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ABSTRACT

It is shown that there exist 0L lanquages which cannot be
general~d by deterministic ETO0L system$., This solves an open

problem posed in‘Rozenberg (1973).



0. INTRODUCTION

Developmental systems and languages have recently gained
conside "able attention in both formal language theory and
theoretical biology (see, e.g., Lindenmayer (1968)} Lindenmayer
& Rozenberg (1972), Herman, Lindenmayer & Rozenberg (1973) and

their references).

From the biological point of view, developmental systems
have provided a useful theoretical framework within which the
nature of cellular behavior in development can be discussed,
computed and compared. From the formal language theory point
of view they have provided us with én alternative to the now
standard Chomsky framework (see, e.g., Hopcroft & Ullman, (1969))

for defining languages.

The concept of a tabled OL system was introduced by
Rozenberg (1972) to model the role of environment in develop-
mental processes, and it is currently the subject of active
research, sce, e.g. Rozenberg (1972, 1973) or Ehrenfeucht &
Rozenberg (1973). In this paper we are concerned with a kind
of tabled 0L systems called an extended tabled OL system. We
use the abbreviations TOL system for tabled 0L system and

ETOL system for extended tabled 0L system.

An ETOL system has the following components:
(i) A finite set of symbols, V, the alphabet.
(ii) A starting string w, the axiom.

(iii) A finite set of tables of production rules, each of

which tells us by what strings in V¥ a symbol from V may
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be replacéd. The set of productions that may be applied
to a certain symbol depends on the symbol only. In
every step of a derivation all symbols in the string must
be simultaneously replaced according to the production.

rules of one single arbitrarily chosen table of the system;

(iv) A subset I of the alphabet V, the target alphabet. The

language of a system (called an ETOL language) is the

set of all strings over the target alphabet which can be
derived from the axiom, possibly including the axiom

itself.

An ETOL system is called deterministic, abbreviated as an

EDTOL system if each of its tables is such that for each letter

in the alphabet V the table provides exactly one string by

which the letter can be replaced.

The role of the deterministic restriction in develo@méﬁtal
systems is an important aspect of the theory from both the
biclogical and formal language theory points of view. This
problem in connection with tabled systems was iﬁvestiqated‘amonq
others in Rozenberg (1972), Rozenberg (1973) and in Ehrenfeucht

& Rozenberg (1973).

In particular it was proved in Rozenberg (1973}, that ev§gy
ETOL language can be generated by an ETOL system such thaﬁ in
every table there are no more than two productionsg pro&ided“fér
each symbol in the alphabet. In the same paper it was left as
an open problem whether each ETOL language can be generated

by a deterministic ETOL system.
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In this paper we prove that the solution to the above
problem is negative, it means that there is an ETOL language

which cannot be generated by any EDTOL system.



I. DEFINITIONS AND EXAMPLES

In this section we introduce all of the necessary
terminclogy and illustrate it by examples. We use conventional
formal language thecory notation, see e.g. Hopcroft & Ullman

(1969), augmented by the following.

(i) If A is a set, then #A denotes the cardinality of A,

(ii) If x is a word over an alphabet 7%, xma?.w.ap for

p31,a1,...,apez, then
‘Min(x)={a in I: a occurs in x}, |x| denotes the length
of x, and if 1 is a positive integer then

aqeeedy if 1 < p,

Pref, (x}= i % otherwise.

x® will abbreviate the word x catenated with itself e times.

(iii) A denotes the empty word.

. . . +
(iv) N denotes the set of nonnegative integers and N =N-{0}.

Definition 1. An extended tabled 0L system ( abbreviated

as an ETOL system) is a 4-tuple G=<V,P,w,I>, where

V is a finite nonempty set «+«. (the alphabet of G),
w is an element of v' ..« (the axiom of G},
L is a subset of V .»+ (the target alphabet of G),

P is a finite nonempty set, each element of which (called a
table) is a finite nonempty binary relation included in IxI*,

P4satisfies the following (completeness) condition:

for every P in P and for every a in V there exists o in V¥ such
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i

that <a,a> is in P.

If P is a taple and <a,a>eP then <a,o> is called a production

and dernted as a+a. We shall write a+a for "a-»a is in P."
P

Definition 2. Let G=<V,P,w,I> be an ETOL system.

