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SUMMARY

Polynomially bounded DOL systems are investigated.
Necessary and sufficient conditions on the set of
productions of a DOL system for yielding a polynomially
bounded growth function are given. The relation between
the minimal degree of a polynomial bounding a DOL system

and the structure of its set of productions is investigated.



I. INTRODUCTION

Developmental systems (also called Lindenmayer systems
or L-systems) have recently gained considerable attention in
both formal language theory and theoretical biology (see,

e.g., [2], [4], [{6] and their references).

From the biological point of view, developmental systems
have provided a useful theoretical framework within which the
nature of cellglar behavior in development can be discussed,
computed and compared. From the formal language theory point
of view they have provided us with an alternative to the
now standard Chomsky framework (see, e.qg., [3]) for
defining languages.

Among the developmental systems which are under
active investigation now are the so called DOL systems
(see, e.q., [1], [2], [7), (8], [91, [10]). A DOL system

has the following components

(i) - A finite set of symbols, V, the alphabet,
(ii) A starting string, w, the axiom,
(1ii) A finite set of productions which tell us by

what strings over the alphabet V a symbol may be
replaced. This set is such that for each symbol in V
it provides exactly one string over V by which the

symbol can be replaced.

A DOL system generates a sequence of strings as follows.



The first string in the seéquence is the axiom . The
second string is obtained by replacing each symbol of W
by a string in accordance with the preductions. Similarly,

the third string is found from the second string, and so on.

One of the particularly interesting aspects in the
theory of DOL systems is the theory of growth functions
(see, e.g., [5}, (71, [1%), (12], [131). A growth function
is a function which yields, for each integer n, the length
of the nth string in the sequence of its associated DOL
system. Hence when we consider growth functions we are
concerned with the length of a word rather than with the

patterns of letters occurring within a word.

In this paper we investigate DOL systems in which the
growth function is bounded by a polynomial (the so called
polynomially bounded DOL systems). We study the necessary and
sufficient conditions which the set of productions of a given
DOL system must satisfy in order to be polynomially bounded.
The way in which the detailed local properties of the com-
ponents of a developmental system, i.e. the production rules,
affect the behavior of the system as a whole, e.g., the
growth function, is important £from both the biological and
formal language points of view. For a discussion of this

point see, e.g., [5], [7] and [13}

We assume the reader to be familiar with basic formal
language theory, e.g. in the scope of [3]. Our notation and

terminology is that of [3] with the following extensions:



(i) If x is a word then |x| denotes its length,
Min x denotes the set of letters occurtfing in x, and
if k 1is a positive integer then xk abbreviates x
catenated with itself k times (by definition xO is

the empty word).

(ii) The empty word is denoted by A, and § denotes

the empty set.

(iii) If A is a finite set, then #A denotes its

cardinality.



II. DOL SYSTEMS

In this section we review main notions from the

theory of DOL systems needed for this paper.

Definition 1. A DOL svstem is a triple

G = <V,P,uw>,

where V is a finite nonempty set (of letters), called

the alphabet of G,

w is a nonempty word over v, called the axiom of G,

P is a finite nonempty set (of productions), each of

which is of the form a -+ o, where a € V ahd G e V*.

We require that for each a in V there éxists

exactly one a in V* such that a + a is in P.
(We shall often write a o for "a + a dis in ﬁ").

Definition 2. Let G = <V,P,w> be a DOL system, and

% .
let x be in V+, y be in V . We say that x directly derives y

in G, denoted as x Eb y, if x = aqeedy for some Aqreeerdy

. . *
in V and y = Qgoeeely for Ogpeees, 1N v such that

a, =+ Oqs a, + az,...,a + qa are in P. Also,.by

1 n n

definition, A §¢A. We say that x derives y in G, denoted
*

as x 59 y, if either x = y, or there exists a sequence

. L
XgreserXy (m > 1) of words in V such that x = Xy Y = X

and x; => x., . for i {0,...,m=1}. The language of G
G

(or the language generated by G), denoted as L(G), is defined by
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Example 1. G = <{a,bl, {a-4, b+(ba)2}, ba> is a
n -
DOL system the language of which is {(ba)2 : n>0}.

