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ABSTRACT

A new characterization of the system deadlock problem is presented in
which sequences of resource activity are treated as potential members of the
set of strings accepted by a finite state auytomaton. Membership in the set
indicates a deadlock situation. A detection algorithm and an avoidance al-
gorithm are provided to illustrate the approach. Some new areas of research

based on the ideas are briefly mentioned.






INTRODUCTION

The existence of concurrent processes in a multiprogrammed or multiproces-
sor computer system may cause that system to become incapable of further ac-
tivity, (without operator intervention) due to the deadlock problem. Dead-
Tock is characterized by the situation in which one or more of the process
is prevented from further activity because it is waiting for some condition
to hold which will never be satisfied.

A simple example of the deadlock problem can be given in which there
are two processes, P.l and P2, each of which may use resources R1 and R2 where
there is one unit of each resource. Suppose that P1 requests and receives
R], then begins activity. Meanwhile, P2 has requested and received resource
R2 and began concurrent activity. At some later time, P1 requests R2 while
retaining R1. Since P2 has control of RZ’ P] must wait until P2 is ready to
relinquish control of R2. Unfortunately, P2 may request R] while retaining
RZ’ causing P, to wait. When this situation arises, P1 holds R] and requests
R2 while P2 holds R2 and requests R]; P1 and P2 are incapable of further ac-
tivity unless the operator intervenes to preempt a resource from one process
or the other.

Deadlock is possible only when three conditions are satisfied in an operat-

ing system:[]’3]

1. A process can claim exclusive control over the resource it holds.

2. A resource cannot be preempted from a process.

3. A process can hold a unit of resource while requesting another



unit of a (possibly different) resource, i.e., a circular wait

is possible.

Since these conditions are necessary for deadlock to exist, the problem can
be prevented if an operating system violates any or all of the conditions.
Havender suggests such an approach to operating system design.[s]

If an operating system satisfies all three conditions necessary for
deadlock, different strategies can be applied to cope with the problem. One

may design an avoidance algorithm which is able to specify the action of the

system in such a way that deadlock will not occur. Habermann[4], Heba]kar[ﬁ],
and Hc>1‘c[7”8:I have all given avoidance algorithms that rely on some informa-
tion about the amount of resource allocated at any given time. A second
strategy that can be employed in operating system design is detection. This
approach would allow the detection algorithm to be executed periodically to
ascertain the state of the system with respect to deadlock. Detection algorithms
are given in references 1 and 8. The final strategy that might be applied in
operating system design is the "no strategy" approach. The philosophy here

is that deadlock occurs so infrequently that the system overhead required for
preventioﬁ, avoidance, or detection are not cost-effective over a long period
of time. When deadlock does occur in such a system, operator intervention is

required both for detection and correction.

System State Diagrams

Ho1t[7’8] has described a graph model composed of system states corres-
ponding to nodes and a set of processes to label directed edges. The sets

of states and processes are allowed to be infinite. The interpretation of



the model is that a system can move from state Si to state Sj under the in-
fluence of process Pk if and only if there exists a directed edge from node
Si to node Sj and the edge is Tlabeled Pk' The system state diagram is non-
deterministic in the sense that there may be more than one directed edge
emanating from any given state with the same edge label. Using the graph
model, Holt has derived definitions of blocked processes, deadlock states,
effective deadlock, and total deadlock. We paraphrase the definitions of a

blocked process and a deadlocked process:

If there exists no state, Sj, such that a transformation from state
Si to Sj exists under the action of process Pk’ then process Pk is

blocked in state Si'

That is, if no directed edge leaves state Si’ where the Tabel of the edge

corresponds to process Pk’ then Pk is blocked in state Si'

If for all states Sj, such that a path of transformations leads from

Si to S. and process Pk is blocked in Si’ then Pk is deadlocked in

J
state Si'

Less formally, if the set of all transformation paths leading from state Si
result only in process Pk still being blocked, then Pk is deadlocked in Si‘
If a1l processes are deadlocked in state Si’ (i.e., there is no directed

edge from state Si)’ 51 is a total deadlock state.

Figure 1 is a system state diagram composed of four system states that

change due to the influence of two processes. SO is the initial state and

process P] (PZ) can change the state of the system from S, to S, (52)' If



the current state of the system is S, (82), then process Py (PZ) is blocked
but not deadlocked. State 53 is a total deadlock state, since all processes
are deadlocked 1in 83.

The system state diagrams can be interpreted as finite state automata

if the number of processes and the number of system states are both finite.
Further constraining the model, a workable automata theoretic approach to
the deadlock problem can be formulated. The remainder of this paper will

discuss that approach.

FINITE STATE AUTOMATA

Basic Definitions

The definitions given in this section conform to those given in Hop-

[9]

croft and Ullman .