I) Let XEV+,yEV* where X=a,...a for a1,...,apsv.
p
We say that x directly derives y (in G), denoted as'xm>y,,
G ‘
if there exists a table P in P such that a1;a1,,,,,aw+ap for
up

some O,,...,0 such that y=a,...a_. Also by convention
1 p 1 p

A=>A.
P

11}  Let X, yeV¥,

sk
We say that x derives y (in G), denoted as x=>y, if either
G

x=y or there exists a sequence Xo"“'xn of words in V*

such that x_=x, x_=y and x, =>x. for 1<i<n.
o n i-1 o * T
x

I1I) The language of G or the language generated by G, denoted

as L(G), is defined as follows

L(G)={xe2*:wz>x}.
G

E
(Whenever G is understood we write x=>y and x=>y rather
&
than x=>y and x=>y respectively).

G G

Definition 3. Let G=<V,P,w,%> be an ETOL system.

I) G is called a deterministic ETOL system, abbreviated as

an EDTOL system, if for every P in P and every a in V there

exists exactly one o in V* such that a-a.
e
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IT) G is called a 0L system if V=I and P contains exactly

one table.

De“inition 4. Let £ be a finite alphabet and L G I*.

L is called a (deterministic) ETOL language or a 0L lanquage

if there exists a (deterministic) ETOL system or a OL

system G respectively such that L(G)xL;

By F(ETOL), F(EDTOL) and F(0L) we shall denote the classes

of ETOL languages, EDTOL languages and 0L languages respectively.

Example 1. Let G=<{a,b},{P,,P,},a,{a,b}> be an ETOL system

2

where Pj={awa ,b*b},sz{a»a,a+ab,a+ba,b+b}.

L(G,={xe{a,b}+: the number of occurrences of the letter a in
'x equals 2" for some n>0}.

(Note that G is neither an EDTOL nor a 0L system).

Example 2. Let G=<{a,bl},{P},a,{a,b}> be a OL system where

p={a+b,a+a,a+ab,a+aa,b>*b}. L(G)m{a,h}+.

Now, following Herman & RozZenberg (1973), we shall define

derivations in ET0L systens.

Definition 5. Let G=<V,P,w,Il> be an ETOL system.

A derivation D in G is a triple <0,f,g> where 0 is a set of

ordered pairs of nonnegative integers (the occurrences in D),

f is a function from O into V (f(i,j) is the value of D at
occurrence <i,j>), and g is a function from a subset of O into

Px{_J) P satisfying the following conditions. There exists a
PeP

sequence of words (XO’Xi"”"Xs} in * {(called the trace of D
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and denoted as tr (D)) such that
(1) o={<i,j>:0<i<s, 1<i<|x, [},
(i} f£(i,3) is the j'th symbol in X5

(iii) the domain of g is {<i,j>:0<i<s, 1iji!xi[}, (elements
of O which are not in the domain of g are called

final occurrences),

(iv) for O<i<s there exists a P in P such that for

Oiji}xilf g(i,j)=<P,f(i,j)+aj>, where f(i,j)gaj andaj..,a‘

In such a case D is said to be a derivation of x» from X

The seqguence of tables T1,.a.,TS such that the first element of
g(i,j) for 0O<i<s-1,<i,j>e0 is Ty 41 is called the control

sequence of D. The sequence Tj'Tj+1

called the control sequence from ij

”‘“’Tm where 1<j<m<s is

g to x_ . If <i,j> is an

occurrence in D then we also say that x; contains this occurrence.

The set {Ixi!:Oiiis} is called the set of lengths in D and is

denoted by Lg(D).

Example 3. Let G he the ETOL system from Example 1.

Let D1x<o fQ,q1> where

11

ij{<0,1>,<1,1>,<1,2>,<2,1>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>,<3,u>;<3,5>},
FQO,N)=£(1,1)=£(2,1)=£(2,2)=£(3,2)=£(3,3)=a,
£(1,2)=£(2,3)=£(3,1)=£(3,4}=f£(3,5)=b

q(O,l)zg(Z,Z)m<P2,awab>, g(1,1)z<P1,a+aa>, g(?,2)=<P1,bﬁb>,

g(2,1)w<?2,a*ha>, g{2,3)=<P_,b+b>

2]

2

D, is a derivation of ba b2 from a. The trace of D1 is

1
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a,ab,azb,bazbz. The control sequence of D, is’Pz,P1,P2.

