ON THE PROBABILITY OF
DEADLOCK IN COMPUTER SYSTEMS *

Clarence A. Ellis
Department of Computer Science

University of Colorado
Boulder, Colorado

Report #CU-CS-026-73 August, 1973

* This work supported by National Science Foundation Grant # GJ-660

ABSTRACT

As the number of processes and resources increases within a computer
system, does the probability of that system's being in deadlock increase or
decrease? This paper introduces Probabilistic Automata as a model of com;
puter systems. This allows investigation of the above question for various
scheduling algorithms. A theorem is proved which indicates that, within the

types of systems considered, the probability of deadlock increases.

ii

INTRODUCTION

A computer system which allows more than one process to be simultane-
ously active, holding and requesting resources, may encounter the phenomenon
of deadlock (sometimes called deadly embrace). A simple case of this occurs
when two processes each wait for a resource held by the other. Usually,
these processes will be idle for an indefinite amount of time until opera-
tor intervention corrects this situation. The automatic detection and pre-
vention of deadlock has recently received a lot of attention in the litera-
ture1’4’5’6’7’8’9 In practice, these algorithms are time-consuming, and have
generally not been implemented on actual computer systems, the philosophy

being:

"Deadlock occurs so infrequently that it is not worthwhile to de-

grade system performance by executing deadlock prevention al-

gorithms."

The new model presented in this paper provides a tool for observing and measur-
ing deadlock in systems under various resource allocation algorithms. This
model is then applied to systems containing many units of a single resource
(e.g., memory units) under random, first-come-first-serve, and last-come-
first-serve resource allocation algorithms yielding the result that as the
number of processes (and resources) becomes larger, the probability of dead-
lock increases. Thus, in multi-multi-processors of the future, the deadlock

problem will need to be explicitly dealt with.

THE MODEL

A computer system consisting of a set of processes and varying units of
various types of resources can be described at any particular instant of time
as being in some state defined by: (1) the number of units of each type of
reéource available, (2) the»number of units being held by each process, and
(3) the number of units being requested by each process. A transition or
change to another state corresponds to a new request, an allocation, or some
other system action causing any of the above three parameters to change.
Ho}tg’9 shows that this type of system can be graphically represented by a
System State Diagram. This directed graph can also be viewed as a finite
state automaton as shown by Nutt provided that the number of stétes is fi-
nipe]? Furthermore, for each possible transition out of a given state, one
can attach a probability to the occurrence of this event. We further require
that the sum of the probabilities associated with transitions out of a given
state sum to one for each state in the system yielding a probabilistic auto-
maton model of the computer system. A specific example and formal definitions
follow. |

Consider a system composed of two processes, P] and P2, and two units of
a resource. The following actions may occur in this example and correspond
to transitions of the probabilistic automaton.

a. Process Pi may request a unit of resource, denoted ry in which case

the process is suspended (he waits) until a unit is allocated where

i=1or 2. Process P1 can only request one unit at a time and never
request more if all units (two in this case) have already been allocated

to process Pi‘

b. If processAPi is in a suspended state waiting for a unit of re-

source, the system may allocate a unit to P1 denoted ais provided

all units of the resource have not already been allocated.

c. If process Pi is not in a suspended state, P1 may de-allocate a

unit of resource which was previously allocated to him, denoted di’

implying that the process no longer needs the unit.
H01t8’9 has considered the System State Diagram for this system. By making
some assumptions concerning the probabilities of state changes, a Probabilis-
tic Automaton can be defined from this. Suppose, for example, that without
any apriori knowledge of the system we assign equal probabilities to all
transitions out of any given state. Then because these equal probabilities
must sum to one, we get the automaton represented graphically by Figure 1.
Each circle (node) of Figure 1, denoting a possible state of the system, con-
tains the probability of leaving that state. This representation can be used
in this case because of our equal probability assumption. Thus this number
is simply the multiplicative inverse of the number of arcs leaving the node.
The upper first node in row 00 and column 00 denotes a state (henceforth
designated (00,00)) in which process P, holds no resources and requests no
resources, i = 1,2. In general, the column Tabels (row labels) are two digit
numbers, the first digit specifying resources held and the second, resources
requested by process P] (process P2). The equal probability assumption im-
plicitly imposes a random resource allocation algorithm upon the system be-
cause if the system is in a state such that both processes are suspended
waiting for a unit of resource, then we randomly choose one or the other.
The node in row 01, column 01, of Figure 1, is an example of this. If the