Example 2. G = <{a,b}, {a+ab2, b+b}, ab2> is a DOL

system the language of which is {abzn:nz1}.

Definition 3. Let G = <V,P,w> be a DOL system, and

*
for m > 1 let Xy rXqreoe Xy be a sequence of words in V

such that x for

0 is a nonempty word and Xy = %,

G i+1

ie {0,...,m1}., It is called a derivation of X from Xq

in G, (1f X, = w then we say that it is a derivation of

X in G). For 0 < i < m, GG(i,xo) denotes the word x

m i®
When Xy = w then we simply write §6(G,i) instead of GG(i,w).

If x is in V+, then the sequence for x in G, is defined

to be the infinite sequence x, GG(1,x), GG(Z,X),... . When

x = w then this sequence is called the sequence of G, or the

sequence generated by G, and it is denoted by E(G).

A particularly useful way of representing derivations in

DOL systems are the so called derivation graphs (see, e.g.

Herman & Rozenberg, 1973) which, for the purpose of this paper,

are best explained by examples.

If G 1is the DOL system of Example 1, then the
derivation ba,'(ba)z, (ba)u of (ba)4 from ba 1is

represented by the following derivation graph



Obviously in the same way, if G = <V,P,w> | is a
DOL system, and x is in vT  then the sequence for x
in G can be represented by a graph {which in genefal can
be infinite). In particular if x 1is in V then such a
graph is called the tree for x (in G). We say that the
graph representing the segquence for x in G is»of
bounded width if the sequence contains a finite number of

different words only.

Definition 4. A DOL system G is called polynomially
bounded if there exists a polynomial1) F such that for

every m > 0

16 (G, m) | <F (m) .

(We also say that G is bounded by ).

Example 3. The DOL system of Example 1 is obviously

not polynomially bounded, whereas the DOL system of Example 2

is polynomially bounded (e.g., by the polynomial F(m) = 3m + 3).

Definition 5. A DOL system G 1is called finite if

A ¢ L(G), otherwise it 1s called infinite.



Definition 6. Let G = <V,P,w> be an infinite DOL

system, and let m,1l be nonnegacive integers such that

1 3'2. The <m,l>-cCecomposition of G is the set G(m),

G{m+1),e0.,G(m+(1l=1)) of DOL systems (each of which

is called a component system of this decomposition) such

that for j e {0,...,1-1}, G(m+j) = <V{m+j), P(m+j), ©(m+j)>
where

Vim+3) = tJ Min 6(G,m+3+s1),

s>0
wlm+i) = §(G,m+j), and
a + o is in P(m+3) if, and only if, GG(l,a) = O

A set of DOL systems is called a deccomposition of G if it is

the <m,l>-decomposition of G for some m > 0 and 1 > 2.

Example 4. For the DOL system G = <{a,b,c}, {a*bc,
b+ac, c+al}, a> the <0,2>-decomposition set consists of
G(0)=<{a,b,c}, {a»aca, b+bca, c+bc}, a> and G(1)=<{a,b,c},

{a+aca, b-+bca, c+bc}, bc>.

It is instructive to obsérve how the graph representing E(G)
for a given DOL system G is sliced up when G is decomposed.
In particular one shcould notice that the graph re?reseﬂting
E(G) is of bounded width if and only if each of the graphs
representing the sequences of component systems in a given

decomposition is of bounded width.

The following result explains how the language and the
sequence of a given DOL system relate to the languages and

the sequences of component systems in a given decomposition.



We give it here without proof, as it is easy, and besides
{(for a slightly different notion of a decomposition) it

is given in ([9].

Thecrem 1. Let G = <V,P,w> Dbe a DOL system, and
G(m), G(m+1),..., CG(m+{l-1)) dits (m,1l)-decomposition.
Then L(G) = {8(G,0),...,8(G,m=1)} U L(G(m)) VU L(G(m+1)) v

UV eeo & L(G(m+(1-1))),
and
E{(G) satisfies the following:
for s > m
§(G,s) = §(G{m+r),qg), where s=mtqgl+r, with 0 <r=<l1

and g > 0.