{<3,1>,<3,2>,<3,3>,<3,4>,<3,5>} is the set of final occurences.
Given an ETOL system G and a derivation D in G, there is

a natural way of represehtinq D by a graph like structure

called the derivation graph of D. Although such a representation

can be defined formally, we believe that for the purpose of this
paper this and other related notions are best explained by'

examples,

Example 4. The derivation in Example 3 is represented by

the following derivation graph:

Z\b N
| a/‘ J) P2
b/a/ j\b \b 72

The occurrence <1,2> is a direct ancestor of the occurrence <2,3>
and is an ancestor of the occurrence <3,5>, Thus the occurrence

<2,3> is the direct descendant of the occurrence <1,2>, and the

occurrence <3,5> is a descendant of the occurrence <%,2>. The

trace of this derivation is XO’XT'Xz'x3 and in fact we shall

also say that <3,5> is a descendant of <1,2> in x and 80 On.

3l

We say that, for example, the occurrence <1,2> contributes two

occurrences (<2,1> and <2,2>) on the level x. (or simply on the

2

level 2). 1In fact in this case we can say that the occurrence

<1,2> contributes on the level X, two occurrences in one step.

The number of occurrences contribured on the "final" level (x3)
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by an occurrence <i,j> is called the weight of <i,j>, If the

weight of a given occurrence in a derivation D is equal to 0,

then this occurrence is called D-improductive (and otherwise

it is called D-productive). If X is a word in the trace of
a derivation D and we ‘erase’ all improductive occurrences of
letters in xivthen the resulting word is denoted by Prod(xi).

We define Lg(Prod(D)) to be the set {|Prod(xi)[:0§iis}.

Note that derivations and derivation graphs are in one-to=-one
correspondence in the sense that, given a derivation D one can
construct the unique derivation graph M which represents D,
and conversly, given a derivation graph M, one can uniquely

construct the unique derivation D which is represented by M.

By looking at derivation graphs it is easy to see that
each occurrence <i,j> in a derivation determines a unique

<i,j>=-subderivation from £{i,j) into a substring of X (where

Ryreos s X is the trace of the given derivation). Wekdenbte

such a subderivation by D(i,j). If we are interested in the
derivation 'leading’ ﬁrom Xq to X, only (where 0<e<s) then we
denote it by p€. (Thus D®=p). For example if e=2 and D is',

a derivation from Example 4 then D2 is represented by the following

derivation graph

N,
iy 2
/| Py
a a
If we consider an EDTOL system then, obviously, the first

element of the trace of a given derivation D together with the

control sequence of D uniquely determine the derivation.
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In such a case if tr(D)sz,,..,xS then we write x0=wﬁm[0},x1mw{?],

.,e,xsmw{slp where the EDTOL system under consideration has

the axiom w.
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II. PRELIMINARY RESULTS

Ir this section we shall prove a number of preliminary

results needed for the proof of the main theorem (Theorem 1).

For the rest of this paper let L={xe{0,1}*: |x|=2" for

some n>0}.

Lemma 1. For every n in Nt there exists a word x(n) in L
such that [x(n)|=2" and x(n) does not contain any two

non-overlapping occurrences of the same word of length 3n.

Proof.

Let neN' and let y(n) be the following word:

‘ _an n n._ .n
y(n)=0 a07a,...0 a2n0

where Uqrooerlt is a listing (without repetitions) of the set

ol
of all words of length n.

Now if we let

x(n)=Pref (yv(n))
N

then Lemma 1 obviously holds.

Through a series of lemmata (lemmata 2 through 13) we shall
show that the assumption that L=L(G) for some EDTOL system G
leads to a contradiction (Lemma 13). 1In fact we shall show
that each EDTOL system which generates x(n) for n "large enough"

must also generate a word whose length is not a power of 2.

