,...}

+ A
in N, whenever T starts on the input of the form #n # (where # is an end
marker) it halts with the input tape storing the word n * v only (where *

is a distinguished symbol different from |).

The proof of the following result requires a rather standard construction

so we leave it to the reader.

Lemma 13. For every recursively enumerable language W there exists a
Turing machine T which generates W without repetitions, meaning that, if
T starts on # n # and then halts storing n * w , and m # n, then if T starts

on # m # and then halts storing m * w thenw #w .

Lemma 14. For every recursively enumerable language W (over some finite
alphabet) there exists a Turing machine T with two distinguished tape
symbols SO’ Sf (which are not in %) such that whenever T starts on tape
containing the word # S0 # only (where # is an end marker) then

(1) it will go through the infinite sequence t of tape descriptions
such that Sg, Sf Wis S0 Wl’ Sf LOYEER is the subsequence of T, where
W =‘{w1, wz,..}}, and

(ii) T produces a tape description of the form S.w or S_w only if w

0 £

is in W.

24

Proof.
Let W be a recursively enumerable language. By Lemma 13 we may assume
that there exists a Turing machine T' such that T' generates W without repeti-
tions. Let W ='{wl, WZ,.{.} where the ordering on W corresponds to its
generation by T' (hence if i # j then Wy # Wj).
Now we construct a Turing machine T satisfying the statement of the
Lemma as follows.

T starts in its initial state q, with tape description S. and then produces
0 p P

0

a tape description S (this obviously can be done). Then it changes S

£71 £
to SO and we get a tape description SOW1 and an instantaneous description 90 S0 Wy
Now, if the instantaneous description of T at the given moment is Eh SO W

for some k > 1, then T does the following. It puts a special marker ¢ next

to the rightmost symbol of W and then to the right of this marker it produces

(employing T') consecutively words Wis Wys Wa, etc. After w, is produced

3

(for j > 1) then it is compared with v which is to the left of the marker ¢.

If a comparison is successful, then T first produces S (using T' to

£ Mkt

produce the next word in the sequence, which is now w, ,.) and then S

k+1 0 k41’

ending in an instantaneous description 9 S0 TR
Again, T is ready for the next iteration.

It is obvious that T satisfies the conditions from the statement of Lemma 14

and hence the result holds.

For our next result we assume the reader to be familiar with simulation
of Turing machine by IL systems, say {1, l>%systems, (see, e.g., [von Dalen]
and [Herman]) and with the so-called "firing squad synchronomization problem"

(see, e.g., [Balzer] and [Herman, Liu, Rowland and Walker]). We are assuming

25

this, and we present the proof of the next result rather informally, as
oterhwise the size of the formal proof of the next result would by itself
exceed the size of this paper. The idea of the proof is, however, simple

and clear, so we do feel that an informal proof will suffice.

Theorem 6. For every EIL language L there exist an IL language K and a
weak coding h such that h(K) = L.

Proof.

Let L be an EIL language.

If L is a finite language then the result is trivially true. Thus we
may assume that L is an infinite language.

By Theorem 4,L is a recursively enumerable language and (see Lemma 14)
it can be generated by a Turing machine T satisfying conditions of Lemma 14.

Now let G' be a'<l, 1>hsystem simulating T step-by-step. Obviously,
we may assume that G' has a production.(g, Sf,><> +‘SO for every x in the
alphabet of G'.

We construct another‘(l, l)—system G which performs as follows. Produc-

tions of the form <g, Sf, §<> +S_ for x in the alphabet of G', are replaced

0
now (in G) by production<<g, Sf, s>-+ Eé, where §£ is a new distinguished symbol.

Eé is "sending a messenger' towards the right end of a string in order to change
successively each symbol x in the string into the new "two-component" symbol

of the form [x, o] where o is a fixed symbol. After the whole string X,X

1 £

is changed into the string [Xl, G]...[Xf, o] the messenger "goes back'" and

we obtain the string of the form ?} [Xl,'c]...[xf, o] where ?} is a new

distinguished symbol. Now the string of the second components (g) of symbols

[Xi, ol together with E} on the left end form the "firing squad" with E}

being the general and o¢'s being the soldiers.