In this paper we investigate polynomially bounded
DOL systems. Obviously, if a DOL system G is finite
then it is bounded by a polynomial of degree zero. Further-
more the structure of a finite DOL system is not specially
interesting, and it is decidable whether an arbitrary DOL

system ig finite. For these reasons in this paper we

investigate infinite DOL systems only, and whenever in the

sequel we write "a DOL system" we mean an infinite DOL system.




III. DOL SYSTEMS WITH RANX.

Th this section the notion of the rank of a letter and
of a DOL system is introduced and some elementary properties
of this notion are proved. These are the central notions

for this paper.

Definition 7 Let ¢ = <V,P,w> be a DOL system. A

letter a in V is called growing (in G) if for every positive

integer n there exists a string a in V¥ such that |o|>n and

# . . . .
a=>q. Otherwise a is called nongrowing (in G) .
G

Note that the letter a is nongrowing in G if, and only

if, the tree for a in G is of bounded width.

Example 5. If G is the DOL system from Example 2, then
a is a growing letter in G, whereas b is a nongrowing letter

in G.

Definition 8. Let G = <V,P w> be a DOL system, The

reduction seauence of G, denoted as Red(G), is a sequence

GO'G1""'Gp of DOL systems defined recursively as follows

1) GO = <V0,P0,w0> = Ga

i

2) Let for j>0, U.

3 {ast: a is a nongrowing letter in Gj}.

. . e . - i
Gj+1 is defined if, and only if, Uj#ﬁ and Uj%vj.



I,f,Gj_'_1 is defined, then Gj+1 = <Vj+1'Pj+1'wj+1> where
(i) V. .=V.=U..
SR B
(ii) wj+1za1...an where mj*aoa1a1...anan for some niT,aO,,..,an

. *
in Uj and ai”"’anﬁvj+1°

(iii)For By8qreeesd in Vj+1’ a*a,...a is in P. if, and

n n J+1

. . *
"'“"> & 8 @ ) e & @ v @
oyly if, aP a0a1oc1 a o for some nm1,a0, @, in UJ

J

n

pefinition 9. Let G = <V,P,w> be a DOL system, where

Red (G) = GO’G1""’Gp’ A rank in G, denoted as Per is a

(partial) function from (a subset of) V into the positive

integers defined recursively as follows:

1) If a is a nongrowing letter in V then pG(a)=1

2) If a is a growing letter in V, then pG(a)&n+1 if,

and only if, Pe {a)=n.
1

If a is in V and pG(a) is defined then we say that a is a

letter with rank.

Example 6. Let G = <{a,b,c},{a+ab,b+bc,c+c},abc>.

The reduction sequence of G is the following sequence GO,G1,G2

of DOL systems:

GOzG,G1=<{a,b},{a+ab,b¢b},ab>, G,= <{al}, {a»a},a>

®



Ranks of letters are computed as follows:

pG (c)=1,

pG(b)xpGO(b)=pG1(b)+1=2,

4
pG(a)mpGo(a):p%(a)“:DGZ(a)wﬁfﬂ

Trees for the letters in G look as follows:

o a
o . /r\\& .
& i{
ﬂ,-
c am//ik T
i
|
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1

i

L d

4
Treeg for the letters in G.l are as follows:

a

.

& b

PR %""“\

aé\\;ﬁ\\\jhﬁ\\\
ai\\ﬁv kﬁ\» Bw\
" ~ N .

. &

]
4
i
The tree for a in G2 is as follows:

v o o o

Thus we see, that to obtain the tree for a letter, say a,
in the (n+1)'th DOL system of the reduction sequence (providing

that the rank of a is not smaller than n+2) one takes the



tree for a in the n'th DOL system of the reduction sequence
and deletes all the modes (and appropriate arcs) labeled by

letters with rank (n+1).

The following result is a direct corollary of Definition

9, hence we give it without a proof.

Lemma 1. Let G = <V,P,w> be a DOL system and let a

be a letter with rank.

(1) If G,./,e0..,G are the first n DOL systems in
0

n=-1

the reduction sequence for G, then pG(a)an if, and only if,

g (a)=1.
n=1

*
(ii) If a=> ubv for some u,v in V¥, b in V, then b is
G :

a letter with rank and pG(b) < pG(a).

