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ABSTRACT

Ho's Algorithm generates exact realizations of finite-dimensional
Tinear systems given exact data. MWe discuss here a variant of the
algorithm that generates approximate realizations of specified dimen-

sion from approximate data.






SECTION O: INTRODUCTION

Ho's algorithm for identification of linear systems, together with
some of its variants, has been viewed with justified suspicion by poten-
tial users who have only noisy data to work from. The principal diffi-
culty is that noisy data introduces uncertainty about the rank of the Hankel
matrix and hence about the dimension of resulting realization. Some time
ago the senior author noticed that the ultimate weapon in such a situation
would be an algorithm that produces a realization of given dimension that
most closely approximates a given behavior. We present in this paper a pro-
mising start on the difficult problem of approximating a given behavior
with a Tinear system of given dimension.

For simplicity, our algorithm is described for systems with scalar

inputs and outputs, but this restriction is in no way essential.



SECTION 1: HO'S ALGORITHM
A Tinear, stationary, finite dimensional, dynamic system that
operates in discrete time can be characterized by an n x n system of

linear difference equations in the following form:]

X Axt + Bu
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The n x 1 vector Xy represents the internal state of the system at
time t, Ug is a scalar representing the input to the system at time t,
and Yi is a scalar representing the output from the system at time t.
The coefficient A is an n x n constant matrix, and B and C are n x 1
constant vectors. The sequence Uy_g, Up_1s Uiops -+ OF input values
can itself be considered to be a vector U is a space of dimension
equal to the Tength of the input sequence under consideration. Similar-
ly, the sequence Yiz1s Yi=p> Yi=gs --- CAD be considered as a vector Y
representing the output.

The same dynamical system, if controllable and observable, can also
be characterized up to isomorphism by a vector -- the output vector Y
which is the response to the unit input pulse, if there are enough time
points included relative to the known bounds on the dimension of the sys-
tem. [2] This characterization is easy to obtain, since all it requires
are measurements of physical quantities. But the difference equations
are often the desired form of representation. The problem is posed,
then: Given a particular dynamical system and the response vector

Y to a unit input pulse, how can one determine a set of coefficients



A, B and C necessary to characterize the system in the form of differ-
ence equations? First, it must be noted that the A, B and C are not

in general unique for a given dynamical system. There may be many dif-
ferent dimensions. However, there will be a minimal dimension possible.
Also, all systems of smallest possible dimension are identical up to

an isomorphism, i.e., if A,B,C and A',B',C' are two sets of coeffi-
cients of dimension n which characterize the system, they are related

1 g = PB oo o (Tprl

by A" = PAP~ P™' for some nonsingular n x n matrix

P [2]. Therefore, the eigenvalues of A are invariant -- any system of
difference equations of smallest dimension will have an A with the
same eigenvalues as the A in any other system of smallest dimension.

The problem can now be restated: How can one determine an A,B,C
of minimal dimension to characterize the dynamical system in question?
A solution to this problem was developed by B. L. Ho and is called
"Ho's Algorithm." A description of the algorithm follows:

From any given unit pulse reponse, the minimal dimension of the
system is not immediately apparent. A Tlarge number of elements of Y
is used to insure that the dimension is not underestimated. If it is
known (or guessed) that the system is not of dimension larger than
some n, then 2n elements of the output vector Y are required. A ma-

trix H is formed from these elements in the following manner:



Yyr. Yo Y3 In

Yo Y3 Vg - : Yo
H =

I Yn+1 Yne2 - : : Yon-1

This matrix is then factored into the product of two matrices: H = ST,
where S is n xmand T is m x n. The inner dimension m is taken to
be equal to the rank of H. Another matrix H' is formed by eliminating

the first column of H and attaching the column:

Y+

yn+2

y2n

on the right side of H, so that we have:



— -
Yo Y3 Vg -+ o Ypy
.V3 .Y4 y5 . . . yn+2
H'=
In#l Yn+2 Yp+3 - : - YN

The equation H' = SAT 1is then solved for A, the first row of S is taken
to be CT, and the first column of T to be B. Since H will have rank
equal to the minimal dimension possible for A and the inner dimension m
of the factorization is equal to the rank of H, A will be m x m, and m
will be the minimal dimension possible for the system. For any given
factorization of H, the solution for A in this equation is both possible
and unique as long as the inner dimension m is the rank of H [1], [2].
One of the drawbacks of this algorithm is that the results are of-
ten very sensitive to small changes in the data. This is undesirable
especially since experimentally obtained data always contain some error.
One of the problems which arises when using noisy data is that the rank
of H may be increased. Therefore, the A matrix which one obtains from
the algorithm may be of much Tlarger dimension than the dynamical system
actually warrants. Also, there may be numerical error mounting in the
calculation of A in solving H' = SAT if this is done on a finite preci-
sion computer. One would like to factor H into S and T in such a way

that the numerical errors in solving for A are minimized. It would also

be desirable to be able to reduce the rank of H if H has rank p but is



"close" to having rank n<p as might occur with slightly perturbed ele-

ments of the matrix. Indeed, one highly-desirable procedure would be

to choose in advance both a dimension m and a measure of goodness-of-

fit to a given unit pulse response and somehow compute a realization

A,B,C of dimension m whose unit pulse response best fits the given one.

No algorithm for doing this now exists; if one were produced, it would
sharply advance the state of Tinear modeling. This paper is devoted

to a promising partial solution.



SECTION 2: TOOLS FOR DOING THE ALGORITHM APPROXIMATELY
Any matrix can be put into diagonal form under orthogonal equiva-

lence. This is stated in the following theorem:

Theorem 1 - Singular Value Decomposition

Given any n x n real matrix H, there exist two n x n real ortho-
gonal matrices U and V so that UHVT is a diagonal matrix Q. U and V
can be chosen so that the diagonal elements of Q are g, >0y > e 2
Qp > Qpyq = +-+ =0, = 0 where r is the rank of H. Thus if H is non-
singular, then 4y 299 2 «.. 29, > 0. The elements q; are called the
singular values of H and are the positive square roots of the eigen--
values of HHT. U consists of the n orthonormalized eigenvectors asso-
ciated with the eigenvalues of HHT. V consists. of the n orthonormalized
eigenvectors of HTH [4].

For computational purposes, orthogonal matribes are, in general,
more valuable than other types since ||UX{|2 = IIXH2 for any ortho-
gonal matrix U and any vector X. Therefore, multiplications by ortho-
gonal matrices preserve the lengths of the vectors involved, whereas
multiplications by a general nonsingular matrix may stretch or shrink
the lengths, perhaps drastically. As a result, numerical errors are
not amplified when orthogonal matrices are used.

The factorization of H in Ho's Algorithm can be done by singular
value decomposition: H = UQVT. Since the elements of Q are non-nega-

tive, this can be further factored as H = U/ﬁ'/ﬁ'VT, where vQ represents

the Q matrix with each element replaced by its square root. In general,



with noisy data and finite precision arithmetic in computing U, Q and
V, Hwill have rank equal to its dimension. Therefore, Q will be non-
singular even if H has larger dimension than the minimal one for the
representation of the dynamical system. Hence one can easily solve for

A in the following way:
A= -1 uTHWY -

since U-! = U7 and (VT)‘1 = V. /Q ~! is easy to compute since /Q is
diagonal; one simply inverts each diagonal element.* The vectors B

T is the first row of

and C are obtained as described previously: C
U/Q and B is the first column of /Q'VT.

We are still faced with the problem of reducing the dimension of
A since the A obtained is of the same dimension as H. Again the
singular value representation of H is helpful. Suppose we wish to
approximate H with rank r by another matrix H of rank s < r, and we
wish [[H—ﬁl!z to be minimized so that H will be "closest" to H. The
following theorem will show that by setting the smallest nonzero ele-

ment of Q in the singular value decomposition of H to zero, and then

multiplying the matrices back together, the desired H will be obtained.