Thus let us assume that G=<V,P,w,5> is an EDTOL system

such that L(G)=L. Let #V=k,|w|=r, m=max{|a|:a+a for some a in V}.
pPeP P
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Let n be a "large enough" positive integer (how large n
should be is defined in the proofs of lemmata 7 and 14) ahd;
let us consider the word x({n) defined in the proof of Lemma 1.

Let D=<0,f,g> be a derivation of x(n) in G and wcmo,w1,...,ws

be the trace of D.
Let <i,j> be a D-productive occurrence in D.

If <i,j> is not final and the last word in the trace of
D(i,j) is of length greater than or egqual to 3n, then <i,j>

is called a large occurrence (in D). Otherwise it is called a

small occurrence (in D).

It follows directiy’from the definitions that

Lemma 2. Each descendant of a small occurrence is a small

occurrence.

Lemma 3. Let <i,j>,<i,3'> be in 0. If £(i,j)=£f(i,3")
then <i,j> is a small occurrence if, and only if <i,j'> is a
small occurrence. (Thus we can talk about big and small letters
on a given level 1i).

Lemma 4. Let <i,j> be a big occurrence in D. If j#3j' and
<i,j'>» is in O, then £(i,3)#£(i,3").

Proof.

If <i,j> and <i,j'> are in 0 and <i,j> is a big occurrence
then (Lemma 3) so is <i,j'>. But G is deterministic and so if

j#j' and £(i,j)=£(i,j') , then x(n) would contain two non-overlapping

occurrences of the same subword of length 3n: a contradiction.
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Thus as a direct consequence of Lemma 4 we have the

following result.

AN + . :
Lerma 5. For every i in N there are at most k big occurrences

of the form <i,j>.

Now, let us estimate the length of Prad(m{lg) for a given

l<s.

Let U(l) be an arbitrary (but fixed) subset of {0,1,...,L}
such that for every p in Lg(Prod(ml)), U(l) contains exactly
one element v in {0,1,...,1} such that IProd(w[V])lzp. Let

up= $u(L).
Lemma 6. For lis,[Prod(w{Il)]ix'3~n+k-m°3~n-u1+k.
Proof.

(i) The axiom w contains not more than r small occurrences
and each of them contributes not more than 3n small occurrences

on a given level 1. Hence the component r.3-n.

(ii) If pe U(l) then (see Lemma 5) w{p] contains at most
k big occurrences each of which can introduce in one step not.
more than m small occurrences. FEach of these can contribute
not more than 3-n small occurrences on the given level 1. But
#U(1) = u,. Hence the component k-m<3-n.u,.
(1]

{iii) From Lemma 5 it follows that w contains at most

k big occurrences. Hence the component k.

n

‘ 2 1 e g ;
Lemma 7. u, > o for sone positive integer.
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Proof.

From Lemma 6 it folloWs that

2n2‘PrOd(w[S])|ir030ﬂ + k0m~30nmus + k

Hence

2% (k+r-3.n) _ 2" _ ( 1 . I );> 2"
8 - keme3n T kem-3n Mme3en kem J ==

for some (large enough) positive integer C, and n “"large enough"

n
2 _ 1 r }
o that 2o - (gl + 5> 0

Now for 0<l<s let us introduce the following notation:

o

B(w{l}) denotes the number of big occurrences in o

S(mtl}) denotes the number of small occurrences in w{l],

(1]

1 . .
I(m[ l) denotes the number of D-improductive occurrences in w ’

Using this notation let us introduce the following definition.
Two elements 11, 12 of U(s) are called compatible if:

[1,] (1,1,

(i) Min(w j=Min(w

(1i) Ble t1)=p(ut2]y,
(1i1) s(w*1ly=gultaly,
(iv) T(wt1lyer(eitaly,

(v) If aeS(w[l1])wS(wIl2]) then a contributes the same
(s]

number of occurrences in w from level 14 and level l,.

(We also say that 11, 1, are <Min(w[l1]),B(w[11}),8(w[11]),

2

I(ml11l)>~compatible.
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If U & Uu(s), then U is called compatible if for some

subsets Ay, Ry Ay A, Of V, U is the set of all pairwise
<A1,A2@AQ,ﬂ“>-campatible elements from Ul(s). (We also say

that is <A1,AZ,A3,AQ>~aqmpatible)e

Lemma 8. If U is a compatible subset of y{s) then

- oh
# U >
- ¢ 'ﬁk+1.2k°3k

1

where C1 is a positive integer constant.