system began in the initial state (00,00), (no allocation, no requests) then

one way it could get to this state (01,01) is via a request by Py (00,00) Iy

(01,00) followed by a request by P,, (01,00) "% (01,01). Another possibility
is that P, could first make a request and then P (00,00) 22(00,01) SJ(O],O]).
Thus the arcs are marked to identify the actions of the system (which corres-
pond to transitions of the automaton). The probability of the automaton mov-
ing from state (00,00) to (01,01) in two transitions is 1/2, the sum of the

probabilities of the paths which allow this to be done:

1/2 1/2
Path 1: (00,00) - (00,01) - (01,01), pr(path 1) = 1/4
1/2 1/2
Path 2: (00,00) -~ (01,00) » (01,01), pr(path 2) = 1/4
total pr = 1/2

Note that a path is the conjunction of a sequence of system actions, so the

path probability is the product of the transition probabilities of the corres-
ponding transitions composing the path. These concepts are formalized in

the definitions which follow. Once the system is in the state (01,01), there

is a probability of 1/2 of moving to state (10,01) and probability of 1/2 of
moving to (01,10) because the node in row (01,01) has arcs to these two states
and contains 1/2. This implies that our resource allocation algorithm allocates
to process P] with probability 1/2 or to process P2 with probability 1/2. Two
other possible algorithms, first-come-first-serve and last-come-first-serve

can be modeled by adding an auxiliary storage to our automaton, forming res-
pectively a probabilistic queue automaton and a probabilistic pushdown automaton.
In these cases, whenever a request is made by process Pi’ the symbol r is put
into the auxiliary storage, and whenever an allocation is made, the process P
to whom this allocation is made is determined by the symbol rs extracted from

the storage. This symbol is then discarded. In the case of a queue, this will

be the Teast recently inserted symbol among the symbols in storage and
for a stack, this will be the most recently inserted symbol. The model

is formally defined as follows:

Definition: A Probabilistic Language over a vocabulary © is a system L = (Lyn)

where L is a class of words formed from » (we will take this class
to be the set * = all finite strings formed from) and u is a

measure on the set L. If u is a probability measure, then L is

a Normalized Probabilistic Language.

Definition: A Probabilistic Automaton over a vocabulary g is a system

A

A= (K, B, & a, Y) where

K is a finite, nonempty set of states, S1s Spse-ssS,.

B is a finite set of storage tape symbols, b,, b M)

'I, 2,0;0 mo
v:K - R is an initial state vector (y], YZ,...,Yn) such that v, = y(si)

specifies the probability that S is the initial state, where

R is the set of real numbers.

s:K x B x (ZUrx) -~ R(8) is a mapping called the transition function whose domain is
K x B x (5Ur). The range of this function determines the specific

type of probabilistic automaton defined.

a:K x B x(zZUr) x R(8) ~ R is a mapping called the transition probability function
which associates a real value with each possible map of s, to

designate the probability of that transition.

Several different types of normalization of probabilistic automata have

13,14

been presented in the Titerature A classification of normalization types

is given in E]]isz. The appropriate type of normalization for our application

is given next.

A. A Probabilistic Finite Automaton is defined by §:K x £ »~ P(K) U{r} and

B = ¢ where ¢ denotes the empty set and P(K) the power set of K. This

automaton is normalized if and only if y is a stochastic vector, i.e.,

™M=

Y = 1, and 2 > _ afs, a, s') = 1 where this implies o(s, a, s')
1 acx s'ekU{r}

is interpreted as pr(s', a|s).

