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1, 1Introduction. The purpose of this paper is to collect together

several results on an interesting class of matrices. Some of these

have already appeared either implicitly or explicitly in the literature
and others are new. It will moreover be clear that our results repre-
sent only a beginning and that many interesting and challenging problems
remain.

In recent years a widely used tool in the study of matrices is
graph theory. Unfortunately graph theory is an area in which no two
authors seem to use the same terminology. We shall attempt to adhere
to the terminology of the text by Harary [1] but will be forced to deviate
occasionally in order to use terms previously used in matrix theory.

Given a matrix A = [aij}? we associate with it a digraph D(A)
containing n points and a directed line from point i to point J
iff aij #0, 1 # j. Paths and cycles are defined in D(A) in the

usual way. These give rise to corresponding concepts in A which we

call chains and cycles respectively. Namely, if iliz eso ip is a
path in D(A) the corresponding chain in A is a; 3 By 4 eee By i
172 '2'3 Tp-1"p
and if 1112 .o ipil is a cycle in D(A) the corresponding cycle in
A is a, 5 a, R a, i a. i (These concepts are explained
f1t2 to's3 p-1tp 1pt1

carefully in [3].)

n .
Definition 1. The matrix A = [ ]1 is combinatorially symmetric if

a, .
1J
. ies
aij # 0 implie aji # 0
Observe that if A is combinatorially symmetric, each line of D(A)

is in a 2-cycle and D(A) can be regarded as a (undirected) . graph G(A). As



far as we can determine the first author to make significant use of this
concept to study important problems related to the combinatorially sym-
metric case was Parter in the paper [2].

Each line of G(A) corresponds to a nonzero 2-cycle of A . It
follows that each cycle of G(A) corresponds to a nonzero cycle of A

of length greater than 2. We can go further. Suppose a(d) = a

J1lg
At
oo @, . is an r-cycle of A, 1r > 2. We denote by a (J) the
JrJl
l\t
transposed cycle a (J) =a, . ... a, . . If A 1is combinatorially
Joy J1lp

a3 At
symmetric, then a(J) £ 0 if a (J) #£ 0. Thus each cycle of G(A)
actually corresponds to a pair of (transposed) nonzero cycles of A of
length greater than 2.

n
Let A = [a,,]1 be an arbitrary matrix. Then A is indecomposable

13
iff D(A) 1is strongly connected. If A is combinatorially symmetric
it is indecomposable iff G(A) is connected. This means that in the
case where A 1is combinatorially symmetric and decomposable there

exists a permutation matrix P such that

t
P AP = A1 e ...P A
p

where each of the summands is itself indecomposable. It follows that
we may essentially limit our discussion of such matrices to the class
of indecomposable matrices. Accordingly we shall assume that combina-
torial symmetry implies indecomposability.

In view of the fact that G(A) does not depend upon the elements
on the principal diagonal of A the following ideas seem natural; We

shall denote by A the matrix with elements «_ . where o . =a_ |,
d Jk Ji o 3J



1=j=mn, and @y =0 if j#k. We then set X:A-Ad.

Obviously G(X) = G(A) . (The same concept may be defined relative

to A in the general case and one again has D(A) = D(K) o)



2, Some interesting examples. We start with a definition.

n
Definition 2. The matrix A = [aij]1

is an element of the class gp if
every r~-cycle of A of length r > p is zero and A has at least one
nonzero p=-cycle.

it is clear that these classes are of interest primarily in the case
where p is small relative to n . The class 91 consists of, among
others, diagonal matrices and upper triangular matrices and every element
of this class is decomposable. The class ﬂz has been the object of a
considerable amount of study and the main results have been summarized in
the paper [4]. It is easy to give examples of matrices in 92 which are

not combinatorially symmetric. However, let us introduce the class (%

defined by

Q, = {a € gz‘ A is indecomposable}.

One can then prove

Theorem 1. A € Q2 iff A 1is combinatorially symmetric and G(A) 1is
a tree,
We will omit the proof of theorem 1. The only if portion is well-

known and appears, for example, in the paper [5]. The if portion follows

from a single graph theoretic argument.