The next three results are rather technical and they
indicate the relation between the rank of a letter and the
form of a production for this letter in a particular kind

of DOL systems.

Lemma 2. Let G = <V,P,w> be a DOL system such that if

d is a growing letter in V and d=>a then [a|>2. Let ceV and
G

pG(c)wn, Then either c+A (in which case n=1) or there
P

exists a letter a in V such that pG(a)zn and c~uav
P



for some u,v in V*,

Proof. Let G be a DOL system satisfying the statement

of the Lemma and ¢ be a letter in V such that pG(c)xn, We

shall prove this Lemma by induction on the rank (n) of c.
(i) Let n=1. Then either c+h or according to Lemma 1
P
c+uav for some u,v in V¥, a in V where pG(a)a1« Hence the

Lemmna holds.

(ii) Let us assume that the Lemma holds for n<l for some

131@

(iii)Let n=1+1. Now n>1 and by definition (of the rank)

g (c)=1 where GO’GT"" is the reduction sequence of G.
n=1

Thus from the inductive assumption it follows that ¢ —> W,aw,

in1

Wq oW, in V¥, a in V where pG(a)=n and c-> uav for some u,v in V¥,
P

Thus Lemma 2 holds.

lemma 3. Let G be a DOL system such that if d is a
growing letter in G and d=>a then |a|>2. Then there exists
o ARl bt
a decomposition of G such that if H = <V,P,w> is a component

system in such a decomposition, ¢ is in V and pH(c)mn>1, then

either (i) There exists a letter b in V=-{cl} such that

pH(b)2n~1 and c—»ubv for some u,v in V¥ such
P

that uv#i,



or (ii) There exist letters a, b in V such that

c;>uTau2bu3 where u1,u2,u3 are in V¥ and

DH(a)=pH(b)=n,
Proof.

Let G = <I,R,0> be a DOL system satisfying the statement
of the Lemma. Let us decompose G in such a way that if
H = <V,P,w> is a component DOL system in such a decomposition

and H.=H=<V,.,P

0 grPgrwg” H

m<V1 ,P.] ,(A) >;~ooyH =<v __1 IP >’

1 1 p=1 je) p~1’wp~1

for some p>1, are the first p DOL systems in the reduction
*
sequence of H, then for c¢ in ‘Vp__1 either c=> vy implies |y]|=1,
» H -
p=1

or c=> vy implies |v|>1. (We leave to the reader the easy

Hp~1

proof of the fact that such a decomposition is possible).

Let H=<V,P,w> be an arbitrary component DOL system of
the above described decomposition of G. Let ¢ be in V and

QH(c)zn>1, Let the first n elements of the reduction sequence

Of H be Hy=H=<V,Po,0,> Hy=<Vy Py,wg>yea B =<V 10Po g0, >

0

Thus Py (c)=1, and we have two cases (exhausting all possi-
n-1

bilities):
1) c=> v for some y such that |y|>2. Hence c—> x,ax,bx,
H P
n=1 n=1
i * i e =
for some Xq X9 Xg in Vn—T' a,b in Vn~1 where pHn‘1(a) pHnu1(b) 1.

Thus c->u.au.bu., for some u,,u,,u, in V¥, a,b in V where
p 1772773 1772773



DH(a)on(b)=n,
’ 2 Cm> c ==> c :‘:> ¢ & © ==> = = ® @ o f
) - 17 9 » c H> C 1= or some
“n=-1_ "n-1 n-1 “n-1

s>1, c1,..,,csevn_1,c1mcs, where Py (ci)m1 for 1<ic<s,

n-1

Thus cj :> Y1Cj+1 Yo for some 3§ in {?,,..,s},y1,y2 in Vﬁmz
n-2

for which y?y2=A; as otherwise pH(c)‘would be smaller than

n: a contradiction. It is obvious that (because G has this
property) for every growing letter d in V we have la}>2 for

every o such that d->a. DBut C1m> y1cj+1y2 implies that c

P TH

# .
is a growing letter in H (remember that C?>Cj and n>1 so that
H

n-2>0) and as YqY5 is nonempty it contains at least one

letter (say b) of rank n-1. Altogether c=> u1bu2 for some
H

b in Vv, u, e, in V¥ such that u?uZ%A and pH(b)zn~1 (hence b#c) .