A finite state automaton, M, is defined by the 5-tuple

M= (K,2,8, Sn, F)

0°
where
K is a nonempty, finite set of states,
% is a nonempty, finite alphabet,
8 is a mapping of K x £ into K,

F =<K is a set of final states.

Conceptually, M is a machine with a finite control which reads an input
tape, containing symbols from the alphabet. Initially, the machine is in
state SO and is scanning the left-most symbol on the tape. & defines the
next state by recognizing the input symbol while in the current state. A
state change causes the machine to scan the next symbol to the right of

the currrent symbol.



§ is also defined for the domain K x £*, (where £* is the set of all

possible combinations of members of £), by defining:
If xel*, aer, and SeK, then §(S,xa) = 6(8(S,x),a).

A sentence, xer*, is accepted by M if the resulting action leaves the machine
in a final state after the last character in x has been scanned. The machine
does not accept any string where § is not defined on K x £. The set of all

sentences, T(M), is thus defined by
T(M) = {x|xez* and S(So,x)e F}

The system state diagram shown in Figure 1 can be interpreted as a fi-

nite state automaton, M, such that

M= (K, Z, &, Sgs F)
where
K= {50,31,52,53} 6(SO,P]) = S1 S(S],PZ) = 52
2= {P,P,} 8(SpsPy) = S, 8(S,5Py) = S,
F= {55} 8(S15Py) =S4 §(S,,Py) = S5
6(51,P1) = S a(sz,Pz) = Sy

M has been defined such that 53, the total deadlock state, is the only final

state.

Application to Deadlock Detection

In the previous example, the set of all strings accepted by M corres-
ponds to the sequence of process actions that bring the model into a state

of total deadlock. Similarly, one could define the set of final states such



that strings representing process actions are accepted if the actions Tead
to a deadlock state for any process.

Since the automaton is nondeterministic, the process action string will
always lead to a final or deadlock state whenever possible. Consider the
sequence of actions: P.P,P.P

1212
The first appearance of P] changes the state of M from SO to S,. The first

1

appearance of P2 may either change the system state to 52 or 53. Let us sup-
pose that the next state "chosen" by the automaton was 52. The second P]
returns the system state to S1 where the automaton must again choose between
S2 and 53. The formal definition of a nondeterministic finite state automaton
guarantees that the first choice will result in the next state being S2 and
the second choice being 53, hence P]PZP]P2 is accepted by M and does cause
the system to reach a state of total deadlock.

For the system state diagram shown in Figure 1, one could conceive of
a string of process actions, P1P2P]P2, that Teft the system in state 52.
Why is it that the formal finite state automaton leads to deadlock? This
phenomenon is best explained by considering the classes of deterministic
and nondeterministic finite state automata. A fundamental result from auto-
mata theory states that for each nondeterministic finite state automaton,
there exists a deterministic finite state automaton that accepts the same
set of strings. By applying this result to the automaton discussed earlier,
one can obtain the (deterministic) automaton shown in Figure 2. Note that
in this automaton, any string of alternating Pi's of length greater than or

equal two is accepted by the automaton (corresponding to the original non-

deterministic finite state automaton).



Each Pi Tabel in the original system state diagram represented some

particular action by process Pi’ However, in modeling this situation, the

model has failed to distinguish between the various actions taken by a pro-
cess; instead it assumes a "worst case" in which the set of actions leads

to deadlock if at all possible. If the processes are deterministic, then a
change of the system state from Si to Sj or Sk is well-defined. Hence, the
original model could be made deterministic without changing the set of
states or the transitions by redefining the alphabet of the automaton to
reflect actions as well as processes. For example, if the system shown in
Figure 1T is 1in state 51, then a particular action, (e.g., a resource deallo-
cation), by process P2 will change the state to 52; alternatively, P2 may
perform a distinct action, (e.g., request another resource), causing the
state of the system to change from S1 to 83 (and deadlock). For the auto-

maton shown in Figure 1, Tet the alphabet be redefined to be
I = {a1,a2,b],b2}

where the symbol describes an action and the subscript identifies the process.
Figure 3 shows the new (deterministic) automaton that corresponds to the ori-
~ginal automaton.

Assume that a deterministic finite state automaton has been defined
to represent the operating system. Each appearance of a symbol in the al-
phabet corresponds to a unique action by a unique process in the operating

system and this action-process can be identified when it occurs.

1. Initially, the system is in state SO’ i<« 0.



2. Action of a process causes the corresponding symbol, aj, to

be generated; (action type a by process Pj).

3. Apply 6(Si,aj) =S (If 6(Si,aj) is not defined, the model 1is

improperly defined, stop).
4. If S, eF then DEADLOCK else i <« k.
5. Goto Step 2.

