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1, Introduction, In order to construct machines which could dis~-

play an intelligence somewhat like that of animals or man, or to under-
stand how the brain functions, one must develop a model of the organiza-
tion of memory. Several models have been proposed [1,4,6,7,11 where other
references are given]. Here we propose still another one which is new in

that it tends to explain how the brains learns to interpret correctly (or

act purposefully upon) the immense amount of information which it obtains
continuously from the senses,

For simplicity, we assume at first that the brain serves only to an-
swer questions which admit a "yes" or "no" answer and that the questions
are sequences of 0O's and 1's of a fixed length m. Our questions depict
the totality of data (parameters) which the brain gets at a given time (ours
is a discrete time model) and hence m is very large (see section 5, remarks
1 and 2 concerning the possible meanings of m). At the beginning the brain
does not know what to say and answers arbitrarily but it gets a "reward"
when the answer is right and a "punishment" when the answer is wrong. Thus
it gets post facto information what is the right answer and attempts to
produce correct answers to the questions which follow. By the problem of

organization of memory we understand the problem of defining an algorithm

to answer new questions on account of past experience. Various statisti-
cal estimation procedures and classical methods of interpolation and ap-
proximation of functions seemingly would apply to this problem. But as
information theory shows [3], they loose their power when the dimension
m is large, say m > 100. Our algorithm is free from this defect. This

is so because we exploit the following natural assumption: Few of the



parameters are important for solving any given question (see remarks 6 and

7 below concerning the validity and the interpretation of this assumption),
although different parameters are needed to solve different questions. The
brain probably develops a method of selecting the important parameters of
any given question; so does our algorithm.

We shall not attempt in this paper to define a neural network capable
of performing our algorithm nor theorize on the question how the nervous
tissue could do it since, although easy, this would seem to us premature
(see section 4).

2. The Algorithm. Let X be the space of questions i.e., a set of se-~

quences of 0's and 1's of length m, and let R be the set of all possible re-
sponses to a question (from now on more than two responses may exist). We

assume that the questions come in a sequence x (where xt=(xt(l),...,xt(m))
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is in X) such that most of the time x differs from X, by one coordinate

t+1

only i.e., xt(k) # x (k) for only one k. Of course, this k depends on t.

t+1
Thus we may think of XysXpsee. a8 of a (random) walk over some vertices of an
m-dimensional cube most steps being a shift along an edge. Let now
f : X+ R be a function such that £(x) is the right response to the question
x. If f is wild then the past experience, i.e., the sequence xl,f(xl),...,xn,f(xn)
gives no information on the values f(xt) for t > n unless x, = xj for some
j £ n (which is a very exceptional event if say m > 200, n 5‘1010 and the xt's
are produced in a random-like way). Thus the problem of organization of
memory makes sense only if f is regular enough.

We shall describe the algorithm for estimating f(x) without any supposi-

tions on £f. We take the efficiency of this algorithm as the indicator of that

regularity of f. An attempt for a more explicit definition of this regularity

is mentioned in Section 3.



Algorithm. Given Xl,f(xl),...,xn,f(xn) one builds the following three
objects.

(1) A tree T of sequences 0O's and 1's, i.e., a nonempty set of sequences
(of various lengths) such that whenever (al,...,ar) is in T then the three
sequences (al,...,ai), (al,...,ai,O) and (al,...,ai,l) are in T for every
i <r. (Hence the empty sequence $ always belongs to T, it is called the
root of the tree). Any sequence (al,...,ar) of T such that (al,...,ar,a)
is not in T for a = 0,1 is called an end. E denotes the set of ends of T.

(2) A function K : (T - E) » {1,...,m}.

(3) A function F : EO + R, where EO is a subset of E.

The triple <T,K,E> is stored in the memory. It constitutes a program
for estimating f(x) for some x in X. Namely given x, one builds an end

(al,...,ar) in E using the following recursive rules
a; = x(K(®)), aj.q = X(K(al""’ai)) for i = 0,1,...

Then, if (al,...,ar) is in EO, one estimates f(x) as F(al,...,ar).
The construction of <T,K,ﬁ> from Xl’f(xl)""’xn’f(xn) is the following
recursive procedure.