Thus the Lemma holds in both cases, which ends the proof

of Lemma 3.
As a corollary from Lemma 3 we have the following result.

Corollary 1. Let G = <V,P,w> be a DOL system such that

if d is a growing letter in G and d=>a then |a|>2. If c is
o Z

in V and pG(c)=n>1 then

c§>u1au2bu3



for some U, yUs,Usg in V¥ and a,b in V, where pG(a) and pc(b)
are not smaller than (n-1) and one of pG(a), pr(b) is equal

€O n.

Definition 10. A DOL system G = <V,P,w> is said to

have a rank if every letter in V has a rank. If G has a

rank, then the rank of G, denoted as p{G), is defined by

p(G)=max{p(a)l.
aeV

Example 7. If G is the DOL system of Example 1, then

pG(a)z1 but the letter b does not have a rank, hence G does

not have a rank. If G is the DOL system of Example 2 then

pG(b)=1 and pG(a)=2, hence G has a rank, and p(G)=2.



IV. DOL SYSTEMS WITH RANK VERSUS POLYNOMIALLY BOUNDED DOL
SYSTEMS.

In this section the notions of a DOL system with rank
and of a polynomially bounded DOL system are related to each
other. 1In particular it is shown that a DOL system has a

rank if, and only if, it is polynomially bounded.

Lemma 4. Let G = <V,P,w> be a DOL system with a rank,
where p(G)=n+1 for scme n>0. Then there exists a polynomial

F of degree n such that for every m>0
[8(G,m) |<F{m).
Proof.

Let G be a DOL system satisfying the statement of the

Lemma. We shall prove this result by induction on n.
(i) Let n=0 so that p(G)=1.
In this case no letter in G is growing and so for every letter

*
a in V there exists a constant Ca such that if a=>a then
G

lal<c, . Let CC=max{Ca:a€V} and K.=C.*|w|. Then, obviously,

G 7G
|6(G,m) | <k, for every m>0 and so if we set F to be a
polynomial such that F(m)=KG for every m>0, the Lemma holds.

(ii) Let us assume that the Lemma is true for every

n<l for some 111.



(iii)Let p(G)=1+1. Let G, G? be the first two DOL
systems in the reduction sequence of G. Then p(G1)=1 and
by inductive assumption there exists a polynomial F' such
that F' is of degree (1-1) such that l6(61,m)l§£(m) for each

miD.

Let C be a positive integer such that for every a in

*
V for which pg(a)=1 we have if a=>a then |a]<Cc. Let D be
G

the maximal length of the right-hand side of a production
in the DOL system G obtained from G by erasing in all
productions in P all letters of rank larger than 1. Finally,

let K=C-D.
The following equality obviously holds:
|8 (G,m) |=U, (G,m)+U, (G,m)

where

U1(G,m) is the number of occurrences in §(G,m) of letters
of rank larger than one, and
U2(G,m) is the number of occurrences in §{(G,m) of letters

of rank ecual to one.
But U1(G,m)§r'(m) and so we have to estimate nOW%Uz(G,m).

Let us consider §(G,m) for m>1.



Every occurrence of every letter of rank 1 in 6(G,m)
is either derived from an occurrence of a letter of rank 1
in the axiom (let us denote the number of such occurrences
of letters in §(G,m) by U2’1(G,m)) or it is derived from an
occurrence of a letter of rank larger than 1 in one of the
strings §(G,0),8(G,1),e..,8(G,m=1) (let us denote the number

of such occurrences of letters in §(G,m) by U2 2(G,m)).
¥
Hence Uz(G,m)=U2,1(G,m)+U2'2(G,m).
Obviously U, 1(G,m)<c'lw}.
, =

Let us consider now how many occurrences of letters of
rank 1 in 6(G,m) were derived from occurrences of letters

of rank larger than 1 on the level P where inﬁm—1.

Firstly, the number of all occurrences in §(G,p) of

all letters of rank larger than 1 is not larger than F'(L).