26

G acts now as to aéhieve the synchronization of this firing squad in
such a way that after a finite numbgr.of steps the string g}f[ﬁl,a]...[Xf,o 1
will turn into the string Ei, Eé,...,%é, where Qi, Eé,...,§% are new letters
being in one-to-one correspondence with xl,...,kf, and all intermediate strings
contain a two~component symbols only. Now G (using productions

<g, §; y>’+ S0 x and <z; E; y>'+ x for every z # g and for every y in the

coeX

alphabet of G) changes the string X, £

1 in one step into the string

S, X, ...X

071 £°
Thus a simple step Sf KqeooXe ====?SO Koo X is replaced in G by the whole
whole sequence of steps Sf XyeeeXg ====$ ====$>ﬁ:..x =====98 XjeeeXg

G G G
where (because of the synchronization) no intermediate string in this derivation

contains an occurrence of a "barred" symbol (x).
Because of this property of derivations, in G it is obvious that if h
is a weak coding such that

h(a)

a, for each barred symbol a, and

h(x)

A, otherwise
then h(L(G)) = {A} =
The last thing to be done is to modify G to G in such a way that h(L(G)) =
Note that even if A is not in L, then A occurs in h(L(G)) because G generates
strings consisting of "nonbarred" letters only.
To remove this obstacle one may apply a very simple trick indeed. Let
z =Db,...b_ be a nonempty word from L (where b

1 f 1
alphabet of L). Aﬂ<l, 1D-system G will contain new "extra" markers *

,...,bf are symbols from the

* *
1> 2°°°°° f

which will be used in such a way that they are erased whenever the general

S; 1s erased, and whenever Sg 1s generated in G then the string *l,*z...*f S¢

is generated in G.

27

Now if h is extended to the weak coding h defined also for symbols
*1,...,*f in 'such a way that E{*i) = bi for 1 < i < £, then it is obvious
that h(L(a)) = L. (Note that whenever the nonempty string y generated in

G is such that h(y) = A then a string *.,...%_ y is generated in G and
, g% .

f
B‘(*l...*f yv) = z).

Thus the Theorem holds.
Now we can prove the main result of this section.

‘Theorem 7. F CF F = F

ciL' ™ "L T fwin T THIL®

This result follows directly from Corollary 2, Theorem 5, Theorem 6 and
from the fact that each weak coding is also a homomorphism.

Again one may easily check the effective character of the equalities
from Theorem 7 (we leave this to the reader). Thus we have, for example,

the following result (which is a sample of three possible results).

Proposition 2.

(1) There exists an algorithm which given an arbitrary IL system G
and a weak coding h will produce an EIL system H such that L(H) = h(L(G)).
(ii) There exists an algorithm which given an arbitrary EIL system

G will produce an IL system H and a weak coding h such that L(G) = h(L(H)).

So far our results sum up into the following informal thesis:
(i) In the class of developmental systems with "context-free" re-
writings (EOL and ETOL systems) the use of nonterminal symbols is equivalent

to the use of coding tables.

28

(ii) 1In the class of developmental systems with "context-dependent”
rewritings (EIL systems) the use of nonterminal symbols cannot be replaced
by coding tables, whereas the use of coding table (even "homomorphic'" tables)
can be replaced by nonterminal symbols. However, the use of nonterminal
symbols in this class of developmental systems is equivalent to the use of
weak coding tables.

In the next section we discuss the trade-off between coding (homomorphic)
tables and nonterminals in the class of context-free and context-sensitive

grammar from the classical Chomsky hierarchy.