Theorem 2

Let H = UQVT and choose H = UQVT where dy >4y > ... 29, >0 and
Gy = A5 Gy = Qps -vvs Qg = Ggs Ggyq = .. = Q. = 0. Then A is the
closest matrix of rank s to H, i.e., ||H-G||, is minimized for all G of

~

rank s if G = H.

* One must beware, however, of small elements of Q. There will be more
discussion of this problem Tater.



Proof:
Since U and V are orthogonal, ][H-ﬁ{[z = v’ - UQVT[12 .
[lu-aw'Il = [le-all =
4 %
2
0 0
0 ' 0
~ -
0
G541
= qY‘ = qS‘H
0
"0
The last step can be taken since if D is diagonal, HDII2 = ’QTT }IlDXI[z

and ][DXH2 will be maximized for {IX!!Z =1 if X is taken to be the

vector with all O elements except a 1 in the position corresponding to

the Targest (in absolute value) element of D.



We now show ||H-G|] > qg4q for an arbitrary G of rank s. Let G

be any matrix of rank s. ]]H-G||2 = ||UQVT - G||2 = ||Q= UTGV||2
since multiplying by an orthogonal matrix does not change the 2 norm.
UTGY still has rank s, so we can look at ||Q-F|| where F = UTGYV with-

out Toss of generality. Assume G > ... > Q. > Quq = -c. =G = 0.
The null space of F is of dimension n - s. The space spanned by ers

€ps «avs @ has dimension s+1. The intersection of these two spaces

s+1
is nonempty, so we can choose a vector x which is in this intersec-

tion. Then [[(Q-F)x|| =[x - Fx|| = [[ox|| = |{[ay%
92%2
93%3
9n%n
2« 1/2 Si 1/2
= 4 2,2 = 2.2 since x, through x
i=1 % % i=1 9 % ) 1 s+
r 1/2
are the only elements of x with nonzero values, we have > q 2x 2
i=1 i

1/2
=<i2% q, 2X12 ) . And since g; > q 4 for 1 < s+l,

i i=1

[ s+1 1/2 s+1 5 1/2
(\1‘2 P 2% 2O | 2 X = A [[X[]- S0

110@-F)XI | > agyp Vxl] and HHEEIXLL 5> q o0 But [lo-FI|
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2 Agyp- So [[Q-FI] > ag,,
for any matrix of F or rank s. Therefore, the H defined earlier is the
closest matrix of rank s to H.*

When this theorem is applied to Ho's Algorithm, we are quite cer-
tain that the true dimension of the system must be less than n, but
the H we get from noisy data has rank n. Therefore, we approximate
H by H of smaller rank. An A of similar smaller rank is obtained in
the following way: We have H o= UQVT, and we seek to determine A such
that |[H' - UV AVQVTIL is minimized. Now |[H' - 0@ AVE VT -
l!UTH'V -V A\/6|12, andV/Q AVQ is zero in rows r+1, ..., n and colums
r+l, ..., n. Thus the minimum will be assumed if\/a—AV/E equals UTH'V
in the upper r x r submatrix. The remaining elements of A can be chosen
arbitrarily, since the produce\/a Avfa is independent of the components
in rows and columns r+1, ..., n. Since an A is desired which is of
smallest dimension possible, the Tast n - r rows and columns are chosen
to be zero. This configuration indicates clearly the rank of A. Hence
the equations for solution of the coefficients are: A =\/6‘+ UTH‘V»/6—+

T. first row of UN/?; whev‘e\/a-+ is the

B = first column ofw/a VT, C
pseudo-inverse ofw/é'and is obtained by inverting each nonzero element
of\/ai Any other choice of an "inverse" for\/amwhich does not have
zeros in the same positions of A. Thié choice of 0's is important in

reducing the dimension of the system:

* We thank Alan Cline for supplying the critical step in this proof.