Secondly, each occurrence in 8(G,p) of each letter of
rank larger than one may derive at most D occurrences in

§(G,m) of letters of rank one.

Thirdly, each occurrence in 5(G,p) of a letter of rank
1 may derive at most C occurrences in §(G,m) of letters of

rank T.
Thus altogether &(G,m) contains no more than
C+D+F'(P)=K-F'(P)

occurrences of letters of rank 1 which were derived from



21

occurrences in 8 (G,P) of letters of rank larger than 1.
Consequently for m>1
m~1

(G,m)< I K-F'(p)

U
2,2 0

and so for m>0

1@<G,m)1i!w!+u1(G,m)+U2(G,m>alm{+U1(G,m)+02,1(G,m)+02'2<e,m)i

-1
<F'(m)+(C+1) - |w|[+ £ K-F'(p).
p=0
m=1
But I KeF'(p)=H(m) for some polynomial H of degree 1
p=0

{}emember that the degree of F' is (1-1)).

Thus Lemma 4 holds.

The next result is an auxiliary result needed for the

proof of the main theorem (Theorem 2} of this section.

Temma 5. If G = <V,P,w> is a DOL system such that each
letter in V is a growing letter (in G) then there exists a

*
letter a in V such that a=>o0,aca,ac., for some a,,0,,0 in V*.
C 1772773 1072773

Proof.

Let G satisfy the conditions of the Lemma. As each
jetter in V is growing there exists a letter, say a, which

occurs in more than one string in the derivation which

starts with a.

If we consider the tree for a in G, then we have two



possible cases.

(i) The tree for a in G is of the form

a
.\%
',
§.(t,a) a \\.
G M‘ﬂw ] Q\Q‘L \\‘ !
I “\ \‘&\
R CVS NP A . O
4 S
/ Y

for some positive integers t,n where t<n.

But then SG(nt,a) contains at least two occurrences of the

letter a, and so the result holds.

(ii) The tree for a in G is of the form

a
/\ AN
/
6G(tra) s a \\

e R II T

/’
SN N
GG(n,a) / / a \\ \

for some positive integers t, n where t<n, and for some a,B
in V¥ such that aB#A (remember that each letter in G is growing)
where no letter in aB derives a word containing an occurrence

of the letter a.

(M (1)'P(1)’w(1)> in

Now we construct the DOL system G = <V
such a way that w(1)za6 and V(1), P(‘) contain all letters

from V and productions from P necessary to continue an arbi-



trarily long derivation (in G) starting with oB.

(1) (1)

Note that G is such that each letter in V is growing

and so we can repeat the argument of this proof for V(}).
In particular there exists a letter, say aq, which occurs in

more than one string in the derivation (in 6(1)) which

starts with aqe

(m

Tf case (i) holds for the tree for a4 in G ;, then we

(1)

*
hen == : ) i
are done as the a, ?1)a?a1a2a1a3 for some GqrQyrOg in (V
G

*
and consequently aw>Ba62a63 for some 81,62,83 in V¥ which

proves the Lemma.

(1

If case (ii) holds for the tree for a, in G , then

we iterate the above procedure and construct the DOL system

G(Z) @

Obviously, by iterating the above procedure either we

. ey s
find a letter as for some i>1, such that aig>a1aia2aia3

(and hence the Lemma holds) or after at most #V steps we
arrive at the DOL systen G(l) containing one letter only,
(i)

which is growing in G (and hence also in G) in which case

the Lemma also holds.

Theorem 2. Let G = <V,P,w> be a DOL system. The

following three statements are equivalent:



I) There exists a polynomial I such that for every
m>0, ¢

|6 (G,m) | <F (m) .

II) For every positive integer m and for every a in V,

a occurs at most once in SG(m,a).
ITI) ¢ is a DOL system with rank.
Proof:

(i) We shall prove first that I) implies II) by proving

that if II) does not hold then I) does not hold either.

So, let us assume that II) does not hold. Then for

some a in V and for some positive integer n  we have
= 0, a0 ,a0
Sglarmy) = aqaa,aa,
for some Qg r0gr0g in V¥, But then for every positive integer
S . 3
s, 6G(a,nos) will contain at least 2° letters. Thus if 1 1is

a positivé integer such that 6(G,lo) contains an occurrence

of the letter a, then for every positive integer s we have

‘IG(G,lO+nOs)§iZS

and consequently I) does not hold.

