ON ULAM’S PROBLEM
By
Richard Dunn

CU-CS-011-73 January 1973

—D
%}University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Supported by NSF NYI #CCR-9357740, ONR #N00014-96-1-0720, and a Packard Fellowship in Science and Engineering from the
David and Lucile Packard Foundation.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

ON ULAM'S PROBLEM *
by
Richard Dunn

Department of Computer Science
University of Colorado
Boulder, Colorado

Report #CU-CS-011-73 January 1973

* This work supported by N.S.F. Grant GJ-660.

ON ULAM'S PROBLEM

by Richard Dunn

ABSTRACT:
Use of a computer is described in an attempted solution of a currently
unsolved problem known as "Ulam's Problem." Although no solution was found,

several patterns and regularities were found which would be useful in an at-

tempted solution.

Le The Problem

A sequencé is to be generated by the following rules:
Le Choose the initial value ng as an integer greater than l.
2¢ a) If an element of the sequence ny is 1, terminate the sequence.
b) Otherwise, if element ng is odd, set element By =30y vl
and repeat step 2.
¢) If element n; is even, seb . = fé and repealb step 2.
2
Thus, some examples of sequences would be:
ny = 3: 3, 10, 5, 16, 8, L, 2, 1
ng = 7: T, 22, 11, 3L, 17, 52, 26, 13, 4o, 20, 10, 5, 16, 8, k4, 2, 1
The problem is then stated as:. Is the sequence finite in length for any
choice of nn? The attempt for sclution to the problem proceeds in both
directions=w-a search for an ng which gives an infinite sequence, and a

search for a proof that all sequences are finite.

Lle HMethod 1 - Direct Solution

Before attempting any more elegant approaches, it seemed worthwhile
to simply try a large number of ng values. Since the generating algorithm
is so simple for the sequences, a computer can be programmed to check a
large number of cases very quickly. Befors actually writing the program,
some simplifying information may be developed:

le If we select ng values in increasing order, we need only verify

that each n, value has some value in its sequence ny which is

less than ny in order to guarantee that the sequence is finite.

Since n; 4 ny, we have already tested the sequence beginning with

nia
2o Using the above, it is clear that the smallest n, which gives a
solution will not be even, since an even Ny immediately goes to

ny/2 according to rule 2c.

3¢ Checking a few values of Ny will show that valmeg‘of the form
lik+1l, k20, will always give a terminating sequence by the steps
lie+l, 12k+h, 6k+2, 3k+l. (At this point, a value less than the
original Lk+l has been obtained.) Other categories of values can
be found, but they are only productive up o a point in eliminating
cases to be tried because it becomes complicated to check for each
form,

Using the above simplifications, a program was written in assembly
language for the CDC 6L00 to check for solutions. A flowchart of the
program used follows. As shown, there is no exit from the program; it was
simply allotted an amount of time and run until the time was exhausted, at
which point the values of variables were checked to ensure that no solution
had be@n found. Using this program, it was determined that if any ng does
give an infinite sequence, it must exceed 28 882 247, This was debermined
in less than four minutes of computer time. It would be possible to push
the limit higher, of course, but it does not seem promising unless the lower
bound for an Dy could be raised by two orders of magnitude or so. This
would require a faster computer.

The direct approach did not yield a solution, but it did give a hint
that the answer to the oroblem might be negativew=that all ngy give finite

SeqUEeNnces.

(START)

Ihiha\ Ny

N<3

K even

Ves

No

Kek/2

Ke3K+|

If k was odd,
3kt| is even,so
we must always

Ne

es

Neﬁ 141

¥ 3

Ne N+ 4

divide b‘) [3

Flowchatt of Direct-Solution

Progran

I1L. HMethod 2 = Construction of "Sieve!

In the preceding section, it was mentioned that there are cerbain
"categories" of integers for which it can be ststed that the sequences
will always be finite. Those already mentioned were 2k and L+l for non-
negative integers k. These categories were discoversd by the facht that
they require a particular number of elements in the seguence to reach n;
less than the ng for the sequence. With this knowledge, it was possible
to find further categories by classifying ny values according to the num-
ber of "steps® (application of the rules of section I) to reach a value
less than the original. The numbers which fall into a given category may
then be examined to attempt to find a rule for the catepgory. As far as the
search has been carried, it has been possible to it values to categories.

A few of the categories are listed heres

2k 128k+7 256k+95

L+l 128k+15 256k+123
16k+3 128k +59 256k+1T5
325k +11L 256k +39 256k +199
32k+23 256k+T79 256k +21.9

The intent of this "cabtegory" system is to attempt to prove that all
integers fall into such a cabegory, and thus that there are none which can
generate an infinite sequence. All categories which have been found so far
have the form 23k + m. We should hope to be able to derive a systemdtic
form for giving the m values associated with each j. Given this, we might
be able to find the behavior of the number of m values for each j. We can
then take the set of all positive integers and eliminate them by using suc-
cesgively finer ¥"sieves" formed by using higher and higher 7j" values,
in the limit showing that the sieve closes (catches all numbers.)

