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1. INTRODUCTION.

Developmental systems are formal structures which model
the way in which certain biological organisms develop. The
study of éuch systems has recently attracted particular atten-
tion as a new branch of the theory of formal languages, see
for example [1], [4], [6] and their references. In this paper
we continue research into TOL systems which were introduced in
[2] and further studies, for example, in [3], [5].

A TOL system has the following components
(1) A finite set of symbols, I, the alphabet,
(ii) A finite collection P of tables, each of which tell us
by what strings in I* a symbol may be replaced. A table may,
in general, contain several productions for each symbol. In
every step of a derivation, all symbols in a string musf be
simultaneously replaced according to the production rules of one
arbitrarily chosen table.
(iii) A starting string, w, the axiom. The language generated by
a given TOL system consists of w and all strings which can be
derived from w in a finite number of steps.

A TOL system is called deterministic (abbreviated a DTOL

system) if each of its tables is such that for each symbol in the
alphabet the table contains exactly one production with the symbol
on the left. The role of a deterministic restriction is one of
the important questions, from both the biological and formal points
of view, in the theory of developmental systems.

In this paper we prove a result, which we believe is a

fundamental one for the characterization of languages generated
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by DTOL systems (called DTOL languages.) This result says that

if L 1is a DTOL language over an alphabet containing at least
two letters then the relative number of subwords of a given
length k occurring in the words of L tends to zero as k
increases.

The formal definition of a TOL system is given for example
in [3] the terminology and notation of which we shall follow in
this paper. In addition to this we shall use the following
notation:

1) If x 1is a word then |x| denotes its length and if A is
a set then #A denotes the cardinality of A. The empty word is
denoted by A.

2) 1f G = <%,P,w> 1is a DTOL system and TeP then a a

—+
T
abbreviates "the production a - a is in T", and for a word x
T(x) denotes the word y such that x ?>y.

3) If L 1is a language and Xk a natural number, then Pk(L)

denotes the set of all subwords of length k occurring in the

words of L.



2. PRELIMINARY LEMMAS.

Let 2 be a finite alphabet where #I = n > 2, and
Z = {wl,...,wn} a finite non-empty subset of I* such that
lw| > 1 for at least one w in 2.

First three lemmas state some properties of Z*.

Lemma 1.

k
There exists ko such that Pk (Z*) < n ©.
o
Proof:
For a in I, 1let W(Z,a) = {weZ: a occurs in w}.

We can distinguish two cases.

Case I. For every a in I there exists a word w in W(Z,a)

such that w = a® for some r > 0.

Case II. There exists a letter a in I such that no word in
W(Z,a) is of the form a’ for some r > 0.

If Case I holds, then (because #Z = #I), for every a in I

there exists exactly one w in 2 such that w = a' for some

r > 0. But then one of the words in Z is of the form bQ for
some 4% > 1, b in I, where b does not occur in any other

word in Z. Consequently if xeZ-{b} then xbxgz*.

If Case II holds then we have to consider two subcases.

Subcase II.l. There exists a letter a in Y such that

W(a,z) = @. Then agz*.

Subcase II.2. For every a in I, W(a,Z) # @. Then, obviously,
2u
a %¢z* for an arbitrary a in ¥ and u, = max{|w

: weW(Z,a)l}.

Lemma 1 follows now from the above case analysis.



Lemma 2.
Let k€N+, k = kos + kl where kO is a constant as in Lemma 1
and kl < ko. Then
*
P (7%) Pk (z*)\s
k < O -
nk - ko '
\ n

Proof:

Let k,ko,s,kl be as described above.

Ky

Obviously P, (2*) < (P, (2%))%n *.
O

k
Hence

and Lemma 2 holds.

Lemma 3.

Pk(Z*)
lim‘”“”"'}g"“"= 0.
koo n

Proof:

Let ko be a constant as in Lemma 1, keN+ and s be defined

P, (2%) (Pko(z*)>s

as in Lemma 2. Then from Lemma 2 it follows that T < i
Pp (2%) n n ©
and from Lemma 1 it follows that mmggwwm < 1.
n ©

Hence

*

Pk(z*) Pko(z Yy s

1lim —5 < lim " = 0
ko0 n g-> n o)

and Lemma 3 holds.