Proof.

Let U be an <A1,A2,A3,A&>wcompatible subset of U(s).

: n
1) From Lemma 7 it follows that ug > gen— for some

positive integer C.

(ii) There are no more than Qk choices for A1,

(iii) For the given A1 there are no more than 3k choices

out of A,.

of A A3,Au 1

2’

(iv) For the given choice of A, one can choose at most

3
(Bn)k different lengths of contributions into level W .
(v}  Thus # U > 2; i = ki? .
Cemne27 37« (3n) C,+n 22737

1

where CTmC’3k,

So let U be a compatible subset of U(s), say U m{p1p.o.,pt},

where Pyrece,p, are in ascending order.

Let P;rPi4q€ U. We say that a small occurrence in

w is new if its ancestor in w is a bilg occurrence.
Piyp = P; |
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Lemma 9. If p,,p, ¢ U then w contains at least one

i+1

new ococurrence,

Proof.

Let us assume to the contrary, that w does not contain
i+1
any new occurrence. We shall prove (by induction on the
weight of a small occurrence) that under this assumption each
small occurrence in w has exactly one descendant in w .
Py i+1
(i) Let e be the maximal weight for a small occurrence

in wp and let W, contain v letters with this weight. But
i i

Wy, does not contain any new occurrence and so if a small
i+
letter in mp with weight e has more than one descendant in
i1
wp » then each of them has a weight smaller than e. Hence
i+1

{(remembering that a letter with weight e can only be introduced

by a letter with weight e) wp contains at most v-1
i+1 _
letters with weight e which contradicts the compatibility of U .

(ii) Let us assume that the claim is true for all small

letters in wp with weight equal to or greater than w.
i
(iii) Let a be a small letter in mp with weight w-1
i
(where w-1>1). By the inductive assumption no small letter in

wp with weight equal to or greater than W can introduce a

i
letter with weight (w-1) in w . Hence if the letter a has
i+
more than one descendant in w then the number of small

i+1
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letters with weight w=1 in mp and in w ig different, which
i i+1

contradicts the compatibility of U.

50 we have proved that (under our assumption) each small

occurrence in wp has exactly one descendant in w . But
i i+t

then
|Prod(w'Pily |=|prod (wPis1l) |
which contradicts the fact that U & U{(s).
Thus w 1 must contain at least one new small occurrence,
i+

and consequently the result holds.

Out of all possible choices of U (first the choice of U (s)
and then of U out of U(s)) let us choose one which will give

us a minimal value for P;417Py for some Pi4q°Py in U (where

U m{p1’°°"pt})° Let Py /Py 49 be such a minimal choice of
o o

consecutive "levels"” from the so chosen U .

Lemma 10. < Cyen for some positive integer

P “p. =
10+1 1

Proof.

as |x(n) |=2",#Lg (D) <2".

' n
. 2
From Lemma 8 it follows that # U > T
C?«n eZ2 <3
3“0c1.nk+1.2k«3k . .
Thus P, +?mpi < o = CQ*n , where Czac1°2 «3

i
e} o 2

k
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Lerama 11. The number of new occurrences of small letters

in w
p‘

¢ . s . .
10+1 (denoted as New‘pio+1)) satisfies the 1nequa11ty‘

o k2
New(pio+1)§p3 n

for some positive integer CB'

Proof.'

(i) From Lemma 10 it follows that P; +17P; _<_C2'nk+1
o] o

for some positive integer Cz.

(ii) According to Lemma 5 there are at most k big

occurrences on any "level" in D.

(iii) Each big letter in one step of a derivation can

introduce not more than m small occurrences.

(iv) Each small occurrence can contribute at most 3-n
o¢ccurrences on level w

P .
10+1

{v) Altogether

k+1 k+2

where C3ﬂC2°k-m~3.

Let T1,T2,o;.,TS be the control seguence of D.

Let D(pi,pi+1) be the derivation defined by the axiom w

and the control sequence T1,T2,g..,T 1,T ;T +1,....,TS.