29

7. HOMOMORPHIC IMAGES OF SENTENTIAL FORMS OF CONTEXT-FREE AND
CONTEXT-SENSITIVE GRAMMARS.

In this section we discuss the trade-off between the use of nonter-
minal symbols and coding (homomorphic) tables in the classes of grammars of
the Chomsky hierarchy. We shall adopt here the notation concerning context-—
free and context-sensitive grammars as given in [Hopcroft and Ullman] with
the following modification.

As it is almost always required that the axiom of a context-free or
context-sensitive grammar is a single symbol, if one takes codings of the
languages of sentential forms of such grammars, then each such language
contains a word of length onme. In this way one could immediately produce
a trivial proof of the fact that the class of codings of, say, sentential
forms of context-free languages is not identical to the class of context-
free languages (not every context-free language contains a word of length
one). To avoid trivialities of this kind we adopt here two conventions:

(i) the axiom of a context-free o

a context-sensitive grammar may be

an arbitrary nonempty string over the total alphabet (terminals and non-

terminals) of the given grammar, and

(ii) neither the empty set nor {A} is a context-free or a context—

sensitive language.

We shall use symbols FCF’ F F .. and FSCS to denote the classes of

SCF*> ' CS

context-free languages, sentential forms of context-free grammars, context—sensi-
tive languages and sentential forms of context-sensitive grammars.

The first class to be investigated is the class of context-free grammars
(with the modification explained above).

The following result is well-known (see, e.g., [Hopcroft and Ullman,

Theorem 9.71).

30

Lemma 15. If L is a context-free language over an alphabet I and h

is a homomorphism from X, then h(L) is also a context-free language.
The easy proof of the next result we leave to the reader.

Lemma 16. If L is a set of sentential forms of a context-free or context-—
sensitive grammar, then it is a context-free or context-sensitive language

respectively.
The following is an interesting result on its own.

Theorem 8. There exist finite language which are not codings of sen-
tential forms of context-free grammars.

Proof.

Let L = {ab, cdl}

Let us assume that there exist a context-free grammar G ==<V s VT’ P,UJ>
and a coding h such that h(Sent(G)) = L. Then Sent(G) must consist of two
words, say AB and CD, such that h(A) = a, h(B) = b, h(C) = ¢, h(D) = d
(thus all the letters A, B, C, D are different) and either AB==Z=§CD or CD=ﬁ§=§AB.

This would mean however that in one direct derivation step in G two symbols

must be rewritten; a contradiction.

Theorem 9. For each context-free language L there exist a context-free
grammar G and a A-free homomorphism h such that L = h(Sent(G)).

Proof.

Let L be a context-free language.

Thus L is generated by a context-free grammar G =<VN’ VT’ P, S> which is

such that either A ¢ L and no production in P is of the form A~ A, or A € L

31

and the only production in P with A on its right-hand side is the produc-—
tion S - A, where S does not appear on the right-hand side of any produc-
tion. It is well-known (see, e.g., [Hopcroft and Ullman, Theorem 4.3]) that

. . . . +
we may assume that for each A in V_ there exists a string w in V such

N T
*
that A==>vw. Let, for each A in VN’ Wy be an arbitrary but fixed string
G *
over V * such that A=—w,.
T G A

We leave to the reader the easy proof of the fact that if h is a A-

%
free homomorphism from (VN VU VT)* into V., defined by:

T

h(A) = Vs

h(a) = a, for every a in VT’

for eVery A in VN’ and

then h(Sent(G)) = L(G) = L.

Thus Theorem 9 holds.

Theorem 10.

(i) F F

CcscrFrC ' cF*

(ii) F =

PHSCF = 'HSCF = |

CF’
Proof.

(1) follows from Lemmata 15, 16 and Theorem 8, and (ii) follows from

Lemmata 15, 16, and Theorem 9.

Lemma 17. TIf L is an infinite language of sentential forms of a context-
sensitive grammar and'{wl, w2,...} is any ordering of elements of L such that

< F_ where F

le] f_lwil for j > i, then, for every k > 1, [wk[- ;Wk~l| L L

is a positive integer constant dependent on L only.