..i

A transition is a change from some state SieK under an input Aez to some
state Si+1eK such that Si+1€ (Si’ A) and can be written (Si’ A) > Si+1’
Ae(Si, A) will be written (Si’ A) - halt. Associated with each transition

is a probability; the product of these transition probabilities is the pro-
bability p of the sequence Sp»S71+ St A mapping §(S, A) = ¢ has probability

zero associated with it and designates that a transition out of the state S

under input A is disallowed. The probability of acceptance of a string

AAs.. A, s

L v (Sy)F

Z vy (SnH)p:sP;

i=1 0/ iFif
where m is the number of sequences SyS,...S, ; such that sje(sj_1, Aj),
i=1,2,....n-1, and s__; satisfies xe(S, ;, Ay) with poe = oS 15 Aps A).

The probabilistic language accepted by a probabilistic automaton Mis (L, u)

where u(z) = probability of acceptance of the string z by the automaton M.
A Probabilistic Pushdown Automaton and Probabilistic Queue Automaton

can be analogously defined where the set B will be nonempty to represent

the auxiliary storage. Simulation results presented in Appendix A in--

dicate that FCFS and LCFS algorithms yield deadlock probabi]ities~which

are very close to the probabilities for the random resource allocation
algorithm. Thus we concentrate on the random resource allocation case
which is most tractible for mathematical analysis and throughout the

remainder of the paper, automaton will mean probabilistic finite auto-.

maton. Research on models of FCFS and LCFS algorithms is currently in -

progress. These are non-Markov processes amenable to investigation via
probabiTistic automata theory rather than via Markov chain techniques.
More will be said about these non-Markov processes in the final section

of this paper.

Definition: A Probabilistic Grammar (P grammar) over 3 is a system

G = (N, P, A) where N is the finite set of nonterminals,

].,.én) with

8 being the probability that Ai is chosen as the initial

A]’AZ""’An’ A is an n-dimensional vector, (s

nonterminal, and P is a finite set of probabilistic pro-

i
and pi € R(# 0). If ais stochastic, if 0 <p <1,

p..
ductions, y, -9 z;» with s € (N U 2)*, 5 € (N Uz)*,

and if x pij = 1 for every generatrix ¥ contained in pro-

ductions of P, then é is a Normalized Probabilistic Grammar

(NP grammar).
N p P
If al1 productions of G are of the form A - aB or A >~a, A e N, B ¢ N,

a ez, then G is called a left linear P grammar. Then define

k ki

pr(; :ég)= T I p, i3 where k is the number of derivations of tn from To>
i=1 J =] p1

ki is the number of derivation steps, ¢. i5-1 + Z4 ii used in the ith derivation,

and pij is the probability associated with the jth step of the ith deriva-

tion. The derived probability of a termina1 string x ¢ »* with respect

to a left Tinear grammar G is p(x) = z (6 pr(A =>X)) where N= {ApsAys . ALY
i=1
A=‘{61,51,ﬁ°°,6n}. The P language generated by G is L (z*s u) where

u(x) = the derived probability of x.

Theorem 1: The probabilistic Tanguage accepted by a normalized probabilis-
tic automaton is necessarily a normalized language, i.e., the sum of the pro-

babilities of all strings accepted by the automaton is one.

Theorem 2: Every left linear P grammar G generates a probabilistic language
which is accepted by some automaton A and conversely, every probabilistic
automaton A accepts a probabilistic Tanguage which is generated by some Teft
linear P grammar é. Furthermore, é is normalized if and only if A is normal-
ized.

The theorems stated above which have been proven by the author elsewhere,

immediately imply the following:

Theorem 3: The probabilistic Tanguage generated by a normalized Teft Tinear
P grammar is necessarily a normalized Tanguage.
However, one must be cautious in defining probabilistic languages because

of the following:

Theorem 4: There exists regular (nonprobabilistic) languages, L, with a pro-
bability n(x) assigned to each x ¢ L such that no Teft Tinear P grammar generates
(L, u).