Consider now the class gS . Unlike the class 92 an ‘element of
93 can be indecomposable and not combinatorially symmetric. An example

is given by a matrix of the form

A = X X X 0 (0]




AN A 4

where an X denotes a nonzero element. The digraph is

(The graph appears separately at the end of the manuscript.)

On the other hand, combinatorial symmetry is connected in a natural way

with the class“‘§2 <« It therefore geems reasonable .

to look for some natural connection between this concept and the class
93 . One way to do this is to define a semi~bridge in a strongly con-
nected digraph D to be a directed line whose removal will cause D
to be no longer strongly connected. Thus a semi-bridge in the matrix
A is an alement whose removal will cause A to becone decomposablea

For any matrix of the form displayed above the elements a a

21’ %327 f43°

and a54 are all semi-~bridges. We now define the class Q3 by

Q3 = {A € 931A is indecomposable and no 3-cycle contains a semi-bridge}.
Theorem 2, A € QB iff A is combinatorially symmetric.

gﬁggio Suppose first that A € QS is combinatorially symmetric.
Since every line of G(A) corresponds to a 2-cycle of A it is clear
that no 3~cycle can contain a semi~-bridge. Hence A € Q3 . For the
converse suppose A € Q3 and consider D(A) . Every directed line [
of D(A) either belongs to a (directed) triangle of D(A) or it does
not. Suppose [ does not belong to a triangle and has the form
(p,q). Then if (q,p) does not belong to D(A) , D(A) is not
strongly connected. Hence every such line belongs to a 2-cycle of
D(A). We will complete the proof of the theorem by showing that if

A€ 93 is indecomposable and is not combinatorially symmetric, then



some 3-cycle contains a semi~bridge. Let a

ap’

=0 for AEC gs . There exists a nonzero chain a(f - )

o #£B, be such

that a

P

in A. Since A 1is indecomposable and a = 0, there exists an

Ba

index i different from « and  such that a@ - a) = aﬁiaia .

We claim that either a,, or a is a semi-bridge. In fact,

af
suppose aaﬁ is not a semi~bridge. Then there exists a nonzero
chain al(a - B) in A distinct from aaﬁ . Since A € [J al(a = B) =
a_.a ., . Now for a, not to be a semi~bridge there must exist j
ai ip ia
distinct from i, @, and B such that aﬁjaja # 0. But then
aaiaiﬁaﬁjaja # 0 contradicting the fact that A € 93 . Thus either
aaﬁ or aia is a semi-bridge and the theorem is proved.

We remark here that the referee, who did an unusually conscientious
job which the author appreciates, pointed out the following interesting
facts about elements of gg . If At QS each block of G(A) must
be a line or a triangle of G(A) . Moreover, if X is a subset of
vertices with \X‘ > 4 and if the vertex induced subgraph induced by
X is connected, then X must contain at least one cutpoint.

It would be interesting to examine the properties of combinatorially

symmetric matrices of ;gp~~for p > 3ua tﬁpiS?probiem is open.s



3. A theorem on symmetrization. A natural question which arises is the

following. Suppose the real matrix A is compinatorially symmetric.
When does there exist a nonsingular matrix S such that S—lgﬁ is
symmetric? This question has been answered in the case where 8 is a
diagonal matrix, but no work seems to have been done in other cases.
We shall give now a slightly sharpened version of the theorem of

Parter and Youngs [6].

Theorem 3. Let A = [3131? be a real combinatorially symmetric matrix.
Then there exists a real diagonal matrix D such that Duygb is symmetric
iff:

(i) There is a spanning tree T of G(A) such that the 2-cycles of
A corresponding to the edges of T are all positive.
(ii) if Q(J) is an r-cycle (r >2) of A corresponding to a chord
of T and Qt(J) is the transposed r - cycle, then a(J) = ét(J) .