Theorem 11. There exist a context-sensitive language K for which there
does not exist a context-sensitive grammar G and a A-free homomorphism h

such that K = h(L(G)).

32

Proof.
n

2 : n > 0}, Obviously, K is a context-sensitive language.

Let K = {a
Let us assume that there exist a context~sensitive grammar G and

a M-free homomorphism h such that h(Sent(G))= K. Let U = max{|h(a)|: a

is in the alphabet of G} and let FSent(G) be a constant from the statement

of Lemma 17. But if we order K according to the (increasing) length of words,

4

K = {a a2, a,...}, then from Lemma 17 we have that, for every j > 1,

3
2d - 23-l < U-F); a contradiction.

Sent (G
Thus Theorem 11 holds.

The following is a well-known result (see, e.g., [Hopcroft and Ullman,

Theorems 9.9 and 9.11]).

Theorem 12.

(i) The class of context-semsitive languages is closed under A-free
homomorphic mappings.

(ii) The class of context-sensitive languages is not closed under

arbitrary homomorphic mappings.

Theorem 13.

1 FPHSCSC:.FCS“

Py . C
(ii) Neither FHSCSC: FCS nor FCS FHSCS'
Proof.

This result follows from Theorems 11, 12 and Lemma 16.

GR:cah

33

REFERENCES.

Balzer, R., The firing squad synchronization problem, Information and
Control, 1967, v. 10, 22-42,

Chomsky, N., Three models for the description of language, IRE Trans. Inform.
Theory, 1956, v. IT2, pp. 113-124,

Chomsky, N., Syntactic Structures, Mouton and Company, The Hague, 1957.

Davis, M., Computability and Unsolvability, McGraw-Hill Book Company,
New York, 1958.

van Dalen, D., A note on some systems of Lindenmayer, Mathematical Systems
Theory, 1971, v. 5, 128-140.

Ehrenfeucht, A., and Rozenberg, G., Codings of OL languages, submitted for
publication.

Ginsburg, S., and Greibach, S., Abstract families of languages, IEEE Conf.
Record on 8th Annual Symp. on Switching and Automata Theory, 1967.

Herman, G., The computing ability of a developmental model for filamentous
organisms, Journal of Theoret. Biology, 1969, v. 25, 421-435,

Herman, G., Closure properties of some families of languages associated
with biological systems, Information and Control, to appear.

Herman, G., Lindenmayer, A., and Rozenberg, G., Description of developmental
languages using recurrence systems, submitted for publication.

Herman, G., and Rozenberg, G., Developmental systems and languages, to be
published by North-Holland Publishing Company.

Herman, G., Liu, W., Rowland, S., and Walker, A., Syﬁchronization of growing
cellular arrays, Quarterly Bulletin of the Center for Theoretical
Biology, SUNY at Buffalo, 1972, v. 5, No. 2, 143-196.

Hopcroft, J., and Ullman, J., Formal languages and their relation to auto-
mata, Addison-Wesley, 1969.

Lindenmayer, A., Mathematical models for cellular interactions in develop-
ment, Journal of Theoret. Biology, 1968, v. 18, 300-315.

Lindenmayer, A., and Rozenberg, G., Developmental systems and languages,
Proc. of the 4th ACM Symp. of Th. of Computing, 1972.

Paz, A., and Salomaa, A., Integral sequential word function and growth equi-
valence of Lindenmayer systems, Information and Control, to appear.

34

Rozenberg, G., (a), Extension of tabled OL systems and languages, International
Journal of Comp. and Inf. Sciences, to appear.

Rozenberg, G,,(b), TOL systems and languages, Information and Control, to appear.

Rozenberg, G., and Doucet, P., On OL languages, Information and Control,
1971, v. 19, 302-318.

ACKNOWLEDGEMENT
The authors are indebted to Dr. H. Paul Zeiger for his comments

on the original manuscript.