(a) We find, if possible, a k in {l,...,m} for which the ratio of the

number of pairs XX g (t =1,...,n-1) such that Xt(k) # xt+l(k), Xt(j) = xt+l(3)

for j # k and f(Xt) # £(x_,,) to the number of all pairs x_, such that

t+1 £2 %+l

Xt(k) # Xt+l(k) and Xt(J) = Xt+l(j) for j # k is positive and maximal. We

put K(@#) = k and we assign the one term sequences (0) and (1) to T. But if

Il

f(xl) f(xz) = ... = f(Xn)

then we put @ into E. and set F({) f(xl).

0



(b) Given a sequence (a,,...,a_) which has already been assigned to
1 r

T we choose the subsequence Xt(l)""’xt(s) of x »++»X consisting of all

1

the terms which satisfy the condition
Xt(i)(K(al""’aj)) = aj+l for all j < r.

Then, if possible, we find a k in {1,...,m} such that the number of pairs
X (1) e (141) (i=1,...,8- 1) which differ only at the k~-th coordinate
(i.e., Xt(i)(J) # Xt(i+l)(3) if and only if j = k) and such that

)) # f(x

f(x )) to the number of all pairs Xt(i)’ Xt(i+l) which dif-

t(i t(i+l

fer only at the k—-th coordinate is positive and maximal. Then we put
K(al,...,ar) = k and we assign (al,...,ar,O) and (al,...,ar,l) to T. But
if

(*) f(xt(l)) = f(xt(2>) = ,,, = f(Xt(s)>

then we put (al,...,ar) into EO and set F(al,...,ar) = f(xt(l)).
(c) If we cannot perform (a) or (b) (e.g., because (*) fails but
there are no pairs Xt(i)’xt(i+l) differing by only one coordinate with

f(xt(i)) # f(x

t(i+l))) then we assign (al,...,ar) to E. (We stop extend-
ing this branch and the program remains incomplete for not enough informa-
tion has been provided by the sequence xl,f(xl),...,xn,f(xn)).

If EO = E then the program {I,K,ﬁ) is complete, otherwise it does not
yield any answer to some "difficulﬂ’questions x in X,

This ends the description of the algorithm.

3. A formal language and problems of regularity. One can display

such <I,K,F> using labeled trees, see figure 1. Every branching point and
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end point represents a member of T, a step to the left represents a 0 and
a step to the right a 1. The labels at the branching points are the values
of K, the ri's at the end are the values of F and the stars indicate ends

which are not in EO'

iy,

ﬁﬁblt may be useful to apply the following notation. Let [a,x,b], where
x = 0,1 but a and b are arbitrary things, be defined by [a,0,b] = a and
[a,1,b] = b. Now the formula
[[lrg,x(1), [*,x(6),7,11,%x(3),151,x(5), [[r ,x(2),[ry,x(1),*11,x(3), [r,,x(4) ,*]1]
represents the‘<T,K,€? of figure 1.

How to measure the regularity of f needed for the success of the algorithm?
Let u be a probability measure over the space X. Assume that the mechanism
generating XpseeesX is a random choice such that if t is not a multiple of

100 then one of the coordinates of X, is changed to get x the probability

t+1°
of changing Xt(k) being proportional to ﬂ{(xt(l),...,xt(k—l), l—Xt(k),

x (ktl), ..., x, (m))} while if 100 divides t then x_,, is obtained by a

t+1
p-random choice in X independent of X .

To define our complexity of f let P(f) be the set of all complete
(i.e., without starts) programs {I,K,E} faithfully representing f. Clearly
P(f) is not vacuous. For each <ﬁ,K,E> in P(f) we define E(T) to be the ex~—
pected value of the length of the branch of T which we have to scan to evaluate
f(x). Now the complexity c(f) of f is defined as the minimum of all the
numbers E(T).

It is apparent that if c(f) is small enough and x,_ are generated as

above, then we can apply successfully our algorithm. But we have no quanti-

tative analysis of the situation.



4. Experiments. There are the following three obvious directions

for experimentation: (a) To construct learning machines based on our al-
gorithm; (B) To find out by methods of experimental psychology whether

the brain uses some such algorithm; (y) To find out whether and how the neu-
ral network performs such an algorithm.

Concerning (o) all roads seem open. The main difficulty is to find
the right set of basic parameters x(1),...,x(m) (and ways for the machine
to measure them) so that the desired functions which are to be learned are
sufficiently regular in these parameters (see sections 3, and 5 remark 1).
Of course, one should begin with an artifically simplified environment and
simple enough functions.