L

-1~ . n
Proof. Set B =D AD where D = diag(d;,...,d ), then B = {bjk]l
with bjk = dkajk/dj - We require that for each 1 < B <o <n the
equality b = b is satisfied if a A0 . Thus we must have
af B afs
da /d =da_/d_. (L
BaPf « a P B

Since A 1is indecomposable, G(A) is connected and hence contains at
least one spanning tree T . Relation (1) must hold for the 2 - cycles

corresponding to the n-1 edges of T . Now (1) implies that

a a . a
&rd® = aﬁo‘ = "‘62 =
o ap aaﬁ

showing that if the elements of D are to be real we must have a 5aﬁa >0
@

for these n-1 2-cycles. Next let b be a chord of T and suppose



the adjunction of b to T results in the cycle ¢ of G(A) with

vertices v, ,...,v; Where b = [vi Vg |, corresponding to the

1 P 1 "p
branch [v, ,v. | of T we have
i’
1 2
27 2
4 =8y g 45 /8
2 271 71 12

diz =aiid12/aii ;
3 3ta o 1o'3

etc. Combining the formulas obtained in this way leads to

di =a, , a; EEEEH i di /ai i ...ai i .
1 172 7273 p-1"p "p 271 p p-1

On the other hand, from (1) applied to the edge b of G(A) we have

0 =a11d12/aii :

! 1'p 'p Tp1
Equating the two expressions for df and cancelling the common factor

1
qf from both sides leads to
p
8y 4 ceedy 8404 TRy oceefy a, 4 ¢
12 p-1'p "p1l 271 pp-l 1p

Thus (ii) is proved and we have established the validity of the only if
portion of the theorem.,

To prove the if portion suppose (i) and (ii) are satisfied and let
D be a diagonal matrix, The n~-1 relations of the form (1) corres~
ponding to the edges of T permit the determination of the elements of
D wup to a constant multiple. On the other hand, condition (ii) clearly
implies the validity of (1) also for every chord of T, hence A is

symmetrized by D



Now let us agree to call A sign symmetric if sgnA is a
symmetric matrix (see [3] or [6] for this concept), and let us call A
pseudo symmetric if the conditions of the theorem are satisfied. Then

the theorem of Parter and Youngs is

Theorem 3' (Parter and Youngs). Suppose A is combinatorially symmetric.

Then A is pseudo symmetric iff A is sign symmetric and 2a(J) = ﬁt(J)
for every pair of nonzero transposed r-cycles, r > 2, of A.

The advantage of the formulation given in theorem 3 over that in
theorem 3’ is easily illustrated. Consider, for example, a full matrix
A of order n = 4. A spanning tree has 3 edges and 3 chords.

Thus only 3 pairs of transposed cycles need be checked for equality
in order to establish pseudo~symmetry. On the other hand the total
number of pairs of transposed cycles of length greater than 2 is 7.
The difference is even more striking for larger values of n. It
should be pointed out, however, that it is shown in [6] that it is only

necessary to deal with a spanning tree of the graph.
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4. Pseudo skew-symmetric matrices and their applications. We turn

next to a theorem which is similar to theorem 3 relating to skew—-symnmetry .

Theorem 4. Let A = [ajk]i be real and combinatorially symmetric. Then
there exists a real diagonal matrix D such that D_le is skew-
symmetric iff:

(i’) There is a spanning tree T of G(A) such that the 2 - cycles of
A corresponding to the edges of T are all negative.

(ii’) If 4(J) is an r-cycle (r >2) of A corresponding to a
chord of T and Qt(J) is the transposed r - cycle, then §(J) =
0@ .

Proof. ~We shall omit the proof of theorem 4 since it is entirely

similar to the proof of theorem 3. A different version of theorem 4
appears in the paper of Parter and Youngs [6].

Let us agree to call a matrix A satisfying the conditions of
theorem 4 a pseudo skew-symmetric matrix and denote the class of such
matrices by X.

The class K has interesting connections with the classes of sign
stable and potentially stable matrices. We remind the reader that a
matrix A is sign stable if every matrix B for which sgn B = sgn A
is stable (all eigenvalues of B have negative real parts). On the
other hand A is potentially stable if some matrix B such that
sgnB = sgnA 1is stable., The class of sign stable matrices has been
characterized by Quirk and Ruppert (see [3] and below) and it is known
that every sign stable matrix is am element of the class ¥ . The
problem of characterizing the class of potentially stable matrices is

still open.
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Define the classes X' and X by
H+={A€}C\Ad>0}, M‘:{Aeu\Ad< 0} .
Theorem 5. If A € M+ then the spectrum of A is contained in the
open right half of the complex plane and if A € ¥~ the spectrum of A

is contained in the open left half of the complex plune, i.e., A is a

stable matrix.