Consider the application this formalism to the 2 process, 2 resource
system described previously. The automaton of Figure 1 has nineteen states
plus the deadlock state{\“’m marked X which is not in K. ATl transitions
into deadlock must be A transitions; there are two of these (11,10) :Z halt

r
and (10,11) N halt, each having associated probability 1/2. A typical se-
quence of actions leading to deadlock could be the following:

1. Process one requests one unit of resource (00,00) -~ (01,00)

2. Process one is allocated one unit of resource (01,00) -~ (10,00)

3. Process two requests one unit of resource (10,00) - (10,01)

4, Process two is allocated one unit of resource (10,01) - (10,10)

5. Process one requests another one unit of resource (10,10) -~ (11,10)

6. Process two requests another one unit of resource (11,10) » (11,11)
Thus, the automaton has entered a final state Meaning the system has become
deadlocked. The probability of this sequence of events is the product of the

probabilities of the events:

pr[(00,00) - (01,00)] X pr [(01,00) - (10,00)] X pr [(10,00) -+ (10,01)]
X pr [(10,01) - (10,10)] X pr [(10,10) » (11,10)] X pr [(17,10) - (11,11)] =
1/2 x 1/2 x 1/3 x 1/3 x 1/4 x 1/2 = 1/288.

This probability is very low, but there are many other paths to deadlock.
How many transitions, on the average, are required before this system will
be in deadlock? How does this average change as the number of processes and

resources grow? We next consider several methods of arriving at these results.

STOCHASTIC EXPERIMENTS AND THE PROBABILISTIC ANALYZER

One simulation technique employed, called stochastic experimentation, is
based on the concept of a grammar, and thus probabilistically generates sequences
of system actions until deadlock occurs. Using this method a program (the
model builder) was written which would accept as input a number n of processes,
and a number r of resources and then build the probabilistic grammar to model
this system under a random (or first-come-first-serve) scheduling algorithm.

A second program, the simulator, used the model and a random number generator
to generate a valid sequence of transitions (requests, allocations, and deallo-

cations) which would terminate by entering a deadlock state. By running a

large number of these simulations, the mean number of transitions to a dead-
Tock state and the variance was obtained. This data correlated very well
with the data obtained analytically via the methods described later. (See
Appendix A.)

An alternative to performing a large number of experiments is the tech-
nique of executing the automaton nondeterministically to deadlock. Nondeter-
ministic execution implies traversing all paths simultaneously by storing
all possible transitions leaving the first state and their probabilities,
then all second transitions from all possible second states with the proba-
bilities of the combined pairs of transitions, etc., noting when deadlocks
occur. The finite state automaton model can be classified as a Markov pro-
cess and thus it is possible to obtain the following mathematical results.
The probability of not being in a deadlock state after n transitions can be
n-1

calculated as follows: Define x; = 1,8, e K and x? = 53 <K P].J.xj »n> 1,

where Pij is the probability of a transition from state s; to state S5

0

Then this yields a closed formula for x?:

RS PRRIs LSS B AL I
Observe that x? is the probability that, starting from states;, the automaton
stays out of deadlock for the next n transitions. In the model of Figure 1,
we calculated the smallest value of n such that the probability of staying out
of deadlock for n transitions was less than 1/2 and found that n = 18.
P}8 = .4895 is the probability of not being in deadlock after 18 transitions.

Since x? < 1 for all n > 0, it can be shown using induction that x? is non-

increasing as a function of n. In fact:

10

for all j € (K), we have

n+l _ n n-1 _ .n
0 < xj ?%E%%) Pijxj 5~Pijxj X;
n . n -
Therefore, X; ¥ X; - i.e., X; decreases to some limit X; and x. 5ER) Pijx

1
ie (K).

Now assuming that xg < Xy

39

J

It follows that since the only bounded solution of this set of equations is the
zero vector (0,0,...,0), starting from any nondeadlock state, transition to a

deadlock state will eventually occur with probability one.