Thus (I) implies (II).



(ii) Next we shall prove that II) implies III) by proving

that if III) does not hold then II) does not hold either.

So let us assume that III) does not hold. Thus if

GO=<V,P,w>, G1=<V1,P1,w1>,...,sz<Vp,Pp,wp> is the reduction

sequence of G, then each letter in Vg is growing (in Gp).
b -

Hence from Lemma 5 it follows that there exists a letter

* ) ) . .
a in Vp such that am>a1aa2aa3 for some a1,a2,a3 in Vg) and

G
p

conseguently II) does not hold.
Thus II) implies III).

(iii)From Lemma 4 it follows directly that III) implies

I). From (i), (ii) and (iii) the Theorem follows.



V. THE MINIMAL DEGREE OF A POLYNOMIAL BOUNDING A DOL SYSTEM.

In this section we prove (Thcorem 3) that if G 1is a
DOL system with rank then the minimal degree of a polynomial

bounding G 1is o(G)~1;

The first two results show that if G is a DOL
system with rank and it is a component system in a de-
composition of G, then it is of the same rank as G is,

and each letter in it has the same rank as it has in G.

<v,P,u>, be a DOL system with rank

i

Lemma 6. Let G

and 1 > 2. Let Gl <V1'Pl’wl> be a DOL system such

it

that o, = §(G,1),

1
S

a g g if, and only if, SG(l,a) = g,

1
and Vl = k,}Min §{(G,ml) .
m>1
Then
1

1y G is a DOL system With rank,

2) for every a in V., p.(a)=m if, and only if, p ,(a)=m,
1 G Gl

3) 0(G) = pleh.

Proof,

Let G,l,Gl

1 Gl must have a rank as otherwise (see Theorem 2) G

satisfy the conditions of Lemma 6.
1 N

would not be polynomially bounded, whereas G is: a contradiction.



o

2) We shall prove this by induction on m. Let a Dbe

in Vl'
(1) For m=1 the result is obviously true.
(ii) Let us assume that the result is true for all

positive integers up to and including m.
(ii1i) Let GO,G,},.,.Gm be the first (m+1) DOL systems

1 7
in the reduction seguence for G and Gé,G;,.@.,Gg be the

W

first (m+1) DOL systems in the reduction sequence for Gl.

If pG(a)mm+1, then the tree for a in Gm is of
bounded width. But it was obtained from the tree for 'a in
G by removing all nodes (and appropriate arcs) labeled by
letters of rank (in G) not larger than m. But then, obviously,
by the inductive assumption the tree for a in Gi will also

be of bounded width.

If (a)=in+1, then by the inductive assumption

p
Gl
pG(é)3m+1. But if pG(a)>m+1, then by repeating the

1

previous argument we would have that the tree for a in Gm

is not of bounded width; a contradiction. Thus pG(a)¥m+1.

Hence pG(a)=p 1(a) and 2} holds.
G

3) This is a direct corollary from 2).

Corollary 2. If G = <V,P,w> is a DOL system with

rank and H = <V',P',,'> 1is a component system in a

-t

decémposition of G, then

1) H is a DOL system with rank,

2) for every & ia V', p.(a)=m if, and only if,



QH(a) =1y

3) p(G) = p(H).

The next result together with Lemma 4 will yield us

the main result of this section (Theorem 3).

Lemma 7. If G is a DOL system with rank, then there
exists a polynomial M of degree p(G)-1, such that for

every mw>0
M(m)§[6(G,m)l,

proof. Let G = <V,P,»n> be a DOL system with rank,

We shall prove this result by induction on p{G).

(1) If p(G)=1 and we set M to be a polynomial
such that M(m)=0 for all m>0  then the result obviously
holds.

{(ii) Let us assume that if p(G)< n +then we can
construct a polynomial M such that for every m>0,

M(m) < |8(G,m)|.

(iii) Let p(G)=n+1. From Lemma 1 it follows that

w=uav for some u,v in V* and a in V, where aG(a)nn+1.