Proof, Let A € ¥ and suppose D 1is a diagonal matrix which skew-

symmetrizes A. We then have

A’ = ptap = Ag+S

where S 1is skew-symmetric., Let )\ be an eigenvalue of AY and u #£0

In general u and A will be complex. 'We use u-+v to denote the

standard complex scalar product and set |u| = ,/u+u . Then

- 2

u-Au +u-su = x|u[ ,
( A is the complex conjugate of )\ ). Also

Au+.u+ Su-u = kiu‘z .

d
Since u -Adu = Adu u and u-Su =-Su-u, we obtain
Adu s U
R(D) 5 (2)
|u]

where R(k) = % (x-+i) . Theorem 5 follows at once from (2)°

We remark that theorem 5, which is a simple consequence of theorem 4,

can be used to replace the use of the Liapunov theorem in the previously
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given proofs of the Quirk-~Ruppert theorem on sign stable matrices (see
[3] for a statement and proof of this theorem).

Moreover, the remainder of the proof of the sufficiency of the
conditions in the Quirk-Ruppert theorem can be applied to obtain the
following result.

Let us introduce the class K; by
¥ = {a € H‘(i) a,, <0 for 1<i<n and a,, < 0 for
1 ii ii

at least one i,
(i)’ all nonzero even cycles of A are negative,

(iii) determinant A # O} .

This class is very closely related to the class of sign stable matrices

which we shall dencte by Q; for present purposes:
Theorem 6., Let A € H; . Then A is potentially stable,

Proof. Since A 1is combinatorially symmetric, transposed p-cycles

cancel out in pairs for p odd in the fundamental determinant formula
of [3]. Thus, because of condition (ii), every term entering into the

expansion of a principal minor of A € K; of order p will have sign

(—1)p or zero. It follows that if A € RI every principal minor of
A of order p has sign (—l)p, l1=p<=n. On the other hand, a
combinatorial argument based upon conditions (i) and (iii) shows that
A has a nested sequence of nonvanishing principal minors. The proof
of this fact given in'[S] for the subclass Q; is in fact also valid
for the entireclass Rl . It follows by a theorem of Fisher and Fuller

(see [3]) that there exists a positive diagonal matrix D such that
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DA is a stable matrix. But, if A € H; then DA € M;, proving
the potential stability of A.

This theorem extends the class of potentially stable matrices
considerably beyond previously known classes of such matrices.

The condition d(A) # 0 of theorem 6 is usually regarded as a
qualitative condition, but its implications concerning the matrix A
are complicated. This condition also occurs in the Quirk-Ruppert
theorem.

We conclude with two examples illustrating the diverse implica-

tions of the hypothesis d(4) # 0.

Example 1. Consider the bordered diagonal matrix of order n+1

A = - o e e w
a bl b2 bn
-bl —cl O . . )
—b2 0 --c2 e« o 0O
-b 0 O . . . -C
n n

where a =0, Cj 20, 1 <j<n, and the bj can be either positive

or negative. Obviously A ¢ MI if d(A) #0 and at least one diagonal

element is negative. Now

n n
‘ ' n+1 ‘ -
4@ = D™a e, + D™ 52 TTe .
j=1 j:le)éj
Thus d(A) =0 if 2 or more of the Cj =0 . In other words, the

conditions of theorem 6 are met iff at least n-1 of the c¢. are
J

different from zero.
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Example 2. Consider next the matrix B of order n having the form

B= [-a b 0... 0 0],
-b 0O b... 0 o0
0 -b 0... 0 0

a>0, bAO . Be¥ if dB) £0 . It is easy to verify by induction

2p

da(B) b if n =2p .

[l

dB) = -ab?? if n=2psl .

Therefore the conditions of the theorem are met with only one nonzero

element on the principal diagonal of B ,
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