Application to Deadlock Avoidance

In the previous section, a model is given which formally describes se-
quences of action (by a series of processes) which lead to deadlock. A dead-
lock detection algorithm was presented, based on a deterministic finite state
automaton, M, which accepted exactly those strings leading to a state of
deadly embrace. An avoidance algorithm can be more useful if the frequency
of deadlocks is significant, or if the cost of preemption is high. In this
section, the finite state automaton model is applied to derive an avoidance
algorithm.

Given a (deterministic) system state model, it is desirable to be able
to classify, (i.e., build an automaton to accept) strings which avoid dead-

Tock states. By avoiding a deadlock state, we mean:
i.  the system does not halt in this state,
ii. the system does not "pass through" this state,

iii. the system does not enter a state which Teads only to a dead-

Tock state.
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The third characterization of deadlock avoidance states that the model
must be able to detect system states which will Tead only to final states
in the deterministic finite state sutomaton. Figure 4 illustrates a possi-
ble state transition diagram segment in which this case arises. From any
of the Sj states, the only transitions possible lead to a final state,
(Sk1’ Skz,...,skr). For purposes that the automaton is to be used, the sets

of Sj can be treated as final states. An automaton that is derived to datis-

fy this treatment will be called a reduced finite state automaton. The pro-

cedure for deriving a reduced finite state automaton from a given determinis-

tic automaton, M, will now be discussed.

Let M= (K, 2, &, Sn, F) be a deterministic finite state automaton;
Define M' = (K, 2, 6, SO, F') such that the set of final states is
redefined by the following procedure:

seeesSy 1

Suppose F = {S, , S
k] k2 r

1. a<« 1; Set F' = F.
2. Let S ='{Sj [6(5j ,X) =S, for some xer}
a

ka b b

Denote Ska by {Rl’Rz""’Rr}

(Note that 0 < |S, | <r = [F'] < [K] < =).
a

3. LC <« 1.

4, If (there exists xer and SeK-F' such that 6(RLC,X) = S) then goto
Step 5. Else F' « F' U'{RLC} and r < r+l.
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5, LC<« LC + 15 if LC > I§ka[ then goto Step 6 else goto Step 4.

6. a<a+1; if a > r then stop else goto Step 2.

The formal description of a finite state automaton (given previously)
allows the next-move map, &, to be partial on Kxz. The rule is imposed that
if the next-move map is not defined, the string is rejected by the automaton.
An equivalent formulation is to include another state, S', in K such that
for each (S,x)e K x £, where §(S,x) is not defined in M, define §(S,x) = S',

(it follows that 8(S',x) = S'). This completely specified map replaces the

rule mentioned above, since § is now total on K x Z.

Recalling that the original incompletely specified automaton has a par-
tial next-move map whenever some process action is inappropriate for the given
state, a reasonable convention for the following discussion is to place the
“trap state", S', in the set F as well as K. The set of final states is
becoming a set of states which accepts undesirable (in some sense) strings.

Provided that a deterministic (possibly incompletely specified) automa-
ton has been reduced and the trap state has been made final, consider how the
resulting automaton, M, could be further modified to accept the set of strings

that define all legal moves in the given system. The set that is of interest

is given by
£*¥ - (T(M) U {aB|aeT(M), Ber*}

This set is accepted by a completely specified, deterministic finite state
automaton that roughly corresponds to the complement machine of M. (Note
that the class of finite state automata is closed under complement.) This

avoidance automaton for M is defined by
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Let M= (K, z, 6, SO, F) be a completely specified, reduced deterministic

finite state automaton.

Define M' = (K', z, &', Sy, F')

where
8 (Si,p) = Sj if 6(Si,p) = Sj and S, eK-F
8'(S;.p) = S, i 8(S.,p) = S; and SeF

K' = K —‘{Slehere exists no S;eK and per such that §'(S,.p) = Sj}
F' =K' - F

Verbally, the new automaton is derived from M by complementing M and by re-
placing all transitions from a member of F with new transitions that never
allow a state change from a member of F. The new set of states, K', is re-
duced by eliminating all states that are no longer reachable under the next-
move map, §'.

The automaton shown in Figure 3 is incompletely specified; an equivalent
completely specified counterpart is shown in Figure 5, along with its formal
definitions. 34 is the added "trap state." The automaton that accepts dead-
Tock free strings is shown in Figure 6, with its formal specification.

An avoidance automaton can be generated from a deterministic finite

state automaton by the following steps:
1. Obtain the reduced finite state automaton.
2. Generate the completely specified representation.

3. Construct the avoidance automaton, (a finite state automaton), from

the completely specified representation.
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Assume that an avoidance automaton has been defined to represent the

operating system. The following procedure is an avoidance algorithm.
1. Initially, the system is in state SO; i<« 0.

2. A process, Pj, requests permission to perform action a, generat-

ing symbol as.
3. Apply S(Si,aj) = Sp-
4, lf_skeF then goto Step 5 else "suspend Pj“ and goto Step 2.
5. 1 <« k; perform aj; goto Step 2.