For our next Lemma we shall need some additional notation.

Let G = <X, ,w> be a DTOL system. We shall now distinguish some
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subsets of P and accordingly some subsets of [(G).

Let Pg ={Tep: a % o for some a in %, o in I* such that lal > 21},

Po = {TeP: if a 7 o then |a] = 1}, (each element of Pc is called

a coding table),

P, = {TeP: if a 3 o then |a| = 1 and b % A for some b in I}.

If TeP then we define two languages "associated with T" as

follows:
L, = {xeZ*: there exists y in I* such that w =* Yy 7 X},
ﬁT = {xel*: there exists y in Ly and T in Pc such that y = x}.

T
Now we shall show how an arbitrary DTOL language can be

decomposed using this notation.

Lemma 4.
For every DTOL system G there exists an equivalent DTOL system

H with a set of tables P such that

| ngh
<
-
=

L@ =rv Urn, v U

where F 1is a finite language.

Proof:
Let G = <I,R,w> be a DTOL system.

We leave to the reader the easy proof of the fact that one may

(effectively) construct a finite number of coding tables Pl’ P2’
N2 (not necessarily in R ) such that for every x in I%*
and every sequence T, T, T, of coding tables from R U{Pl,...,Pt}

112 tr
there exists Jje{l,...,t} such that

T, ...T, T. xX) = P.(x).
g T, () = Py ()



Hence we have a DTOL system H = <I,P,w> where

P= (R-R,) V {Pl,...,P }, which is equivalent to G.

t
We leave to the reader the easy proof of the fact that if we set
F = {wlV{P(uw): PePc} then indeed

L(C) =F v ULTUUL v UL
TEPg Tep TeP

and so Lemma 4 holds.



3. MAIN RESULT.

Theorem.

Let ¥ be a finite alphabet such that #I = n > 2.
If L is a DTOL language, LE I*, then

Py (L)

— = 0.

lim
k> n

Proof:
Let I Dbe a finite alphabet where #X = n 2 2 and L be a
DTOL language (L& L*) generated by a DTOL system G = <I,P,w>.

According to Lemma 4 and its proof we may assume that

L=1L@ =rv Ur,v U Ljv U L,
TeP TeP TeP
g g c

where F = {w} U {T(w): TSPC} is a finite language.
P, (F)

A = 0.

1) Obviously 1lim
k»>e n

2) If TePg, then (as L E{a:a%u}*) from Lemma 3 it follows that

T
Pk(LT)
lim —x — = 0 and consequently
koo n
P (U L)
k Te . T
lim ———2— = 0.
ko nk

3) Let TePg. If #PC = m then #L < m(#LT) and consequently

T — ~
~ . . PK(LTI‘)
#pP, (L) < m:P,_ (L. ). Thus from 2) it follows that 1lim ————— = 0,
kT k0T Koo nk
hence
P ( \U 1)
k TeP T
lim ————3— |
ko nk

4) Let Tafc. There exists a letter in ¥ which does not occur

at the right hand side of any production in T. Thus
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P, (L) AN P, (L)
P, (L) < (n—l)k and k T < (n-1) , hence 1lim X T 0
k'™ T k k k
n n k> n

and consequently

= 0.

lim
koo

P, (U 1
TeP
C
k
n

Thus from 1) through 4) and from the expression for L (G)

P, (L)
it follows that 1lim A
k=>o n

Up to the present, characterization results have been con-

- = 0 and so the Theorem holds.

spicuously absent from the theory, necessitating involved
combinatorial proofs to show that certain languages are not DTOL.
The result in this paper gives us a direct way to show that many
languages are not generable by DTOL systems. For example if

Z = {a,b} 'and F is a finite language over I +then 5% - F

is not in the class of DTOL languages.
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