CALCULATION OF MEAN NUMBER OF STEPS TO DEADLOCK

Consider a generalization of the computer system shown in Figure 1 in
which there are arbitrary numbers, m and r, of processes and resources res-
pectively. Simulation results confirm the intuitive statement that as the
number of processes increases with a fixed number of resources, the probability
of deadlock increases. This statement seems intuitively reasonable due to the
fact that adding more processes to a system generally puts the resources into
greater demand. Likewise, as the number of resources increases with a fixed
number of processes, the probability of deadlock decreases. This leads to the
question of what happens to the deadlock probability if the number of processes
and resources increase together. Simulation results for small r values (see
Appendix B), and the analytic approximation for arbitrary r, which will be pre-
sented next, both yield the result that as the number of processes and resources

increase together, that is assuming m = r, the probability of deadlock increases.

11

Define a family of random variables d(g), % =1,2,..., such that the
value assumed by dér) is the number of transitions to deadlock on the ath
trial run of a system containing r processes and r identical units of a re-
source. Let aér) = pr (k steps to deadlock) = pr (dgr) = k). Then we can
define the mean number of transitions to deadlock for an r x r system as the

expected value of the random variable dér),

(1) £(d{")) = k;ﬂ al")

(r)

For a given r, the value of a, ° can be expressed in terms of x# previously
defined as the probability that starting in state 1 (the initial state), the
system stays out of deadlock for the next k transitions. We will write x%

as X%r) since we will always be interested in starting from state 1. The

e () Lk . k=T k . (r)
relation is ay (1 X(r)) (1 x(r))ms1nce X(p) 1skcumu1at1ve and a
is not. The expression in (1) becomes) k(x%;;) - X(r)) which is

k=1
a telescoping sum yielding
(r)y = 5 K
(2) SRR

This quantity will be used‘as a measure of the probability of deadlock of a
system. Note that a smaller value for E implies a higher probability of dead-
Tock, e.g., Appendix B shows E(d(z)) = 25.50 and E(d(3)) = 23.48, so a 3 x 3
system has a higher probability of deadlock. In general, an approximate com-
parison of the mean number of transitions to deadlock for an n x n system
under random scheduling and an {n+1) x (n+1) system can be made as follows.
Consider the diagram of Figure 2. The bottom row of states denotes dead-

Tock states of the system. These states are not members of K. The row above

12

denotes states which can lead to deadlock in one request. These are
the states, called primary blocked states, of our automaton which have A tran-

sitions.
:3 N k N k . -
It can be shown that N s kE X(n) * kEO X(n+1) by looking at mini-

mal length paths to deadlock. In fact, it can be seen that X?n) > X?n+1)’

~which implies = X/ .\ >
) k=0 (n)

(
. 2k @ Kk N1 _ N o a(n)
and thus the desired result kio X(n) > kEO X(n+1)* X(n) X(n)(] pr(d;"/=N+1)).

g(n)|
g(n
mary blocked states in an n x n system with 1/2 being the probability of a

N+1 N+1
Given this we show that X(n) > X(n+1

L X
k=0

As an approximation to a(n) we use 1/2 where B(n) is the set of pri-

N+1°2

blocked state's entering deadlock via a single transition, and the notation

(n)
|A| denotes the cardinality of a set A. x?:; = x?n) -5 B

>

(0 2pmy =
n)

N N B . . . N N

X(n+1) - X(n+1) éTETﬁ%] using the given relation X(n) > X(n+]),

Appendix C gives expressions for IB(n)Iand lK(n){ i1lustrating that

) ety
ls(n)l <[S(n+1)!. Thus

" (n+1)
(nﬂ) ””) LTJY nﬂ H(ne) 2li(n+'15l;) X?:}m.

SUMMARY AND FURTHER RESEARCH

The probability of deadlock within simple systems consisting of a
few processes and a few resources has been investigated using a probabilis-
tic automaton model. This probability of deadlock was defined in terms of
the expected value of the number of transitions of the automaton before
entering a deadlock state. It was shown that as the number of processes and
resources became large uniformly, the probability of deadlock increased.

The probabilistic pushdown automaton and probabilistic queue automaton
models are currently being investigated. These models are generalizations
of the probabilistic automaton .investigated in this paper. Applications
of techniques of automata theory to these models seem quite promising.