Pi™" Pisr Pid
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i

Lemma 12. 2z, is in L(G) and !x(n)l~{zh|§cu°nk+3, where

Cu is a positive integer constant.
Prouof.

zy is in L(G) because ¢ is deterministic and PP are

i+1

in the same compatible set U .
(i) |x(n) |=lu_|= x,+X,, where

XT is the number of occurrences in W contributed (in D) by

small occurrences in w and X2 is the number of occurrences

[4
Py

in W contributed (in D) by big occurrences in w_ .

Py

(ii) Izh§mY1%Y2, where

Y, is the number of occurrences in Zy contributed in D{pi,pi+1)~

by small occurrences in z_ _,=w ~1r and

pi“ pl

Yz is the number of occurrences in z contributed in D(pi,pi+1)

by big occurrences in zhwwp . (The expressions "big occurrences"

i
and "small occurrences" refer here to the classification of

occurrences in zp.%mp in D and not in D(pi'pi+1))'

i i

{(iii) Because Py and p are compatible, each letter a

i1

which is small in both wp and wp contributes the same number
i 141

of occurrences in Wy independently of whether it contributes

from w or from w . But the control sequence from w
Py Pi+1 Piv

to Wy in D is identical to the control seguence from zp to 2
i
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in D(pi,pi*1). Hence x1mY1.

(iv) xzax21+x22, where

X4 is the number of occurrences in W contributed (in D) by

big occurrences in w . and
Pj+1

29 is the number of occurrences in Wy contributed (in D) by

new occurrences in .
Pjaq

(v) Because p; and p, 4 are compatible, B(wpimzpi)aB(wpi+1)°

But the control segquence from mp to wg(in D} is identical
i+1

to the control sequence from zp to z in D(pi,p. Thus

. 1+I)‘
i

X21$Y2,

(vi) Thus lX(“)|’lzh|§3‘n‘X22r and so from Lemma 11 it

follows that {x(n)lwlzhl£3-noc3-nk+2, where C, is the constant

defined in Lemma 11. Letting Cu=3c3 we have the result.

Lemma 13. L(G) contains a word (in fact zh) whose length
is not a power of 2.

Proof.

R S——

From the proof of Lemma 12 it follows that }zh!<lx(n)[m2n

and from Lemma 13 it follows that

k43
Izhli|x(n)l~cu~n .

Choosing n large enough we combine these two observations to
give

2”“1<|zh|<2n.
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ITI. THE MAIN RESULT.

Theorem 1. There exists a 0L language which cannot be

genera*t=d by a EDTOL system.
Proof.

Let L be the language defined in the last section.
As the OL system <{0,1},P,0,{0,1}>, where P consists of

the following productions:
0-+00,0-01,0+10,0->11,
1+00,1+01,1+10,1=>11,

generates L, the language L is a 0L language.

But from lemmata 2 through 13 it follows that L is not

an EDTOL language, and so Theorem 1 holds.

Corollary 1. F(EDTOL) s‘;r(mox,).

Proof.

This follows directly from Theorem 1 and from the fact

that by definitions 1, 3 and 4 F(0OL) C F(ETOL) and F(EDTOL) C F(ETOL).
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IVv. DISCUSSION

The reader may easily observe that the proof of Theorem 1
can be done in almost the same way if one chboses‘instead of

L another "similar" language, say
K={xe{0,1}*:|x|=3" for some n>0}.

In fact we can generalize the main result as follows.
Let I be an alphabet and’x€2+,‘ Let us define u(x) as the
minimal positive integer n such that any two non-overlapping

subwords of x are different.

Definition 6. Let M be a language. M is called exponential

if there exists a positive integer C larger than 1 such that

for every x,, x, in M, if [x,[>|x,| then !x1|>Cl32I.

In much the same way as we have proved Theorem 1 one can

prove the following result.

Theorem 2. If M is an exponential EDTOL language, then

there exists a positive integer constant CM‘such‘that for‘every
P x . R T L B ' 3
x in M={A} we have —%T%Tm < CM,‘

Remark. We have presented a detailed proof of Theorem 1
rather than the proof of Theorem 2 since this gives a better

‘illustration of the proof technique.
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