Concerning (B) we thought of the following approach. Define an f
with c¢(f) sufficiently small, e.g., the one in figure 2. This f depends
on seven variables x(1),...,x(7) and takes on eight values (names of ani-
mals). Let the values of the parameters x(k) be displayed by means of
seven lights (on or off) arranged like in figure 3. There are 27 = 128
possible configurations of the lights. Let a sequence of configurations
KpseeesX, be produced by switching at random the lights one at a time and
each time the correct animal is shown on an additional display. Let a sub-
ject look at those lights and try to recognize the animals which the con-
figurations represent. How soon (that is for what values of n) will he be

able to interpret correctly an arbitrary configuration of lights?
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We can think of many possible variants of this experiment: (1) The
switching of lights may go on fast enough so that a conscious search for
an algorithm to interpret them correctly will be impossible. (2) The
switching may be slow but still imposed by the experimentator. (3) The
switching may be done by the learning subject himself.

Variant (1) is the most interesting perhaps, since it aims at the
structure of memory unaltered by the powers of deduction. And this is
precisely what we hope our algorithm explains (in a very simplified way).
Variants (2) and (3) are perhaps uninteresting unless the values of 7 and
8 above are replaced by some larger 2h—l and Zh where h is the height of

15

the tree. Already with h = 4 we have 15 lights, 16 values and 27~ = 32768

configurations of the lights. Can the subject learn to read correctly
every configuration after n lessons, n being very much smaller than 215 ?
(It is important that the lights be arranged so that the location of each
be immediately recognizable independently of the on~off configuration.
With 15 lights this is still easy.)

Concerning (y) we cannot propose a meaningful search; our knowledge
of the brain being so inadequate. Considering that our algorithm could
be only a drastic simplification of what is really going on in the brain

when learning, we are not yet able to state a worthwhile conjecture.

5. Miscellaneous remarks. 1.,Many interesting f's cannot be represented

by a program <T,K,ﬁ> of moderate size, say with T having no more than m2
elements, see [4,8,9]. E.g., if £(x) indicates the parity of the number
of 1's for every sequence x = x(1),...,x(m)) then T must have at least
m

27 ~ 1 elements. Such difficult or global f's seem unlearnable and have

to be built in the organism or in the machine; we can only hope that such



important f's are not too numerous. We think that the senses and the input
nerves provide the central nervous system with sophisiticated data or para-
mters. The brain learns automatically from examples only such functions
which are simple enough in those parameters.

However, the f's learned at some time may become parameters (arguments)
for the f's to be learned later. Thus f's could be composed (some material
on compositions of regular functions is given in [2,8]).

2, Our discrete time t does not have to correspond to the real time in

which the organism is living. X may be a compilation of all the parameters
obtained at present together with many parameters received earlier. E.g.,

a circular array of memory cells stores information in the following way.

A needle moves in the clockwise direction at a constant speed and the cell

at which it points changes its content to register an incoming signal. The

state of this set of cells is a part of the question X .

[

Another possible interpretation is the following. X, represents a
description of the environment and of the state of the organism based on
longer observations, X, is modified accordingly when the senses register
a change.

3. The model described in this paper is not intended to explain
how man creates various algorithms, it aims at explaining the principle
of more basic abilities, e.g., the abilit& to learn to recognize the iden~
tity of the meaning of not quite identical sounds and pictures (automatic
learning).

4. The perceptron learning [9,10] and other methods of linear appro-

ximation theory and holographic models [6,11] are other learning devices

with which the brain could be equipped.



5. One important activity of the brain is to predict or imagine
the future (especially at short range). This means to predict a set of

coordinates of some xt' s with t > to from Xt . This involves
0

learning some coordinates of x, 's as functions of oo Here:again
0

our algorithm could be applied. This task suggests a modification of

our algorithm in which the decisions of stopping the growth of a branch

of T and assigning to its end a value F comes earlier than specified

in clauses (a) and (b), namely when the fraction of counterexamples to

(k) 1is small enough.

6. The O's and 1l's of the coordinates of the xi‘ s may be
produced by some threshold functions applied to some continuous parameters.
Our theory would not differ essentially if these parameters took only a
small number of values. It may be interesting to generalize our work to
the case when the parameter k in Xt(k) varies over a continuum with
Xt regular enough.

7. The regular k- continuous functions f introduced and studied

in [3] seem to be a natural domain of application of our algorithm. This

paper grew out of a problem stated in Remark 10 in [3].
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