Let G0=—'G,G1,‘..,Gn be the reduction sequence of G.

&
Hence a ﬁ»a where o#A and o is such that if ¢
n



& oS

*

occurs in o and c:j?‘y then [Y|=1. 1In fact (due to
n

Lemma 6 and to the fact that a linear transformation of
a variable does not change the degree of polynomial) we
can assume that G is already decomposed in such a way
that each component system H is such that for d in the

alphabet of H, if df§$ 8 {(where Hi is one of the
DOL systems in the reduction sequence of H) and |[B|=1
then B=d. Thus there is a letter b in V such that
™
*
pG(b)ﬁn+1, b =» b and a =29a1,a2 eV .

G G
n n

Now, instead of locking directly for a polynomial M
with the derived property we can look for a polynomial M!

such that for all m>0, lSG(m,a)QzM'(m), where the

degree of M' is n. (It is obvious that M®' then automatically
satisfies the conditions required in the statement of this

result for M). But rather than looking directly for M'

we can look for a polynomial M" (of degree n) such that

for all m>0, IGG(m,b)liM"(m), (Again, it is obvious, that

M" satisfies the conditions required for M' and hence it

also satisfies the conditions reguired for M).

Now from Corollary 1 and from the fact that b a b
n

*
we have b z obB for some o, B in V , aB#A

where of contains an occurrence of a letter b1 such that

pG(b1)=n.



Let us first assume that B contains an occurrence

of b1. Then pG(m,b)=yb66G(1,B)SG(Z,B)...GG(m~1,B) for some

. * . . s - .
v in V , where the highest rang of any lettexr occurring

in B is n (remember that B contains b where

1’
pG(b1)=n). Let us now construct a DOL system GB in

such a way that its axiom is B and GB contains all the 0

letters from V and all the productions from P which
are needed to continue the derivation from B. As this new

DOL system GB is of rank n, from the inductive assumption

we know that there exists a polynomial MB of degree (n-1)

such that for every m>0, MB(m)jiéG(m,B)!.

Now let M be a polynomial such that for every méO,
S

M(m)= ) Mg (1) .

1=1

But then, obviously, for every m>0
M(m)ilGG(m,b)l

and so

M(m) < |8 (m,a) |

and so

M(m) < |8 (m,0) |

But MB is a polynomial of degree (n-1) and hence M 1is of

degree n.



VvI. THE EFFECTIVENESS OF THE RESULTS.

We end this paper with a discussion of effectiveness
of the results proved in this paper. From Lemma 4, Lemma 7.
Theorem 2, Theorem 3, their proofs and from the obwious
fact that it is decidable whether an arbitrary DOL system
has a rank and in the case it has one can effectively

compute its rank, it follows that.

Theorem U,

1) There exists an algorithm which given an arbitrary DOL
system G decides whether or not G is polynomially
bounded.

2) There exists an algorithm which given an arbitrary DOL
system G = <V,P,w> with rank, constructs a polynomial

M of degree p(G)-1 such that for every m>0
M((m) < §(G,m).

3) There exists an algorithm which given an arbitrary
DOL system G constructs a polynomial F bounding
G, such that no polynomial with degree smaller than that

of F bounds G.



VI,

THE EFFECTIVENESS OF THE RESULTS.

We end this paper with a discussion of effectiveness

of the results proved in this paper. From Lemma 4, Lemma 7,

Theorem 2, Theorem 3, their proofs and from the obvious

fact that it is decidable whether an arbitrary DOL system

has a rank and in the case it has one can effectively

compute its rank, it follows that.

1)

2)

3)

Theorem 4.

There exists an algorithm which given an arbitrary DOL
system G decides whether or not G is polynomially
bounded.

There exists an algorithm which given an arbitrary DOL
system G = <V,P,w> with rank, constructs a polynomial

M of degree p(G)-1 such that for every m>0
M{m) < &§(G,m).

There exists an algorithm which given an arbitrary
DOL system G constructs-a polynomial F bounding
G, such that no polynomial with degree smaller than that

of F bounds G.
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FOOTNOTES
/

1) By a polynomial in this paper we understand a polynomial

of one variable with positive coefficient at the highest

degree.
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