-11-

Consider the set of n x n difference equations created by the
coefficients A with zeroes in the Tast n - r rows and columns and B
and C with n - r zeroes in the last places. Also consider the set
of n - r x n - r difference equations created by the same coeffici-
ents but with all the Tast rows and columns of 0's ignored and the
dimensions shrunk. It is easy to verify that the unit pulse response
of each of these systems will be the same. Therefore, the two sys-
tems are equivalent and the shrunken one can be chosen as the represen-
tation desired. In this manner a calculated A of smaller dimension
of H can be obtained.

Singular value decomposition to factor H was chosen mainly for
two reasons: orthogonal matrices are numerically more stable to work
with than arbitrary matrices, and finding a matrix "close" to H but
of smaller rank than H is easy. However, as indicated earlier, there
is no proof at this time that singular value decomposition is the best

method to use.
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SECTION 3: WHAT TO EXPECT

As stated before, what we would Tike to do is derive a linear system
whose unit pulse response sharply approximates the given one while si-
multaneously meeting a constraint on the state space dimension. Since
the derived system will have a unit pulse reponse matrix H=ST, where
S and T are of rank r = desired dimension, a necessary condition for
reaching our objective is to find a factorization ST through a space
of dimension r that sharply approximates the H of the given unit pulse
response. The version of Ho's Algorithm described in the preceding sec-
tion meets this necessary condition as nearly as possible. What keeps
the condition from being sufficient is that the proposed approximation
may produce an A-matrix that is far enough off that the high powers
of A required for the unit pulse might be grossly in error. One would
expect this phenomenon to be worst for very unstable A's, and Teast
troublesome for stable A's. Furthermore, in situations where this
catastrophe does not occur, one would expect the pulse response error,
when plotted against r, to have a minimum for intermediate values of
r: When r is too small, we cannot approximate well because we do not
have enough state space dimensions. When r is too large, small q's
appear and are inverted, upsetting the calculation.

The above expections are difficult to check analytically because
of the difficulty of estimating the errors in high powers of A. Ex-

perimental results, however, have fulfilled these expectations.
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SECTION 4: EXPERIMENTAL TECHNIQUE AND RESULTS

To get some idea what might in practice be expected from the algorithm
we ran the following experiments:

First, data was generated by simulating a chosen system of small
dimension (usually three), the first ten to fourteen values of the unit
pulse response were generated, and random numbers of mean equal to some
chosen percentage of the maximum unit pulse response value were added.
This procedure yielded data for which a three-dimensional approxima-
tion within, say, five percent was guaranteed possible. We then applied
Ho's Algorithm with singular value decomposition to this data, truncat-
ing the Q matrix at various points to give realizations of various di-
mensions. The merit of each resulting realization was judged by mea-
suring the percentage error in the worst pulse response value, and by
comparing the natural frequencies of the computed relization with those
of the original system.

The first striking result was that if the natural frequencies of
the original system lay outside the unit disc (unstable system), then
the computed realization was a]ways grossly in error. A typical run
exhibiting this phenomenon is shown in Figure 1.

(A belongs to the original system, A' n x n to the n-dimensional
computed realization).

When the natural frequencies of the original system were all inside
the unit disc (stable system), then much closer approximations resulted,
provided the Q matrix was truncated at the right point. A typical run

illustrating this situation is shown in Figure 2.
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SECTION 5: CONCLUSIONS AND CHALLENGES TO THE READER

The experimental results summarized in the preceding section sug-
gest that even the developmental version of Ho's Algorithm with Singu-
lar Value Decomposition described here is a practical tool for deriving
approximate linear realizations of stable systems.

The following problems for further research suggest themselves:
1. Develop an error analysis of the algorithm described here.

2. Investigate variations on the above algorithm that might yield in-
creased accuracy or ease of computation. (E.g., if we have enough
data, we can shift H several columns instead of just one, set equal

k

to SA"T, and get powers of A directly. Can this information be

put to use?)

3. How best can we code descriptions of continuous time systems for

application of some variation of the given algorithm?

4. Compare (experimentally) the performance of this algorithm with that
of J. Rissanen [3] in situations where both algorithms seem appro-

priate.

HPZ:cah
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