IMPLEMENTATION CONSIDERATIONS

The primary consideration in using automata theoretic models for operat-
ing systems is the number of system states involved. As the Tevel of detail
of the model increases, the number of system states increases to the point
that analysis is not possible under conventional methods. The Tevel of de-
tail implied by the deadlock problem is determined by the resource types,
and the number of processes involved in the system. Although the number of
states in such a model may be very large, the model can still be handled by
orthodox methods. In the previous algorithms, the critical portions of the

automaton that must be available for implementation are
a. determination of membership in the set of final states, and

b. the next-move map.
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Both of these portions of the automaton can be encoded, once the model has
been initially defined, such that the next move map is written as a proce-
dure (or function program) which returns the next state value. A better
encoding might also allow the procedure definition to determine (analytical-
1y) the membership of the functional evaluation in the set of final states.
The cost of implementing such a system is then reduced to a function evalu-
ation whenever a resource is involved in a system state change. The follow-
ing simple example, (motivated by Ho]t[7’8]) illustrates the point.

Suppose that a system services two processes that share two identical
units of a single resource type. Each process will never request more
than two units of the resource and can only request one unit of the resource

at a time. A process can be in one of the following states:

0 - the process holds no units of the resource.

1 - the process has requsted a unit.

no
1

the process holds one unit of the resource.
3 - the process holds one unit and requests the other.

4 - the process holds both units of the resource.

Each state of the system can be represented by Sjk where j indicates the state

of process P., and k indicates the state of process P2. The actions that may

1
be taken by the processes are a request by Pi’ denoted vy allocation of a
unit of resource to Pi’ denoted a;3 and deallocation of a unit of resource
from Pi’ denoted di‘ Figure 7 is the automaton of the system. The final

(total deadlock) state 1is S33. Note that Figure 7 has 20 states to describe
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a system with two process and two units of one type of resource. Using
this scheme for representing n units of one type of resource for two processes
results in an automaton with
2 =i
N=4n"+2n+2 -2 5 (2i -1)
i=1
states. This number of states is becoming unreasonable for values of n
greater than 5 or 6, since more than N specifications of the next-move map
are required if the tabular form is used. (It should also be noted that under
the scheme, there are n - 1 total deadlock states, i.e., the set of final
states remains relatively small.) The conventional tabular form of the
next-move map can be replaced by a procedure which accepts the subscripts
of the current state and the current symbol as arguments and determines if
the next state is defined; if it is defined, the procedure can also deter-
mine the indices of the next state. Since the set of final states is small,
the result of a procedure call can easily be checked for membership. For
the particular automaton described in this example, (because of its orderly

growth with n), the final states are easily determined within the next state

procedure.
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CONCLUSIONS

The interpretation of system state diagrams as finite state automata
transition diagrams can be a powerful theoretic tool for the analysis of
operating systems in terms of the deadlock problem. It is possible to in-
sure deadlock avoidance by inspecting the sequence of resource requests,
allocations, and deallocations using the simplest of the abstract machines
from formal language studies. The generation of legal (deadlock-free)
strings is analogous to parsing expressions, thus the possibility that syn-
tactic analysis techniques can be applied to "resource sequences." Another
theoretic tool that could be employed for operating systems analysis is
the regular expression to characterize the set of legal (or illegal) strings
for the system.

Even if the automata-theoretic techniques are not employed as algorithms
within an operating system, the models can be used to analyze the system
to determine its relative freedom from deadlock. For example, models could
be built of various operating system submodules. As the submodules are com-
bined to Create Targer components in the operating system, the deadlock free
models can be concatenated to obtain a more comprehensive model to be used
for analysis. Casting the resource allocation process as an abstract machine
provides enough foundation for quantitative studies of systems in terms of
the (non-zero) possibility of deadlock. The study of the problem as a proba-
bilistic automaton is another avenue of approach that deserved attention.

Perhaps the most significant aspect of this paper is the application

of another established discipline to operating system design and analysis.
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While the various theorems have not been applied directly, the technique
for manipulating the abstract machines has been employed in deriving various

algorithms and in motivating the general ideas presented here.

GJIN:cah
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FIGURE 1

M= (K, 5,8', Sy, F)
K' = 1Sgs S1» Sps Syg0 Spa}
F!' = {513, 323}
6'(50, P]) =S,
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6'(Sps Py) = Sq4
8'(5,5 Pp) = S
8'(Sy30 P1) = S
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page 5, Tine ™ the state of the system is S,(S,), then process PZ(P])xéﬁanges
the state to 83.

2 n-1 2
+2n+2 -2 3 (29 -1)=2n" + 6n

1

page 15, Tline 4: N = 4n .
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Figure 6: M' = (K, z, ¢', So’ F')