Useful results are available concerning the probability of termination
of probabilistic context-free grammars3 and concerning‘the transformation
of automata to one state automata by increasing the set of storage tape
symbols. It is hoped that this investigation will provide further evidence
that probabilistic automata are useful tools in the study of deadlock, and
that results concerning the more realistic FCFS and LCFS resource allocation

algorithms will be forthcoming.

14

20 < process 1

rocess 2

FIGURE 1

A PROBABILISTIC AUTOMATON CORRESPONDING TO A 2 x 2 SYSTEM

15

soded s+l .0 QO O-O

Primary
N4 P4 A RY 2
Deadlock states ~ @ @ """""" ®
FIGURE 2

A PROBABILISTIC STATE SET CORRESPONDING TO AN m x r SYSTEM

10.

11.

12.

13.
14.

16

REFERENCES

Coffman, E. G., Jr., Elphick, M. J., and Shoshani, A., "System Deadlocks,"
Computing Surveys, Vol. 3, No. 2, Pages 67-78, June, 1971.

E11is, C. A., "Probabilistic Languages and Automata," Ph.D. Dissertation,
Computer Science Department, University of I1linois, 1969.

ET11is, C. A., "The Halting Problem for Probabilistic Generators," pre-
sented at the Fourth Annual Princeton Conference on Information
Sciences and Systems (also in Journ. of ACM, vol. 19, No. 3, July 1972).

Fontao, R. 0., "A Concurrent A1gbrithm for Avoiding Deadlocks in Multiprocess
Multiple Resource Systems," Proceedings of the Third Symposium on Operat-
ing Systems Principles, October, 1971.

Habermann, A. N., "Prevention of System Deadlcoks, "Communications of the ACM,
Vol. 12, No. 7, Pages 373-377, July, 1969.

Havender, J. W., ”Avoiding Deadlock in Multitasking Systems," IBM Systems
Journal, Vol. 7, No. 2, Pages 74-84, 1968.

Hebalkar, P. G., "Deadlock-Free Resource Sharing in Asynchronous Systems,"
Ph.D. Dissertation, Electrical Engineering Department, MIT, Cambridge,
Mass., September, 1960.

Holt, R. C., "On Deadlock in Computer Systems," Technical Report CSRG-6,
University of Toronto, July, 1972 (also available as Ph.D. Disserta-
tion, Department of Computer Science, Cornell University, Ithaca,
New York, January, 1971).

Holt, R. C., "Some Deadlock Properties of Computer Systems," Computing
Surveys, Vol. 4, No. 3, Pages 179-196, September, 1972.

Hopcroft, J. E., and Ullman, J. D., Formal Languages and their Relation

to Automata, Addison=Wesley, 1969.

Murphy, J. E., "Resource Allocation with Interlock Detection in a Multi-Task
System," Proceedings of the AFIPS FJCC, 1968, Vol. 33, Part II, Pages
1169-1176.

Nutt, G. J., "Some Applications of Finite State Automata Theory to the
Deadlock Problem," Report CU-CS-017-73, University of Colorado, April,
1973.

Paz, A., Introduction to Probabilistic Automata, Academic Press, 1971.

Rabin, M. 0., "Probabilistic Automata," Information and Control, Vol. 6,
No. 3, Pages 230-245.

CAE:Cah

17

APPENDIX A
PROBABILITIES OF DEADLOCK IN A 2 x 2 SYSTEM FOR:

1) Random Resource Allocation
2) First-Come-First-Serve Allocation
3) Last-Come-First-Serve Allocation

LCFS, FCFS, 1.00 {—@—9—9—9—®

and Random
Probability .75 - 3—4#—45

of Deadlock '
in t or less

Transitions m
Random
.50 m FCFS and LCFS

.25 4

1 2 3456 7 8 9 101112131415 16

Number of Transitions, t

Expected
Value of
Number of
Transitions
to Deadlock

18

APPENDIX B
MEAN NUMBER OF TRANSITIONS TO DEADLOCK FOR n x n SYSTEM

264

24+

224

201

184

16 1

% 3 i I})
T T T] T T

1 2 3 4 5 6

n = Number of Processes = Number of Resources

19

APPENDIX C
COMBINATORIAL ANALYSIS OF |K| AND |B]