The computer search for j and m values turned up some interesting

(but not particularly useful) regubarities. Not all j values are present,

AS N

In particular, note in the above examples that j=3 and 6 (8k+m and Slik+m)
are absent. It was found that there is (empirically) a periodic rule
which determines which"j values do not occur. This rule relates to another
quantity common to all elements of a category--the number of "stepg!
required by elements of that category to reach a value in the sequence less
than the initial value. This value is common to all categories with a
given #j% value, and increases monotonically with the j value. The follow-
ing list of "j" values and the number of steps for each gives the corres-
pandanée which was found:

Steps; 1 3 6 8 11 13 16 19 21 24 26 29 32 3h 37 39 L2
gt o1 o2 ks 7 8 10 12 13 15 16 18 20 21 23 24 26

The relation is obbtained from the difference in successive values. For the
"iteps" values, this difference cycles through 2 32 32 33232 3 3, and
for the 1j" values, it cycles through 1 2 1 21 2 2 12 1 2 2. This has been
checked for "gteps" values up to 1hO. This relation has been one of the
mogt interesting found in the problem, but to this point it has been of no
help in solwing the probleml

We should like to know if the fraction of all integers covered by cate-
gories of a given "j# or less will increase with increasing #j" in such =
way as to eventually cover all integers. To investigate this, we need the
number of m values which occur for a given j value. (At the outset, we can
anticipate some problems; bbviously’we are nob dea&ing with a "nlce' smooth
function since there are j values for which there are no m values.)

At this point, two new functions are introduced:

P(3) = the number of m values for this j

3 :
(3 wféZ?(i)‘za“i (This wlll give the number of integers out of

17} .
2J covered by categories up to j.)

The function Q will eventually allow us to compute the quantity we are in-
terested in~-the fraction of all integers covered by categories up to a
given "j" value, This is just Q(3j)/2J. The table which follows gives this
function. Also, since it is difficult to get the "feelt of the meaning of
this function for ®#j" values over 10 or so, the function 1 = Q(j}/gj is
alse tabulated. This function represents the fraction of all integers not

covered by categories up o Je

J P(3) o(3) a(3)/2’ 1-0(3)/2
1 1 1 #5500 «500
2 1 3 « 750 250
3 0 6 « 750 0250
L 1 13 «813 «187
5 2 28 875 o125
6 0 56 #5875 0125
7 3 115 898 «102
8 7 237 «926 07l
9 0 i «926 07k
10 12 960 0938 062
1L 0 1920 2938 $062
12 30 3870 «9h5 <055
13 85 7825 #955 «0L5
1 0 15650 «955 +0li5
15 173 31473 2960 «Olo
16 L6 63422 +968 +032
17 0 1268l «968 <032
19 0 509298 #971 »029
20 2652 1021218 <97k «026
21 80L5 2050541 978 022

The two graphs which follow give some idea of the behavior. Because of
the irregularities ("j" values with P(j)=0), it is difficult to say very much
about the possibillities of convergence. If more points were avallable, it
might be possible to analyze the form of the function 1 - Q(3)/29. How-
ever, ancther ten points would be a reasonable number to ask for, but it is
doubtful that these points could be obtained. The 21 given values required

checking about 219 values,; and each additional data point doubles the

02

bl

g1

9l

st

o

L1

RIS

ot

4

s

Hd

fo1g v
by

L

gl

M

SN

N

N

319 20 2

I

17

15

i

12

"

10

V)

Plot: |- 51 s

Hhwmic

(

8

number of values which must be checked. The program which calculated the
21 values for the table required about a minute of time on the CDC 6400,
At this point, it seems unlikely that much further computer effort
would heip in the construction of a "sieve". It would be interesting to
obtain a few more points on 1 = Q(j)/Zj to try to infer whether or not it

would converge, although this would not constitute a proof, of course.

LV. Hethod 3 - Binary Representabion

Some additional information can be gained by congidering the progres-
sive values in a sequence in their binary representation. Notice that when
we reach a power of two in the sequence, the sequence will terminate after
only a series of divisions by two. We could therefore examine the gener-
ating rules to see if they will always generate a power of two. Another way
to look at this approach is to note that a power of two has only one Hlt
in its binary representation. We could therefore ask for a proof that the
generating rules will eventually reduce the number of "1" bits in the binary
repregentation of the number.

It is clear that division of an even number by two does not change the
number éf "LY bits. We need to examine the mumber of "1¥ bits which appear
or disappear in the operation n-»3n+l. After checking a few ipitial values,
it became apparent that there was no s mple relation. It was deeided to
examine the sequences for values of the form 29-1, since these values have
all "l" bits in a mumber of a given length. This led to another interes-
ting (but as yet unproductive) pattern. All such values have terminating
sequences which follow a particular pattern. Consecutive g values group
into pairs with sequences of the same length.

This last approach to the problem really consists of a few scattered

10

observations without much direction. It seems somewhat promising if one

were to work further on this problem.

E; The Prqgrams

It would have been impossible to try several approaches without the
use of a computer. The programs were by no means intended to produce a
finished solution to the problem; they merely helped with the drudgery of
repeated calculations and ensured that the frequent errors in hand calcula-
tion would not crop up. The use of a computer in several cases allowed a
sufficient number of calculations to be made to peint up patterns in the
results which would not have been evident otherwise.

ALL of the programs were run on the University of Colorado CDC 6400
They were written in a mixture of FORIRAN and assembly language, and none
of them were over a page long. The smallest--the direct-solution search--

required only twelve words of code.

Coneclusion

The faect that no solution was found seems to be the least important
aspect of this exercise. Considerable insight was gained into the problem,
including the discovery of some patterns which might be useful to others
investigating the problem. Of much greater importance was the development
of techniques for approaching préblems in pure mathematics with a computer.
The most successful attack was to disbill each question carefully before it
was programmed. This kept the programs short and simple, allowing the time

to be spent on the problem itself rather than debugginge