1. Counting of |B| = Number of primary blocked states for m x r system.
a. For each deadlock state, there are uncommitted processes out of
a total of m processes. There are (2) ways to choose processes.
Uncommitted means the process does not hold any resources and thus
does not contribute to the deadlock directly.
b. For each of these choices, there are m-u processes which must each
hold an allocation of at least one resource and the sum of their

allocations must equal the total number r of resources in the sys-

r-1
m=-p-1

c. For each of these ways, there are 2 permutations of the uncommitted

tems. This can be done in () ways.

processes between request = 0 and request = 1.
m-2
d. The above imply that there are (ﬂ) (;:L_}) 2 deadlock states.
u=0

e. Each deadlock state, having u uncommitted processes, has m-u nondeadlock
states which enter it corresponding to a request by each of the m-
committed processes. These states are blocked states for m-p-1 of
the processes (i.e., these processes are in a wait state) but these
states are not in deadlock unless the one transition which could lead

to deadlock is the next system action. Thus these primary blocked

states are distinct so we have not over-counted.

m-2
. ‘ -1
ol - 2 0Tl

2. Counting of total number of states for m x r system.

a. First we count the number of states for a 2 x r system, and

20

then count for arbitrary m x r system. Our justification of the
formula is by double induction. In the 2 x 2 case, we see there are

20 states = 2r2

+ 6r. We use this as our induction hypothesis, which

is true in the case r = 2.

The pattern for adding states to get from r-1 to r resources is to add
two states per row (for the request and allocation of the added re-
source) plus an extra two states due to the fact that one process cannot
hold all resources and request more. Thus assuming the induction hy-

pothesis that in a 2x(r-1) system there are s(r-])2 + 6(r-1) states,

we can calculate the number of states in a 2xr system to be

[2(r-1)246(r-1)]+2(2r-1)+2

2r2-4r+2+6r~6+4r+2+2

2r2+6r. g.e.d.

For a given r, our induction hypothesis claims that an m process sys-

tem (m < r) will have the following number of states:

r 1m—1 12 @ r 12)
sh=M FT o Ly ez Lzttt
1m;4=1 1m_2=1 1]=1 1m_2=1 11=1
ro r im-] i)
}E: i+ (2r+1) + :EZ:; ;Ei:; ...:Ei] i, +
11—1 1m_]-2 1m_2-1 4=
r.o ;12 . r
15 =2 " s -TZ;].l'l +.-.+ {Z;Z 1-l
m=-2 1 1 .

This equation can, for a particular (m,r) pair be reduced to a short
form. Certainly for the case m=1, this holds because the number of

states possible is 2r+l1. Also in the 2 x r case, this reduces to

21

r r r
<. L _ ~ . \ 2
2(5 i+ Yy eara)= 22 Ay w2y = 2L(rPer) + 2]
i.=1 i =2 i.=1
1 1 1
= 22 + 6r

Given that the induction hypothesis holds for (m-1) x r systems, then
for an m x r system we can partition the states into equivalence
classes such that all states which have the same value for the number
of resources held and requested by process m are in the same class
nCi The class n€00 has exactly the same number of states as an (m-1)
X r system (55_1) and so does cqy which can be seen by ignoring the
mth process in these cases where process m holds no resources. Thus
by counting the number of states in each of the remaining 2r-1 classes

whose cardinality decreases uniformly, and adding to 253_1, we get

r,
Spy’ .
r i i
-1 2
r _ ,m-1 m- r
Sy = 2 2:>. :>. EQQEZ;b] 1) + 2$m_]
L i 2=1 1]=1
= -1 r‘ j i, r L i2

r
Zsm-].

By inserting the value of s;_] implied by the induction hypothesis
for m-1 processes, we get the correct corresponding value for m pro-

cesses.

